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Abstract

Models of networks of populations of neurons commonly assume that the interactions
between neural populations are via additive or diffusive coupling. When using the
additive coupling, a population’s activity is affected by the sum of the activities of
neighbouring populations. In contrast, when using the diffusive coupling a neural
population is affected by the sum of the differences between its activity and the activity
of its neighbours. These two coupling functions have been used interchangeably for
similar applications. Here, we show that the choice of coupling can lead to strikingly
different brain network dynamics. We focus on a model of seizure transitions that has
been used both with additive and diffusive coupling in the literature. We consider
networks with two and three nodes, and large random and scale-free networks with 64
nodes. We further assess functional networks inferred from magnetoencephalography
(MEG) from people with epilepsy and healthy controls. To characterize the seizure
dynamics on these networks, we use the escape time, the brain network ictogenicity
(BNI) and the node ictogenicity (NI), which are measures of the network’s global and
local ability to generate seizures. Our main result is that the level of ictogenicity of a
network is strongly dependent on the coupling function. We find that people with
epilepsy have higher additive BNI than controls, as hypothesized, while the diffusive
BNI provides the opposite result. Moreover, individual nodes that are more likely to
drive seizures with one type of coupling are more likely to prevent seizures with the
other coupling function. Our results on the MEG networks and evidence from the
literature suggest that the additive coupling may be a better modelling choice than the
diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to
motivate and validate the choice of coupling in future studies.

Author summary

Most models of brain dynamics assume that distinct brain regions interact in either an
additive or a diffusive way. With additive coupling, each brain region sums incoming
signals. In contrast, with diffusive coupling, each region sums the differences between its
own signal and incoming signals. Although they are different, these two couplings have
been used for very similar applications, particularly within models of epilepsy. Here we
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assessed the effect of this choice on seizure behaviour. Using a model of seizures and
both artificial and real brain networks, we showed that the coupling choice can lead to
very different seizure dynamics. We found that networks that are more prone to seizures
using one coupling, are less prone to them using the other. Likewise, individual brain
regions that are more likely to drive seizures when using additive coupling, are more
likely to prevent them when using diffusive coupling. Using real brain networks, we
found that the additive coupling predicted higher seizure propensity in people with
epilepsy compared to healthy controls, whereas the diffusive coupling did not. Our
results highlight the need to justify the choice of coupling used and show that the
additive coupling may be a better option in some applications.

Introduction 1

Modelling large-scale brain activity is key to better understanding macroscopic brain 2

dynamics [1]. Merging such models and experimental data enables posing and testing 3

hypotheses about brain function and dysfunction [1, 2]. There are two main classes of 4

large-scale brain dynamic models, neural field models and brain network models 5

(BNM) [1]. Neural field models treat the cortex as a continuous medium, whereas 6

BNMs discretise the cortex into nodes. A node may typically represent a local 7

population of excitatory and inhibitory neurons, whose activity may be modelled using 8

a neural mass model such as the Wilson-Cowan model [3]. An ensemble of such coupled 9

nodes is a BNM. The BNMs are particularly suited to study the role of brain network 10

connectivity in shaping healthy and pathological dynamics as they can readily 11

incorporate a brain connectome into a brain dynamics modelling framework [4]. For 12

example, Hansen et al. [5] used a BNM and structural brain connectivity to simulate 13

functional connectivity dynamics. Goodfellow et al. [6] used a BNM and functional 14

connectivity derived from intracranial electroencephalography (EEG) to simulate and 15

predict the outcome of epilepsy surgery. Demirtaş et al. [7] used a BNM to investigate 16

the mechanisms responsible for connectivity changes in Alzheimer’s disease. Given the 17

potential of BNMs to bring mechanistic understanding into the field of network 18

neuroscience, it is important to be aware of its assumptions and choices. 19

BNMs may differ with regards to three main choices. First is the connectivity 20

structure or network topology. BNMs may be used to investigate different types of 21

networks, namely structural networks [8], or functional networks [6], which are inferred 22

from different data modalities. Second is the choice of model to be employed to 23

simulate the node dynamics. There is a wide range of model choices from biophysically 24

realistic to purely phenomenological. For example, the Wendling model [6, 9] (a 25

biophysical model), the Epileptor model [10] and the the subcritical Hopf bifurcation 26

model [11] (two phenomenological models) have all been used within the context of 27

modelling brain dynamics in epilepsy. Third is the interaction between nodes, which 28

may be coupled with each other in a variety of ways. We identify two common coupling 29

functions: additive coupling and diffusive coupling. For additive coupling the input to a 30

node is a function of the sum of the activities of its neighbours. In contrast, for diffusive 31

coupling the input to a node is a function of the sum of the differences between its 32

activity and the activities of its neighbours. From a biophysical perspective, the 33

additive coupling may be chosen when node activities represent currents, whereas the 34

diffusive coupling may be appropriate if node activities represent electrical potentials. 35

Even though these coupling definitions are different, they have been used for similar 36

purposes in the literature. For example, in the epilepsy literature, the additive coupling 37

has been used in studies to distinguish functional networks from healthy people and 38

people with epilepsy [12], to simulate epilepsy surgery [6, 13,14], and to model seizure 39

propagation [15]. On the other hand, the diffusive coupling has also been used in 40
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studies to differentiate controls from people with epilepsy [11], to investigate epilepsy 41

surgery [10,16,17], and to understand patterns of seizure emergence [18]. 42

Although the additive and diffusive coupling frameworks have been used for such 43

similar purposes, there has been no systematic assessment of the potential impact of 44

this modelling choice on the resulting network dynamics and subsequent predictions. In 45

this paper, we investigate whether this choice has an impact on network dynamics and 46

model predictions in the context of epilepsy research. To this end, we focus on a 47

phenomenological bi-stable model of seizure transitions that has been used with both 48

additive and diffusive coupling in the literature [11,12]. We test whether the additive 49

and diffusive couplings lead to similar observations of the transient dynamics and 50

predictions of seizure likelihood. Specifically, we use three salient measures, namely, 51

escape times [11,19], brain node ictogenicity (BNI) [6, 12], and node ictogenicity 52

(NI) [6, 14]. The escape time quantifies the average time taken to transit from a resting 53

state to a seizure state; the BNI measures the likelihood of a network to generate 54

seizures; and the NI quantifies the contribution of single nodes to the network’s seizure 55

propensity. We first apply all three measures to quantify the behaviour of artificial 56

networks consisting of two, three and 64 nodes with additive and diffusive coupling. We 57

then test whether the two couplings provide similar results in terms of BNI when 58

applied to functional brain networks inferred from resting-state 59

magnetoencephalography (MEG) with the aim of distinguishing individuals with 60

juvenile myoclonic epilepsy (JME) and healthy controls. Concordant results in terms of 61

escape time, BNI and NI between models using additive and diffusive coupling would 62

imply that the choice of coupling is inconsequential with little impact on the predictions 63

relevant to epilepsy; whereas discordant results would ask for careful consideration when 64

choosing the coupling. 65

Materials and methods 66

Phenomenological model of seizure transitions 67

To assess seizure-like dynamics with a BNM using both additive and diffusive coupling, 68

we consider a commonly used phenomenological model of seizure transitions that is 69

based on the normal form of the subcritical Hopf bifurcation [11–13,16,17,19]. In this 70

model, each network node can be represented by a noisy bi-stable oscillator, where a 71

stable fixed point coexists with a stable limit cycle. Fluctuations around the fixed point 72

represent resting dynamics, whereas large oscillations around the limit cycle correspond 73

to seizure dynamics. Transitions between the two states are driven by noise and the 74

influence of other nodes in the network. 75

The network dynamics is described by the following system of stochastic differential 76

equations: 77

dzk(t) =

f(zk) +
1

N

∑
j 6=k

Ajkg(zk, zj)

dt+ αdWk(t) (1)

where zk(t) is a complex variable that describes the dynamics of node k 78

(k = 1, 2, . . . , N , and N is the number of nodes). The function f(z) that defines the 79

activity of a single node is, 80

f(z) = (−ν + iω)z + 2z|z|2 − z|z|4 (2)

The parameter ν controls the stability of the node and ω defines the frequency of the 81

oscillations that the node may display depending on ν. At ν < 0, the origin is an 82

unstable fixed point and the node oscillates around a stable limit cycle. At ν = 0, the 83
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unstable point becomes stable in a subcritical Hopf bifurcation. For 0 < ν < 1, the node 84

is bi-stable with a stable fixed point at the origin and a stable limit cycle separated by 85

an unstable limit cycle. At ν = 1, the stable and unstable limit cycles meet each other 86

in a saddle-node bifurcation. In this paper, we use ν = 0.2 and we fix ω = 20 in line 87

with previous studies [11,17,19,20] (except in the two-node networks, where we use 88

ω = 0, as described below). Each node has an independent (identically distributed) 89

complex white noise process Wk(t) ∈ C, the strength of which is governed by the noise 90

amplitude α > 0. 91

The interaction between nodes is determined by the adjacency matrix Ajk and the
coupling function g(zk, zj). Here we use three coupling functions:

gd(zk, zj) = β(zj − zk) (3)

ga(zk, zj) = γzj (4)

gm(zk, zj) = β(zj − zk) + γzj (5)

corresponding to diffusive coupling (3), additive coupling (4), and a combination of the 92

two which we will call ‘mixed’ coupling (5). Note that if β = 0, then 93

gm(zk, zj) = ga(zk, zj) = γzj , whereas if γ = 0, then 94

gm(zk, zj) = gd(zk, zj) = β(zj − zk). The diffusive coupling was used for example by 95

Benjamin et al. [11], Terry et al. [21], Hebbink et al. [16], Creaser et al. [18, 19], and 96

Junges et al. [17]. The additive coupling was used for example by Petkov et al. [12], 97

Sinha et al. [13], and Junges et al. [20]. To the best of our knowledge, the mixed 98

coupling has never been considered. 99

Quantifiers of seizure transitions 100

To quantify and compare the effect of the three coupling functions on the behaviour of 101

the BNM we use the following measures. The first is based on escape time theory, and 102

has previously been used to classify the behaviour of motif networks of this BNM with 103

diffusive coupling [11, 18, 19]. The second is brain network ictogenicity which is suitable 104

for comparing the propensity of different networks to generate seizure dynamics 105

(ictogenicity) [6, 12,14,20]. The third is node ictogenicity, a quantity that assesses the 106

contribution of each node to the network’s ictogenicity [6, 14,20]. 107

Escape time 108

We will first characterise the transition to seizure dynamics in two coupled nodes. To 109

this end, we consider the mean time taken for nodes to transition from the stable fixed 110

point to the stable oscillatory seizure state. For one node, we define the escape time λ 111

as the moment t at which the amplitude of its activity z crosses a given threshold. This 112

escape threshold is usually chosen to be the unstable point (or gate) between stable 113

states. The initial condition of all nodes is the resting state, here the fixed point at the 114

origin. We only consider transitions from the resting state to the oscillatory seizure state, 115

as for our chosen parameter values the oscillatory stable state is much more strongly 116

attracting than the fixed point, and so transitions back again to the resting state 117

happen on a much longer timescale. The escape time λ is a random variable and so we 118

define the mean escape time as T = E[λ]. The mean escape time of a single node (1) for 119

k = 1 has been fully characterised using Eyring–Kramers’ escape time theory in [11, 19]. 120

For two coupled nodes we define the first escape time as the time the first node 121

transitions to the oscillatory state, which can be either node. The second escape time is 122

then the time that it takes the other node to transition after the first one has escaped. 123

As before these are random variables and so we can define the mean first escape time 124

and mean second escape time; here we will refer to these means as the first escape and 125
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second escape. The first and second escape times in a two node system with diffusive 126

coupling were characterised in [19]. Here, we will extend this work to compare the effect 127

of all three coupling functions on the escape times. 128

We identify qualitatively different regimes of escape time behaviour. By converting 129

the BNM with two nodes into polar coordinates zk(t) = Rk(t) exp[ıθk(t)] using Itô’s 130

formula, we can restrict our attention to the amplitude dynamics of the system. Note 131

that the oscillatory phase of the periodic orbit does not affect the escape times as we 132

consider the case where the phase difference between nodes is zero. The steady states of 133

the amplitude dynamics are the ”transition states” where either none, one or both 134

nodes have escaped. The number and stability of these states change with the strength 135

of the coupling. We perform bifurcation analysis on the transition states as we vary 136

each of the coupling strength parameters β and γ, using specialist continuation software 137

AUTO-07P [22]. We consider here only the symmetrically coupled case (bi-directional 138

coupling) for which we can consider the amplitude dynamics as a potential system and 139

identify the potential landscape V [19]. 140

We numerically compute the mean escape times for two bidirectionally coupled 141

nodes with each of the three coupling functions using custom code written in MATLAB. 142

For each coupling strength we compute 1000 simulations of the two node model using 143

the stochastic Euler-Maruyama method with step size h = 10−3 and initial conditions 144

zk(0) = 0. To leading order the escape times do not depend on the choice of escape 145

threshold provided it lies beyond the unstable limit cycles, and in the following we fix it 146

to be a node amplitude of 0.5 in line with [11,19]. For each simulation we identify the 147

first and second escape time, then take the means over the 1000 simulations. The 148

escape times do not depend on ω and so we set this to zero in our simulations. 149

Brain network ictogenicity 150

To characterise seizure-like dynamics in networks, we use the concept of brain network 151

ictogenicity (BNI) [6, 12,14,20]. The BNI quantifies the likelihood of a network to 152

generate seizures and corresponds to the average time that each network node spends in 153

the seizure state. Since the initial conditions are such that all nodes start in the resting 154

state and once they transition to the seizure state, they do not return to the resting 155

state, then the BNI is formulated as 156

BNI = 1− 1

N

N∑
k=1

λk
M

(6)

where M is a sufficiently long simulation time and λk is the escape time of the kth node. 157

The higher the fraction λk/M is, the longer the node k takes to seize. If node k does 158

not escape during the simulation time, we take λk = M . Thus, the BNI ranges from 0 159

to 1, where networks with low BNI have more nodes with high escape times, whereas 160

networks with high BNI have more nodes with low escape times. This definition of BNI 161

is equivalent to the seizure likelihood measure used by Sinha et al. [13]. Whilst we use 162

the escape times to study two interacting nodes, we compute the BNI for three-node 163

motifs and larger networks (see section ). To compute the BNI, we integrated the 164

stochastic equations (1) using the Euler-Maruyama method with step size h = 10−3, set 165

initial conditions zk(0) = 0, fixed M = 50/h, and averaged the BNI across 1000 noise 166

realisations. 167

Node ictogenicity 168

To quantify the contribution of each node to the network’s ability to generate seizures, 169

we use the concept of node ictogenicity (NI) [6, 14,23]. The NI(k) measures the relative 170
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difference in BNI upon removing node k from a network: 171

NI(k) =
BNIpre − BNI

(k)
post

BNIpre
(7)

where BNIpre is the BNI prior to node removal, and BNI
(k)
post is the BNI after the 172

removal of node k. Note that to compute BNI
(k)
post, the coupling term in (1) is not 173

normalised by N , but by N + 1 (i.e., the size of the network before node removal), so 174

that the effective coupling strength is kept fixed. As in previous studies, we set the 175

coupling strength parameters such that BNIpre = 0.5 [6,14,23] (except in the three node 176

networks, where we use the network BNI computed as above), and the same parameters 177

are used to compute BNI
(k)
post. The NI(k) ranges between -1 and 1, where NI(k) = −1 178

means that removing node k increases the ictogenicity of the network to its maximum 179

(BNI
(k)
post = 1); NI(k) = 0 means that the removal of node k has no impact on the 180

ictogenicity of the network (BNI
(k)
post = BNIpre); and NI(k) = 1 means that removing 181

node k stops all seizure activity in the network (BNI
(k)
post = 0). Here we use it to assess 182

whether the relative importance of nodes for the network ictogenicity depends on the 183

coupling function. 184

To compare different NI distributions obtained using the different coupling functions, 185

we consider the weighted Kendall’s rank correlation τ [14, 23–25], 186

τ =
P −Q
P +Q

(8)

where P is the number of pairs of nodes with the same order in two rankings (e.g., pairs 187

of NI values using the additive coupling that are ordered in the same way as pairs of NI 188

values using the diffusive coupling), and Q is the number of pairs in reverse order. To 189

account for the relative NI values in the comparison between distributions A and B, the 190

contributions to P and Q are weighted by the product of the distances in NI in the two 191

pairs,
∣∣∣NI(i)A −NI

(j)
A

∣∣∣× ∣∣∣NI(i)B −NI
(j)
B

∣∣∣, where NI
(k)
D is the ictogenicity of node k in 192

distribution D. The value of τ ranges from -1, i.e., all pairs in reverse order, to 1, i.e., all 193

pairs with the same order. 194

Artificial networks 195

To better characterise differences and similarities between the different coupling choices, 196

we investigated the model in a variety of networks. This was to ensure that our 197

observations were not specific to a certain kind of network structure. Indeed, we have 198

previously shown that the BNI and NI are a function of the network topology [14]. 199

Thus, besides analysing the dynamics of two and three interacting nodes, we also 200

simulated large networks with N = 64 nodes. This is a typical network size in studies 201

with BNMs applied to functional brain networks [6, 13, 14]. We considered random and 202

scale-free networks, both directed and undirected [14,26,27]. We generated random 203

networks using the Brain Connectivity Toolbox [28]. To build undirected scale-free 204

networks with degree distribution P (x) ∝ x−a, we used the static model [29] and a = 3. 205

Finally, we employed the Barabási-Albert algorithm to construct directed scale-free 206

networks [30]. We considered networks with mean degree c = 4 and c = 8. In the case of 207

directed networks, we used mean in-degree cin equal to the mean out-degree cout, 208

cin = cout = c. We discarded networks with disconnected components and analysed 10 209

network realisations per network topology. Thus, we studied 80 networks. 210
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MEG functional networks 211

To verify how our results generalise to real-world brain networks we compared additive 212

and diffusive coupling in terms of BNI on MEG functional networks. We used 213

resting-state MEG functional networks from people with JME and healthy controls. 214

This MEG dataset was previously used to demonstrate that the BNI framework was 215

capable of differentiating the two groups of individuals [31]. In that study, Lopes et 216

al. [31] used the theta model with additive coupling (see the Supplementary Material for 217

a description about the theta model), and showed that individuals with epilepsy had 218

higher BNI than controls as hypothesized. The difference here is that we use the 219

bi-stable model instead of the theta model, and that we consider the MEG networks 220

specifically to compare the effect of additive versus diffusive coupling. 221

We refer the reader to Lopes et al. [31] for details about the participants, MEG 222

acquisition, pre-processing, source mapping, and functional network construction. 223

Briefly, the dataset comprises 26 people with JME and 26 controls. The control group 224

was age and gender matched to the JME group (the median age was 27 and there were 225

7 males in both groups). This study was approved by the South East Wales NHS ethics 226

committee, Cardiff and Vale Research and Development committees, and Cardiff 227

University School of Psychology Research Ethics Committee. Written informed consent 228

was obtained from all participants. 229

Approximately 5 minutes of resting-state MEG data were acquired using a 230

275-channel CTF radial gradiometer system (CTF System, Canada) at a sampling rate 231

of 600 Hz. The first 200 s of artefact-free data were selected for each individual. The 232

data were then filtered in the alpha band (8–13 Hz) and down-sampled to 250 Hz. 233

Subsequently, the underlying sources were inferred using a linear constrained minimum 234

variance (LCMV) beamformer on a 6-mm template with a local-spheres forward model 235

in Fieldtrip [32]. The source signals were then mapped into the 90 brain regions of the 236

Automated Anatomical Label (AAL) atlas [33]. 237

To obtain MEG functional networks, the source reconstructed data were divided into 238

10, non-overlapping, 20 s segments. A functional network was computed from each 239

segment using a surrogate-corrected amplitude envelope correlation (AEC) with 240

orthogonalised signals [31,33]. Thus, we considered 10 MEG functional networks per 241

individual. We then took the average of the 10 networks and analysed one average 242

network for each individual. To then measure BNI on these networks, we computed 243

seizure-like dynamics using (1), with Ajk equal to the average surrogate-corrected AEC 244

values of the functional networks. 245

Results 246

Two coupled nodes 247

To illustrate fundamental differences between the coupling functions we first consider 248

the simplest case of two bidirectionally coupled nodes. Figure 1 shows how each 249

coupling function changes the transient behaviour of the two node system. The 250

bifurcation diagrams of the amplitude of the transitions states (equilibria) R1 of node 1 251

are plotted for the additive and diffusive coupling functions, (4) and (3) respectively. 252

Due to the symmetry of the system the diagrams plotted against R2 are identical. For 253

each coupling type the transition states undergo saddle node and pitchfork bifurcations 254

as the coupling strength increases. We follow these bifurcation points in both β and γ. 255

The resulting two dimensional bifurcation diagram shows that these bifurcations 256

delineate qualitatively different dynamic regimes. Example simulations of each regime 257

are illustrated on the potential landscape with the locations of the transition states 258

(equilibria). 259
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Fig 1. Bifurcation diagrams and example simulations of the
bidirectionally-coupled two-node system. Shown are the bifurcation diagrams of
amplitude R1 of the transition states (equilibria) as a function of γ for β = 0 (additive
coupling) in panel (a), and of β for γ = 0 (diffusive coupling) in panel (b). Stable states
are shown as solid lines, saddle states as dashed lines and unstable as dotted lines.
Saddle node bifurcations are labelled SN1 and SN2, the pitchfork bifurcation is labelled
PF. Panel (c) shows the position of the saddle node and pitchfork bifurcations in the
(β, γ)-plane. The orange stars indicate the values for which example simulations are
shown in panel (d). Each subpanel (d) shows an example simulation in orange starting
at zk(0) = 0 with the steady states in black (the circles are stable, the triangles are
saddle and the squares are unstable (source)). Contour lines of the potential landscape
are also plotted in shades of grey. The escape threshold for each node is shown as a
solid line at 0.5.

The bifurcation diagrams show that when the nodes are uncoupled, β = γ = 0, there 260

are 9 transition states of the system. These corresponding to all possible pairs of the 261

states of the individual nodes, resting state (not escaped), seizure state (escaped) and 262

the threshold state. When the coupling strength is weak (β = γ < 0.01) the nodes 263

behave as if uncoupled and all 9 states persist. As each coupling strength is increased 264

the equilibria first undergo a saddle node bifurcation where the partially escaped state 265

(node 1 has escaped but node 2 has not, and vice versa) disappear and are no longer 266

attractors of the system. However, due to the contours of the potential landscape (panel 267

(d2)), realisations spend some time in the vicinity of the partially escaped state. This 268

means that while escape of both nodes is inevitable there is a delay between the first 269

and second escapes. The unstable equilibrium then undergoes a pitchfork bifurcation 270

where the system becomes synchronous in the sense that escapes from the resting to the 271

seizure state for both nodes occur in quick succession. The key difference in dynamics 272

comes when the additive coupling induces a further saddle node bifurcation and the 273

only attractor of the system is the state in which both nodes have escaped to the seizure 274

state. This regime never occurs with diffusive coupling only. Essentially, for a 275

sufficiently large additive coupling strength, both nodes are forced immediately into the 276
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seizure state. In contrast, for large diffusive coupling strength the nodes stay in their 277

starting resting state until noise eventually kicks both of them simultaneously into the 278

seizure state. 279

Figure 2 shows the first and second escape times for different values of β and γ. The 280

mean first escape times for the diffusive only coupling (γ = 0) and the additive only 281

coupling (β = 0) show opposite trends. Note that we do not distinguish between node 1 282

or node 2 escaping first. For diffusive coupling the escape times increase as β increases. 283

The coupling has an inhibitory effect and the nodes spend longer in the resting state 284

where neither has escaped. For additive coupling the escape times decrease as γ 285

increases as the coupling has an excitatory effect. Figures 1(c) and (d4) show that for 286

large γ only the fully escaped equilibrium remains and so the first escape time depends 287

only on the starting position in the (R1, R2)-plane and level of noise. With the mixed 288

coupling function (5), when the coupling is weak, γ, β < SN1, the system behaves as if 289

uncoupled and neither type of coupling dominates. When γ is small (γ < 10−1), the 290

first escape times follow the same pattern as for the diffusive only coupling and for large 291

β the diffusive coupling dominates. Conversely, when β is small (β < 10−1), the first 292

escape times follow the same pattern as for the additive only coupling and for large γ 293

the additive coupling dominates. 294

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Fig 2. Mean times for the first node to escape (First Escape, row 1) and
second node to escape (Second Escape, row 2). Column (a) shows mean escape
times against β for different values of γ; Column (b) shows mean escape times against γ
for various β values. A legend is given for each column. Column (c) plots the mean
escape times on the (γ, β)-plane with the bifurcation curves overlaid.

The diffusive dominated coupling is characterised by the area of very large escape 295

times in yellow for high β and low γ. However, for large β and γ > SN2 the first escape 296

time no longer depends on β and additive coupling dominates. This is illustrated by the 297

almost flat lines for γ = 0.2 and 1 in panel (a1) and the coalescence of all the lines in 298

panel (b1) for γ > 0.1. The mean second escape times show a decreasing trend with 299
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increasing coupling strength for both the additive and diffusive only cases. We note that 300

around the pitchfork bifurcation (PF) in the diffusive case (large β) the second escape 301

times become noise dominated. 302

Taken together, these escape times show that as coupling strength is increased the 303

state where only one node has escaped disappears and the behaviour of the nodes 304

synchronises. In other words, as soon as one node escapes the other immediately follows. 305

This is because when either of the coupling strengths are large the input from connected 306

nodes dominates the dynamics. The key difference is the time that it takes the first 307

node to escape, which is fundamentally different depending on whether additive or 308

diffusive coupling dominates the system. 309

Three-node networks 310

To consider the effect of network structure (topology) on the escape times of the 311

network and its nodes we consider the BNI and NI of three-node motifs. For simplicity, 312

in this section we compare only additive and diffusive coupling. Figure 3 shows the BNI 313

computed via (6) and NI computed via (7) for all non-isomorphic three-node networks. 314

For each network, we observe that the BNI is higher for the additive coupling than for 315

the diffusive coupling. Furthermore, we observe that networks with higher number of 316

connections tend to have higher BNI for the additive coupling, but lower BNI for the 317

diffusive coupling. These results show that, networks with more additive connections 318

are self excitatory and have more nodes with low escape times, whereas networks with 319

more diffusive connections are more self inhibitory and have more nodes with low escape 320

times. It also indicates that increasing the number of connections has a similar effect as 321

increasing the coupling strength. Thus, the discrepancy in BNI between the two 322

couplings tends to be greater in networks with more connections. 323

Figure 3(c) shows that whilst the NI is generally positive for the additive coupling, it 324

is usually negative for the diffusive coupling. This implies that node activities drive 325

seizures in the network if the coupling is additive, but tend to prevent seizures if the 326

coupling is diffusive. The higher the number of connections of the node, the stronger its 327

ability of driving (preventing) seizures if the coupling is additive (diffusive). We note 328

that as expected for symmetric networks, where the removal of one node is topologically 329

equivalent to the removal of one of the two other nodes, the NI for each node is the 330

same, i.e., within error bars (see e.g. network 8). Overall, we note that the NI 331

distributions are very different, in some cases opposite, for each type of coupling. 332

Moreover, we show the node with the highest NI is different for each network depending 333

on the coupling function. 334

Networks 335

We now turn our attention to larger networks. In this section we compare the role of
the different coupling functions on the transient dynamics of the bi-stable model in
networks with 64 nodes using the concepts of BNI and NI. To aid our interpretation of
the following numerical results we note the relationship between the coupling function
and node degree. The mixed coupling function (5) can be rewritten as∑

j 6=k

Ajkg
m(zk, zj) =

∑
j 6=k

Ajk[β(zj − zk) + γzj ]

= (β + γ)
∑
j 6=k

Ajkzj − β
∑
j 6=k

Ajkzk

= (β + γ)
∑
j 6=k

Ajkzj − βdkzk (9)
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Fig 3. BNI and NI of all three-node networks for additive and diffusive
couplings. Panel (a) shows the coupling structure for all 13 non-isomorphic three-node
networks. Panel (b) shows the BNI for each network with either diffusive (darker bars)
or additive coupling (lighter bars). Panel (c) shows the NI for each node (1–3) of each
network (1–13) with either diffusive (top row, darker coloured) or additive (bottom row)
coupling. The NI distributions were computed using as BNIpre the BNI values in panel
(b). We used β = 0.1 for the diffusive coupling, γ = 0.1 for the additive coupling, and
α = 0.03 for both couplings. Standard error bars are computed over 1000 noise
realisations.

where dk is the in-degree of node k. For simplicity of interpretation, we assume that 336

zk(t) is a positive variable, such as the amplitude Rk (or as the node output in the 337

theta model [14] described in the supplementary material). As above we consider only β 338

and γ positive. With this set up, the first term in (9) promotes the increase of activity 339

zk, whereas the second term may only suppress it. Therefore, the additive coupling 340

models excitation, whereas the diffusive coupling may model both excitation or 341

inhibition depending on node activities and network structure. 342
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Substituting (9) into (1) gives 343

dzk(t) =

(−ν − β

N
dk + iω)zk + 2zk|zk|2 − zk|zk|4 +

β + γ

N

∑
j 6=k

Ajkzj

dt+ αdWk(t)

(10)
This shows that inhibition is node dependent, being proportional to a node’s own 344

activity and number of in-connections. This effect will lead to very different node 345

behaviour in networks where the in-degree is highly heterogeneous between nodes. 346

The difference between additive and diffusive coupling is particularly distinct in 347

all-to-all networks (Ajk = 1 for all j 6= k). In these networks, all nodes are topologically 348

equivalent with in-degree dk = (N − 1), and if the network is sufficiently large, then 349

their activity is on average the same. As a consequence, before any node escapes, the 350

diffusive term, β
∑

j 6=k Ajk(zj − zk), is approximately zero. In contrast, the additive 351

term, γ
∑

j 6=k Ajkzj is approximately equal to γ(N − 1)zk. This suggests that the 352

diffusive coupling tends to have a weak influence on the dynamics of resting 353

well-connected networks, whereas the additive coupling term tends to be stronger as the 354

number of connections increase. 355

Below we consider large random and scale-free networks, both directed and 356

undirected. Whilst random networks are fairly homogeneous with regards to the degree 357

distribution, scale-free networks are highly heterogeneous, having some highly connected 358

nodes [26]. 359

Brain network ictogenicity 360

We first focus on the BNI, the network’s propensity to generate seizure activity, across 361

different coupling functions and network structures. Figure 4 shows the BNI as a 362

function of the coupling strength γ when using the additive coupling (4). We chose a 363

range of γ such that we could observe the greatest overall possible variation in BNI, and 364

considered five levels of noise α to show its impact on BNI. We observe that in all 365

considered network structures, the BNI grows monotonically with γ. This result means 366

that in all these types of networks, the stronger the connection strength between nodes, 367

the more likely the network is to generate seizure activity. This result is in agreement 368

with our observations in the two-nodes motifs where the first and second escape times 369

decrease as γ increases (see Fig. 2), as well as the BNI results in the three-node 370

networks (see Fig. 3). We also observe that the higher α is, the higher the BNI is. Both 371

the coupling and noise terms are positive, and at larger values the nodes are more likely 372

to transit to the seizure state, hence increasing the BNI. The BNI dependence with γ is 373

qualitatively similar across the four types of network topologies, although we note that 374

in directed scale-free networks the growth in BNI is not as steep as in the other 375

networks and there is greater variability across network realisations. This observation is 376

presumably a consequence of directed scale-free networks having the most heterogeneous 377

degree distributions across all networks considered. The BNI appears to plateau at 378

values lower than 1 because there may be nodes that are unreachable by the influence of 379

their neighbours (i.e., nodes with only outgoing connections), which remain in the 380

resting state. S1 Fig shows that the results are qualitatively similar in networks with 381

mean degree of 8. The main difference in the BNI curves of the networks with higher 382

mean degree is that they are steeper than those of networks with lower mean degree. 383

This result is to be expected: higher mean degree implies on average stronger influence 384

from the coupling term and so the BNI reaches it maximum at lower values of γ. 385

Figure 5 shows the BNI as a function of the coupling strength β when using the 386

diffusive coupling (3). We observe striking differences relative to Fig. 4 depending on 387

the network type as well as coupling strength. As in the case of the additive coupling, 388
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Fig 4. BNI as a function of additive coupling strength γ. Each panel shows
BNI curves for different network topologies: (a) undirected random networks, (b)
directed random networks, (c) undirected scale-free networks, and (d) directed scale-free
networks. Each color corresponds to a different level of noise α: blue is α = 0.001, red is
α = 0.005, green is α = 0.01, orange is α = 0.03, and purple is α = 0.05. Finally, each
curve corresponds to a different network realisation. We used 10 network realisations per
network topology and the mean degree of all networks is c = 4; see Methods for details.

we chose a range of β such that we could observe a full variation in BNI, and chose five 389

values of the noise amplitude α. For α = 1 we note that the dynamics of each network 390

are noise dominated leading to a BNI of 1, where all nodes transition to the seizure 391

state within the simulation time, for all values of β. First, in the case of undirected 392

networks, we find that the BNI decreases monotonically with β. The increase of the 393

coupling strength promotes the inhibitory effect of each node and decreases the BNI. 394

Higher values of noise amplitude α imply that the BNI is higher at β = 0. On one hand, 395

we had to use higher α values for simulations with diffusive coupling relative to those 396

with additive coupling such that we could observe BNI> 0. On the other hand, we used 397

a range of values for β four times higher than the range for γ, because while the 398

additive coupling cooperated with the noise in driving excitation, the diffusive coupling 399

opposed the noise to suppress activity, thus requiring higher noise magnitude. Second, 400

directed networks are characterised by BNI curves that are not always monotonically 401

decreasing. All directed scale-free and some directed random networks show a local 402

minimum in the BNI curve at low β values, followed by a local maximum and a plateau 403

(for the examples where α < 0.1). This illustrates how the diffusive coupling may model 404

both excitation or inhibition depending on network structure, whereas the influence of 405

the additive coupling is only excitatory. Third, we observe higher variability in the BNI 406

curves across undirected network realisations with diffusing coupling compared to 407

additive coupling. Also, we observe considerable variability in the BNI curves across the 408
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directed random network realisations, and little variability across the directed scale-free 409

network realisations, which is the opposite relation in terms of variability observed for 410

the additive coupling. However, there is one similarity in terms of the BNI curves of the 411

directed scale-free networks between additive and diffusive coupling: both sets of curves 412

appear to plateau at some intermediate BNI value, presumably due to the existence of 413

’unreachable’ nodes. S2 Fig shows that the results are similar in networks with higher 414

mean degree. As observed with the additive coupling, the BNI curves are steeper. 415

These results suggest that increasing the mean degree is effectively similar to increasing 416

the coupling strength (regardless of the type of coupling). 417
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1
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Fig 5. BNI as a function of diffusive coupling strength β. Each color
corresponds to a different level of noise α: green is α = 0.01, orange is α = 0.03, purple
is α = 0.05, brown is α = 0.1, and pink is α = 1. All other parameters are the same as
in Fig. 4.

Figure 6 shows the BNI as a function of the coupling strength γ (with fixed (β) and 418

β (with fixed γ) when using the mixed coupling with each of the four network types. As 419

in the additive coupling case, the BNI grows monotonically with increasing γ, and, as in 420

some of the diffusive coupling cases, the BNI decreases monotonically with increasing β 421

in all of the networks considered. These curves can be considered as cross sections of a 422

generalised BNI surface in a γ − β plane (or a hypersurface if we consider a range of α 423

values). Such surface would contain the curves observed in Figs. 4, 5, and 6 for a given 424

network and a fixed α. Interestingly, Fig. 6(b) suggests that a sufficiently strong 425

additive component γ can prevent the diffusive coupling component of suppressing the 426

BNI. Note that at α = 0.05, the diffusive coupling was capable of reducing the BNI to 427

zero in the case of the undirected networks, see the purple curves in Figs. 5(a) and (c). 428

We also observe higher agreement between the BNI curves across different network 429

topologies with mixed coupling than with diffusive coupling alone. In other words, this 430

result suggests that the additive coupling component causes the BNI curves to be more 431
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uniform across network topologies relative to the diffusive coupling component of the 432

mixed coupling. 433
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undirected scale-free

directed scale-free

0 80
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1
(b)

Fig 6. BNI as a function of (a) γ(β = 10) and (b) β(γ = 5) using the mixed
coupling. Each color corresponds to a different network topology: blue corresponds to
undirected random networks, red to directed random networks, green to undirected
scale-free networks (overlaps the blue), and orange to directed scale-free networks. Each
curve corresponds to a different network realisation. We fix α = 0.05 and mean degree
c = 4.

Node ictogenicity 434

The NI quantifies the contribution of each node to the overall network’s propensity to 435

generate seizures. Identifying the nodes with the highest contribution (i.e., highest NI) 436

can be useful to inform epilepsy surgery [6, 14,34]. Figure 7 shows representative NI 437

distributions for each of the four network topologies, for a given level of noise. These 438

representative NI distributions show how the NI values depend on the coupling function. 439

We observe that the NI when using the additive coupling has a much larger range, 440

NI∈ [−0.01, 0.1], over the nodes than the range, NI∈ [−0.01, 0.01], for the diffusive 441

coupling. Furthermore, the absolute values of NI are generally higher in the additive 442

case relative to the diffusive case. A large proportion of the nodes have a positive NI 443

with the additive coupling, meaning that the removal of nodes contributes to an overall 444

reduction in BNI, whereas the majority of nodes with diffusive coupling have negative 445

NI values, which implies that removing nodes can increase the network’s ability to 446

generate seizure activity. We find that for the diffusive coupling nodes with the highest 447

degree are more likely to have the lowest NI. From (9) we observe that inhibition is 448

node dependent, being proportional to a node’s own activity and number of 449

in-connections. In contrast, the NI is highest in highly connected nodes when using the 450

additive coupling because such nodes are more likely to be both excited into the seizure 451

state and to be capable of exciting their neighbours. 452

Figure 7 also shows the NI distribution computed with the mixed coupling, which in 453

each panel follows the NI distribution from the additive coupling, suggesting that the 454

additive component of the mixed coupling is dominant for the chosen parameters. We 455

found consistent results using other network realisations and other β and γ parameter 456

values. 457

To better compare NI distributions from the different coupling functions, we 458

computed the weighted Kendall correlation rank τ . Figure 8 shows that the NI 459

distributions from additive and diffusive couplings are not just different, they actually 460

tend to rank the nodes in opposite order. Nodes with the highest NI in the additive 461
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Fig 7. Representative NI distributions of (a) undirected random, (b)
directed random, (c) undirected scale-free, and (d) directed scale-free
networks using the different couplings. The blue squares represent the NI
computed using the additive coupling, the red triangles correspond to the diffusive
coupling and the green circles correspond to the mixed coupling. The nodes were sorted
such that the NI grows monotonically for the additive coupling. The error bars represent
the standard error across 1000 realisations. We used α = 0.005 for the additive coupling,
α = 0.03 for the diffusive coupling, and α = 0.01 for the mixed coupling. In all three
coupling cases, parameters γ and β were chosen such that BNIpre = 0.5; for the mixed
coupling, we fixed β = 10 and chose γ. All networks had mean degree c = 4.

coupling are likely to be the nodes with the lowest NI in the diffusive coupling, and vice 462

versa, as observed in the three-node networks (see Fig. 3(c)). Additionally, as observed 463

in Fig. 7, the NI orderings of the additive and mixed couplings are in almost perfect 464

agreement (average τ > 0.96 in all types of networks) for the chosen parameters. 465

Consequently, the relationship between the diffusive and mixed couplings is similar to 466

the additive and mixed couplings as assessed by τ . We expect that as the diffusive 467

component of the mixed coupling would be increased (and/or the additive component 468

would be decreased), the τ value relating the diffusive and mixed couplings would 469

increase, and the τ value comparing the additive and mixed couplings would decrease. 470

These results are consistent across all network topologies, with lower τ values in the 471

undirected networks relative to directed networks when comparing the diffusive coupling 472

to the other couplings. S3 Fig, S4 Fig, and S5 Fig complement these findings by 473

showing that the NI is related to the number of connections that each node has. We 474

find a positive correlation between NI and node degree in the additive and mixed 475

couplings (see S3 Fig and S5 Fig), whereas the correlation is negative in the diffusive 476

coupling (see S4 Fig). Thus, nodes with higher degree have higher NI in the additive 477

coupling, but lower NI in the diffusive coupling case. The mixed coupling can 478

presumably range between the two extremes depending on parameters. 479
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Fig 8. Comparison of NI distributions using different couplings. The
weighted Kendall correlation rank τ quantifies the consistency of ordering nodes
according to their NI values when using the different couplings. The blue bars
correspond to the comparison between additive and diffusive coupling, the red bars
correspond to additive versus mixed coupling, and the green bars to the diffusive versus
mixed coupling. Different panels show the comparison for different network topologies:
(a) undirected random, (b) directed random, (c) undirected scale-free random, and (d)
directed scale-free networks. The error bars represent the standard error across the 10
network realisations per network topology. All parameters are the same as in Fig. 7.

BNI of MEG functional networks 480

To further assess the impact of choosing either additive or diffusive coupling in studies 481

that aim to investigate the emergence of seizures on real-world brain networks, we 482

computed the BNI of 26 MEG functional networks from people with JME and 26 from 483

healthy controls using both additive and diffusive coupling. Figure 9 shows that the 484

BNI based on additive and diffusive couplings rank the individuals in reverse order. 485

Individuals with the highest ’additive BNI’ have the lowest ’diffusive BNI’, and vice 486

versa. Furthermore, while most individuals have similar diffusive BNI, they are well 487

distinguished in terms of additive BNI. Finally, we observe that people with JME have 488

on average higher additive BNI than controls (Mann–Whitney U test, p = 0.0062), but 489

lower diffusive BNI than controls (p = 0.0026). It is important to note that higher BNI 490

in people with JME relative to controls is the expected, given that higher BNI is 491

assumed to characterize a brain network with a higher propensity to produce seizures. 492

Therefore, only the additive coupling provides the hypothesized BNI distinction between 493

the two groups. We performed the same comparison for other γ and β values and found 494

similar results (not shown). 495

Discussion 496

BNMs are useful tools to understand the role of brain network structure on healthy and 497

pathological brain dynamics. These models make assumptions about how brain regions 498

behave and how they interact. Here, we investigated two main modelling choices of 499

interaction, the additive coupling and the diffusive coupling, aiming to understand their 500

role on simulated brain dynamics. We focused on a bi-stable model of seizure 501

transitions, a model that has been used in the literature with both additive and 502

diffusive couplings [11–13,16,17]. We further considered a mixed coupling, combining 503

the additive and diffusive couplings. We analysed the model on artificial networks with 504

two, three and 64 nodes, as well as MEG functional networks, and characterised the 505
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0

0.8

B
N

I

Fig 9. Comparison of BNI using additive and diffusive couplings on MEG
functional networks. Each square (triangle) is the BNI value based on additive
(diffusive) coupling of each individual. The individuals were sorted such that the BNI
values based on the additive coupling were monotonically increasing. Light green
squares and light pink triangles correspond to healthy controls, and dark green squares
and dark pink triangles correspond to people with JME. We used α = 0.005 and γ = 15
for the additive coupling simulations, and α = 0.03 and β = 4.6 for the diffusive
coupling simulations.

dynamics using escape time, BNI and NI. These measures have been used in the 506

literature to make predictions about ictogenicity. We showed that additive and diffusive 507

couplings provide fundamentally different, often contradictory, predictions in both the 508

large artificial and MEG functional networks. The mixed coupling gave results in 509

between the two depending on parameters. For two connected nodes, we demonstrated 510

that additive and diffusive couplings give rise to two different bifurcation diagrams, 511

particularly at large coupling values, which explains the different dynamical behaviours 512

in terms of escape times. In three-node networks, we found that generally networks with 513

additive coupling have higher BNI than networks with diffusive coupling, and the 514

difference in BNI increases in networks with more connections. Furthermore, nodes with 515

higher NI with the additive coupling had the lowest NI with the diffusive coupling. Our 516

simulations in larger networks with 64 nodes further supported these observations. 517

Finally, we applied the BNI to MEG functional networks from people with JME and 518

healthy controls using both additive and diffusive couplings. We found that people with 519

JME had a higher BNI based on the additive coupling than the controls, and we 520

observed the opposite using the diffusive coupling. 521

Our observations that the BNI and NI are different depending on whether we use 522

additive or diffusive coupling have consequences for studies aiming to apply these 523

measures to interrogate functional networks obtained from clinical data, as illustrated 524

with our BNI results on the MEG networks. The BNI has been used to differentiate the 525

functional networks of healthy people from people with epilepsy inferred from 526

resting-state data [11, 12, 31]. The hypothesis is that people with epilepsy have a higher 527

enduring propensity to generate seizures than healthy individuals, and that this 528

propensity can be assessed from their resting-state functional networks. The BNI is 529

meant to assess this enduring feature of the epileptic brain and, therefore, it is 530

hypothesized that people with epilepsy have a higher BNI than healthy controls. 531
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However, our findings based on artificial networks suggest that whether the BNI is 532

higher in one group relative to the other depends on the choice of coupling function. 533

Group A may have higher BNI than group B if we choose the additive coupling, 534

whereas group B may have higher BNI than group A if we choose the diffusive coupling. 535

We confirmed this expectation by computing the BNI on the MEG functional networks 536

using the two couplings. We observed that the BNI using the diffusive coupling 537

provided almost the opposite BNI ranking of individuals compared to the BNI using the 538

additive coupling. In particular, we found that only the BNI based on the additive 539

coupling distinguished the JME group with higher BNI values than the healthy group. 540

Together with previous evidence [12,31], this result suggests that the additive coupling 541

may be a better modeling choice than the diffusive coupling, for the purpose 542

characterizing ictogenic brain networks with BNI. 543

The NI has been used to model epilepsy surgery and to make predictions about the 544

epileptogenic zone [6, 14,16,17,34]. Nodes with the highest NI are taken as predictors of 545

the epileptogenic zone. The fact that the NI distribution strongly depends on the 546

coupling choice implies that predictions about the epileptogenic zone also depend on 547

this choice. The nodes with the highest NI in the additive coupling are likely to be the 548

nodes with the lowest NI in the diffusive coupling. Such disagreement between additive 549

and diffusive couplings highlights the need of finding which coupling choice is most 550

appropriate to model the brain’s ictogenicity. Future work may attempt to answer this 551

question by fitting the model with the mixed coupling function to electrophysiological 552

recordings using a search over the full (γ, β) parameter space. A more detailed study 553

may even consider weighted networks in which different connections are characterised by 554

different γ and β values. However, we note that most studies that have used the 555

bi-stable model or other models of ictogenicity to investigate data have used the 556

additive coupling [6, 12–14,34]. Their promising results suggest that the additive 557

coupling, or perhaps the mixed coupling, may be more appropriate than the diffusive 558

coupling for such investigations. 559

We highlight that our simulations based on the additive and diffusive couplings 560

provide different understandings about the role of single node dynamics and network 561

structure on ictogenicity. In the case of the additive coupling, ictogenicity can result 562

from pathological single nodes and/or pathological brain structure. In this context, 563

’pathological single nodes’ are nodes that are able to generate seizure activity even in 564

isolation. Within the phenomenological model framework, such nodes have been 565

modelled by making either ν or α node specific [16,21]. With additive coupling, 566

pathological single nodes may cause seizures due to the excitatory nature of all 567

interactions. However, pathological single nodes are not necessary for a network to 568

generate seizures. The network ictogenicity may result from the network’s structure. 569

For example, highly connected nodes are likely to be prone to generate seizures, which 570

in turn makes the whole network prone to seizures. Given the excitatory nature of the 571

additive coupling, the network structure can only enhance the ictogenicity of individual 572

nodes. In contrast, in the case of diffusive coupling, ictogenicity is the result of both 573

pathological nodes and pathological brain structure. A network without pathological 574

nodes, i.e., nodes capable of generating seizures in isolation, cannot generate seizures. In 575

our simulations, we had to choose a sufficiently large level of noise α so that the BNI 576

curves had a non-zero BNI at β = 0, otherwise, the BNI would be zero at all values of β. 577

On the other hand, the existence of pathological nodes does not guarantee network 578

ictogenicity because certain network structures may prevent ictogenicity due to the 579

potential inhibitory role of the diffusive coupling. Thus, seizures may only emerge in 580

networks with diffusive coupling if the network contains pathological nodes and if the 581

network structure is such that enables their pathological activity. As a consequence, our 582

results suggest that if the additive coupling is a better model of large-scale brain 583
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interactions, then knowledge about network structure may be sufficient to assess brain 584

ictogenicity because pathological nodes are not necessarily required to drive seizures. 585

On the other hand, if the diffusive coupling is a better approximation of large-scale 586

brain interactions relevant for epilepsy, then knowledge about network structure is 587

insufficient to assess brain ictogenicity. Unfortunately, evaluating whether single nodes 588

are pathological remains a challenge. 589

The results presented in the main text using the bi-stable model of seizure 590

transitions are supported by our results presented in the Supplementary Material using 591

the theta model [14]. The theta model is an alternative model of ictogenicity and we 592

used it to test whether our comparison between additive and diffusive couplings was 593

model dependent. The findings presented in the Supplementary Material show that the 594

two models are in agreement. Not only the relation between results obtained with 595

additive and diffusive couplings is similar, but also the two models provide similar 596

results when using the same coupling functions (see S12 Fig). These results are in 597

agreement with previous studies comparing these and other models using the additive 598

coupling [20]. Also, the relation between ictogenicity and the number of connections 599

uncovered in our analysis is also in agreement with previous findings using both 600

additive [14] and diffusive coupling [17]. 601

We emphasise that our results should be broadly relevant for studies using BNMs 602

beyond their application to epilepsy. The fact that the coupling choice crucially defines 603

the escape time, BNI and NI suggests that other measures of network dynamics may 604

also be affected. For example, Hansen et al. [5] used a BNM with additive coupling to 605

simulate functional connectivity dynamics on structural brain connectivity. Demirtaş et 606

al. [7] used a BNM with diffusive coupling to study the mechanisms responsible for 607

connectivity changes in Alzheimer’s disease. Also, Cabral et al. [35] used a BNM based 608

on Kuramoto oscillators with diffusive coupling to investigate the emergence of 609

resting-state functional connectivity. All these and other studies’ conclusions may be 610

questionable given their likely dependence on the coupling choice. Furthermore, our 611

results have potentially wide-reaching implications for studies that aim to establish 612

biophysical models of large-scale brain interactions [36]. 613

Conclusion 614

Here we compared the impact of using additive or diffusive coupling on the dynamics of 615

a BNM relevant for epilepsy. We showed that the two couplings are not interchangeable. 616

On the contrary, the dynamics on the networks are different and the predictions of node 617

and network relative ictogenicity are often opposite. We used the two coupling 618

frameworks to assess resting-state functional networks inferred from MEG from people 619

with JME and healthy controls and found opposing results in terms of network’s 620

propensity to generate seizures. The additive coupling provided the hypothesized result 621

of higher ictogenic propensity on brain networks from people with JME relative to 622

networks from controls. Thus, our results and evidence from the literature suggest that 623

the additive coupling may be a better modeling choice than the diffusive coupling, at 624

least for BNI and NI studies. Future BNM studies should motivate and validate the 625

choice of coupling to properly model brain activity and to obtain reliable predictions 626

about brain function and dysfunction. 627
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Supporting information 628
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629

S1 Fig. BNI as a function of γ using the additive coupling. As in Fig. 4, 630

each panel shows BNI curves for different network topologies: (a) undirected random 631

networks, (b) directed random networks, (c) undirected scale-free networks, and (d) 632

directed scale-free networks. Each color corresponds to a different level of noise α: blue 633

is α = 0.001, red is α = 0.005, green is α = 0.01, orange is α = 0.03, and purple is 634

α = 0.05. Finally, each curve corresponds to a different network realisation. We used 10 635

network realisations per network topology. The mean degree of all networks is c = 8. 636
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637

S2 Fig. BNI as a function of β using the diffusive coupling. As in Fig. 5, 638

each panel shows BNI curves for different network topologies: (a) undirected random 639

networks, (b) directed random networks, (c) undirected scale-free networks, and (d) 640

directed scale-free networks. Each color corresponds to a different level of noise α: green 641

is α = 0.01, orange is α = 0.03, purple is α = 0.05, brown is α = 0.1, and pink is α = 1. 642

Finally, each curve corresponds to a different network realisation. We used 10 network 643

realisations per network topology. The mean degree of all networks is c = 8. 644
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S3 Fig. NI versus degree across different network topologies using the 646

additive coupling. Each panel corresponds to a different network topology: (a) 647

undirected random, (b) directed random, (c) undirected scale-free, and (d) directed 648

scale-free networks. In the case of the directed networks, the horizontal axis shows the 649

sum of in- and out-degree. This figure combines the NI distributions across 10 different 650

network realisations per network topology. The average correlation between NI and 651

degree is 0.75 and the average p-value is 0.0015. All parameters are the same as in 652

Fig. 7. 653
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654

S4 Fig. NI versus degree across different network topologies using the 655

diffusive coupling. Each panel corresponds to a different network topology: (a) 656

undirected random, (b) directed random, (c) undirected scale-free, and (d) directed 657

scale-free networks. In the case of the directed networks, the horizontal axis shows the 658

sum of in- and out-degree. This figure combines the NI distributions across 10 different 659

network realisations per network topology. The average correlation between NI and 660

degree is −0.57 and the average p-value is 0.0017. All parameters are the same as in 661

Fig. 7. 662
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663

S5 Fig. NI versus degree across different network topologies using the 664

mixed coupling. Each panel corresponds to a different network topology: (a) 665

undirected random, (b) directed random, (c) undirected scale-free, and (d) directed 666

scale-free networks. In the case of the directed networks, the horizontal axis shows the 667

sum of in- and out-degree. This figure combines the NI distributions across 10 different 668

network realisations per network topology. The average correlation between NI and 669

degree is 0.69 and the average p-value is 0.040. All parameters are the same as in Fig. 7. 670

S1 Appendix. Theta model. 671

In the main text we compare additive, diffusive and mixed couplings within the 672

bi-stable model presented in the Methods. Here, we expand our comparison to a 673

different model of ictogenicity, the theta model [14,23,31]. 674

The theta model can be used as a phenomenological BNM of seizure dynamics [14]. 675

The phase θk characterises the activity at node k and it is described by the differential 676

equation, 677

θ̇k = (1− cos(θk)) + (1 + cos(θk))Ik(t) (11)

where Ik(t) is an input current to the node. At Ik < 0, the node is at a fixed stable 678

phase θ
(s)
k (a ’resting state’). At Ik = 0, there is a saddle-node on invariant circle 679

(SNIC) bifurcation. At Ik > 0, the node oscillates (the ’seizure state’). The current Ik(t) 680

is defined by 681

Ik(t) = I0 + ξk(t) +
1

N

∑
j 6=k

AjkG(θk, θj , θ
(s)
k ), (12)

where I0 is the excitability of node k, ξk(t) are noisy inputs, and the third term on the
right hand side is the coupling term. N is the number of nodes, Ajk is the adjacency

matrix, and G(θk, θj , θ
(s)
k ) is the coupling function. We consider two coupling functions:

Ga(θk, θj , θ
(s)
k ) = γ[1− cos(θj − θ(s)k )] (13)

Gd(θk, θj , θ
(s)
k ) = β sin

(
θj − θk

2

)
(14)
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where Ga corresponds to additive coupling, and Gd to diffusive coupling. Ga has been 682

considered in the literature [14,23,31,34], whereas Gd has not. 683

The phase θ
(s)
k is a stable fixed point obtained from θ̇k = 0 in the absence of noise 684

and node interactions (ξ(k)(t) = 0 and γ = β = 0), 685

θ
(s)
k = −<

{
cos−1

(
1 + I0
1− I0

)}
(15)

At I0 > 0 there is no stable fixed point and we use θ
(s)
k = 0. 686

The noise term is independent across nodes and it is Gaussian distributed with zero 687

mean and variance σ2. Following previous studies [14,23,31,34], we use I0 = −1.2 and 688

σ = 0.6 in the case of the additive coupling. We consider σ = 1.44 in the case of the 689

diffusive coupling. As in the bi-stable model, we had to consider a higher level of noise 690

in the diffusive coupling than in the additive coupling because otherwise the network 691

would always be in the resting state regardless of β. 692

To compare additive and diffusive couplings using this model, we computed the BNI 693

and NI as we did in the main text for the bi-stable model. We also used the same 694

networks (see Section ) so that to enable comparisons between the theta and bi-stable 695

models. We integrated the stochastic equations (11) using the Euler-Maruyama method 696

with step size h = 10−2. 697

In the theta model, the BNI is defined as follows 698

BNI =
1

N

N∑
k=1

t
(k)
sz

M ′
(16)

where t
(k)
sz is the time that node k spends in the seizure state during a total simulation 699

time M ′. We used M ′ = 4× 106 as in Ref. [23, 31]; see Lopes et al. [14] for more details 700

on the calculation of t
(k)
sz . The NI is the same as presented in the main text. 701

S6 Fig and S7 Fig show the BNI as function of γ and β for the additive and diffusive 702

couplings respectively. The results are similar to those observed within the bi-stable 703

model. Namely, the BNI grows monotonically with γ and decreases with β. Also, 704

increasing the mean degree of the networks has a similar effect to increasing γ or β. A 705

difference between these results and those observed with the bi-stable model is that in 706

the case of the diffusive coupling in directed networks, we found a local minimum in 707

some BNI curves in the bi-stable model (see Figs. 5 and S2 Fig) but not in the theta 708

model. However, we have not performed an exhaustive parameter search for such 709

behaviour in the theta model, therefore we cannot exclude the possibility that it may 710

exist for other parameters. 711
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712

S6 Fig. BNI as a function of γ using the additive coupling and the theta 713

model. Each panel shows BNI curves for different network topologies: (a) undirected 714

random networks, (b) directed random networks, (c) undirected scale-free networks, and 715

(d) directed scale-free networks. Curves in blue correspond to networks with mean 716

degree c = 4, and curves in red correspond to networks with c = 8. Each curve 717

corresponds to a different network realisation. We used 10 network realisations per 718

network topology. 719
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720

S7 Fig. BNI as a function of β using the diffusive coupling and the theta 721

model. Each panel shows BNI curves for different network topologies: (a) undirected 722

random networks, (b) directed random networks, (c) undirected scale-free networks, and 723

(d) directed scale-free networks. Curves in blue correspond to networks with mean 724

degree c = 4, and curves in red correspond to networks with c = 8 (we used a different 725

range of β for the two sets of curves). Each curve corresponds to a different network 726

realisation. We used 10 network realisations per network topology. 727

S8 Fig compares NI distributions computed with additive and diffusive couplings in 728

the theta model. The results are qualitatively the same as those found in the bi-stable 729

model (see Fig. 7). Nodes with higher (positive) NI in the additive coupling case are the 730

nodes with lowest (negative) NI in the diffusive coupling case. Furthermore, the NI in 731

the additive coupling has higher variability than in the diffusive coupling. S9 Fig, S10 732

Fig, and S11 Fig are also in agreement with the corresponding in the bi-stable model. 733

Briefly, the NI correlates (anti-correlates) with node degree in the additive (diffusive) 734

coupling (except when using additive coupling in directed scale-free networks). The 735

weighted Kendall correlation rank τ is close to −1 in all networks except directed 736

scale-free networks, showing that the NI from additive and diffusive couplings rank 737

nodes in reverse order. The directed scale-free networks is presumably an exception due 738

to its highly heterogeneous nature in terms of degree distribution. We speculate that 739

the role of in-degree and out-degree is different in the two coupling cases, but not the 740

’reverse’, as it seems to be the case when considering undirected networks, where the 741

in-degree is equal to out-degree. 742
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S8 Fig. Representative NI distributions of (a) undirected random, (b) 744

directed random, (c) undirected scale-free, and (d) directed scale-free 745

networks using the additive and diffusive couplings. The blue squares represent 746

the NI computed using the additive coupling and the red triangles correspond to the 747

diffusive coupling. The nodes were sorted such that the NI grows monotonically for the 748

additive coupling. The error bars are smaller than the symbols. The parameters γ and 749

β were chosen such that BNIpre = 0.5. All networks had mean degree c = 4. 750
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S9 Fig. NI versus degree across different network topologies using the additive 752

coupling and the theta model. Each panel corresponds to a different network topology: 753

(a) undirected random, (b) directed random, (c) undirected scale-free, and (d) directed 754

scale-free networks. In the case of the directed networks, the horizontal axis shows the 755

sum of in- and out-degree. This figure combines the NI distributions across 10 different 756

network realisations per network topology. The average correlation between NI and 757

degree is 0.73 and the average p-value is 0.055. We used networks with c = 4. 758
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S10 Fig. NI versus degree across different network topologies using the 760

diffusive coupling and the theta model. Each panel corresponds to a different 761

network topology: (a) undirected random, (b) directed random, (c) undirected 762

scale-free, and (d) directed scale-free networks. In the case of the directed networks, the 763

horizontal axis shows the sum of in- and out-degree. This figure combines the NI 764

distributions across 10 different network realisations per network topology. The average 765

correlation between NI and degree is −0.91 and the average p-value is 5.7× 10−16. We 766

used networks with c = 4. 767
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S11 Fig. Comparison of NI distributions using the additive and diffusive 769

couplings in the theta model. The weighted Kendall correlation rank τ quantifies 770
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the consistency of ordering nodes according to their NI values when using the different 771

couplings. Different panels show the comparison between additive and diffusive coupling 772

for different network topologies: (a) undirected random, (b) directed random, (c) 773

undirected scale-free random, and (d) directed scale-free networks. The error bars 774

represent the standard error across the 10 network realisations per network topology. 775

We considered networks with c = 4. 776

Finally, S12 Fig compares the NI distributions between the theta and bi-stable 777

models when using the same coupling function. We observe a high level of agreement in 778

all networks, particularly when using the additive coupling. The agreement is lower in 779

the diffusive coupling presumably because in this case the variability in NI is lower than 780

in the additive coupling and therefore there is a higher chance of some node orderings 781

being random. 782
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S12 Fig. Comparison of NI distributions between the theta and bi-stable 784

models using the additive and diffusive couplings. The blue (red) bars 785

correspond to the comparison between the two models using both the additive (diffusive) 786

coupling. Different panels show the comparison for different network topologies: (a) 787

undirected random, (b) directed random, (c) undirected scale-free random, and (d) 788

directed scale-free networks. The error bars represent the standard error across the 10 789

network realisations per network topology. We considered networks with c = 4. 790
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31. Lopes MA, Krzemiński D, Hamandi K, Singh KD, Masuda N, Terry JR, et al. A
computational biomarker of juvenile myoclonic epilepsy from resting-state MEG.
Clinical Neurophysiology. 2021;132(4):922–927.

November 25, 2021 32/33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470398
http://creativecommons.org/licenses/by/4.0/


32. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Computational intelligence and neuroscience. 2011;2011.

33. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical
correlation structure of spontaneous oscillatory activity. Nature Neuroscience.
2012;15(6):884–890.

34. Laiou P, Avramidis E, Lopes MA, Abela E, Müller M, Akman OE, et al.
Quantification and selection of ictogenic zones in epilepsy surgery. Frontiers in
Neurology. 2019;10:1045.

35. Cabral J, Hugues E, Sporns O, Deco G. Role of local network oscillations in
resting-state functional connectivity. Neuroimage. 2011;57(1):130–139.

36. Falcon MI, Jirsa V, Solodkin A. A new neuroinformatics approach to
personalized medicine in neurology: The Virtual Brain. Current opinion in
neurology. 2016;29(4):429.

November 25, 2021 33/33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470398
http://creativecommons.org/licenses/by/4.0/

