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Abstract

Both healthy and pathological aging exhibits gradual deterioration of structure but in-
terestingly in healthy aging adults often maintains a high level of cognitive performance in a
variety of cognitively demanding task till late age. What are the relevant network measures
that could possibly track these dynamic changes which may be critically relevant for main-
tenance of cognitive functions through lifespan and how does these measures affected by the
specific alterations in underlying anatomical connectivity till day remains an open question.
In this work, we propose that whole-brain computational models are required to test the hy-
pothesis that aging affects the brain network dynamics through two highly relevant network
measures synchrony and metastability. Since aging entails complex processes involving mul-
tiple timescales we test the additional hypothesis that whether these two network measures
remain invariant or exhibit different behavior in the fast and slow timescales respectively.
The altered global synchrony and metastability with aging can be related to shifts in the
dynamic working point of the system based on biophysical parameters e.g., time delay, and
inter-areal coupling constrained by the underlying structural connectivity matrix.Using dif-
fusion tensor imaging (DTI) data, we estimate structural connectivity (SC) of individual
group of participants and obtain network level synchrony, metastability indexing network
dynamics from resting state functional MRI data for both young and elderly participants
in the age range of 18-89 years. Subsequently, we simulate a whole-brain Kuramoto model
of coupled oscillators with appropriate conduction delay and interareal coupling strength
to test the hypothesis of shifting of dynamic working point with age-associated alteration
in network dynamics in both neural and ultraslow BOLD signal time scales. Specifically,
we investigate the age-associated difference in metastable brain dynamics across large-scale
neurocognitive brain networks e.g., salience network (SN), default mode network (DMN),
and central executive network (CEN) to test spatio-temporal changes in default to execu-
tive coupling hypothesis with age. Interestingly, we find that the metastability of the SN
increases substantially with age, whereas the metastability of the CEN and DMN networks
do not substantially vary with age suggesting a clear role of conduction delay and global
coupling in mediating altered dynamics in these networks. Moreover, our finding suggests
that the metastability changes from slow to fast timescales confirming previous findings that
variability of brain signals relates differently in slower and faster time scales with aging.
However, synchrony remains invariant network measure across timescales and agnostic to
the filtering of fast signals. Finally, we demonstrate both numerically and analytically long-
range anatomical connections as oppose to shot-range or mid-range connection alterations is
responsible for the overall neural difference in large-scale brain network dynamics captured
by the network measure metastability. In summary, we propose a theoretical framework
providing a systematic account of tracking age-associated variability and synchrony at mul-
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tiple time scales across lifespan which may pave the way for developing dynamical theories
of cognitive aging.

1 Introduction

Aging is associated with a gradual deterioration in supporting brain structure [1, 2]. In turn,
the alteration in underlying structural connectivity impacts cognitive performances in different
domains of cognition including working and episodic memory, processing speed, attention, and
a large repertoire of concomitant neurological disorders [3]. The age-related structural decline
has been connected with changes in the white-matter fibers, loss of dendritic spines, an increase
in number of axons with segmental demyelination, a significant loss of synapses, [4, 5, 6]. Also,
the long-range connections specifically undergo age-associated alterations, they themselves act
as bridge between distal brain areas, facilitating rapid and efficient interareal communication[7].
One fundamental question that remains poorly understood how does these long rage connec-
tions contributes to synchrony and transiently stable brain dynamics at slow and fast time-scales
with aging. Here we systematically address this open question to sculpt out a relationship be-
tween time scales, anatomical connectivity based on fiber distance and network synchrony and
metastability. Leveraging on the empirical observations based on functional magnetic resonance
imaging (fMRI) and diffusion tensor imaging (DTI) data allows us to capture the changes in the
statistical dependencies of brain signals and their relationship with the change in fiber strength
and distance using whole brain computational models in-silico [8].In particular, functional MRI
(fMRI) analyses have allowed us to use resting-state scans to better understand the relation be-
tween spontaneous fluctuations of the blood-oxygenation level dependent (BOLD) signal (0.1-1.0
Hz) and different resting-state networks (RSNs). Moreover, a discovery of crucial link between
age-associated alterations in long-range structural connectivity and network synchronization
could provide a mechanistic understanding of neural basis of several existing theories of cogni-
tive aging. Many of the cognitive theories of aging entails interactions and functional coupling
between large scale resting-state neurocognitive networks e.g., default (DMN), salience (SN),
and central executive network (CEN)[9]. It is found that these networks have shown the most
evident and major difference across the young and old age groups [9, 10].

Recent theories further suggest that the dynamical concepts of metastability are suitable for
understanding the existing cognitive aging theories[11]. Metastability, a fundamental concept,
used to grasp the behavior of complex systems. It is thought to manifest optimal information
processing capabilities and switching behavior of the system without becoming locked into fixed
interactions [12, 13, 14]. Metastability was also used to confer structure-function integrity in a
study by Hellyer et al [15]. They linked reduced metastability of traumatic brain injury (TBI)
patients compared to healthy controls due to specific damage to the underlying connectome
and correlates well with poorer cognitive flexibility. In the context of aging, metastability
has been used to explore the changes in the physiological substrate that take place with aging
[11, 16]. Studies using different imaging modalities M/EEG have further showed increased global
metastability with age across all known frequency bands of interest [17].

Prior studies suggest BOLD signal variability plays an important role in pinpointing age-
associated changes and possibly index cognitive performance of healthy adults [18]. Given
the fact that the variability eases flexibility. Garrett et al., further demonstrated both regional
increases and decreases of brain signal variability associated with healthy aging has specific
functional and behavioral implications [18, 19]. As a consequence, brain signal variability has
been widely used to track age-associated shifts and onset of pathological aging process [20, 21].
McIntosh et al., [20] reported using EEG and MEG, with maturation, brain signal variability
enhances in the context of local communication between neural populations and decreases for
distal communication between neural populations. A widely used measures of metastability
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(e.g., Kuramoto order parameter) formally capture the variability in the phase synchronization
patterns at network level from the BOLD time series data (at slow time scale) or from the EEG
and MEG time series data (fast time scale) [22, 23] obtained from specific brain region of inter-
est or at the whole brain level. Hence, we applied the above measure to track age associated
shift in metastable brain dynamics and Synchronization at both the time scales of interest to
understand the interplay of synchronization among large-scale neurocognitive brain networks.
Furthermore, the variability could be critical for the maintenance of cognitive flexibility and
performance during healthy aging.

In this work, to address the specific knowledge gap between age associated alterations in long-
range structural connectivity and metastable, synchronized interareal brain network dynamics
we leverage on whole brain computational modeling. Previous studies have shown how the shift
in the working point or demyelination of axonal fiber affects network-level measures [?]. Further-
more, since aging entails complex processes involving multiple timescales, therefore, we propose
that whole-brain computational models are necessary to test the hypothesis that aging affects
the brain network dynamics through network measures of synchrony and metastability at slower
and faster time scales. In this study, we use the altered global synchrony and metastability with
aging to relate the shifts in the dynamic working point of the system based on two fundamental
biophysical parameters e.g., interareal time delay, and interareal coupling strength constrained
by the underlying structural connectivity derived from diffusion tensor imaging (DTI) data. We
test the auxiliary hypothesis that whether different network measures remain largely invariant
or do they exhibit distinct dynamical features in the fast and slow timescales respectively. We
simulate a whole-brain Kuramoto model[24] of coupled oscillators introducing appropriate con-
duction delay and interareal coupling strength to test the hypothesis of shifting of dynamic
working points with age-associated alteration in network dynamics in both neural and ultraslow
BOLD signal time scales. To achieve realistic brain alteration with age in a model, extremely
fine-tuning of parameters is required. So, we tuned the model to resemble empirical resting-
state cortical dynamics by evaluating a two-dimensional parameter space, scaling the coupling
strength and delay of oscillator interactions. These two biophysical parameters can to capture
age-related shifts in parameter space in some studies [25]. This shift might be explained by age-
related changes in structural connectivity [26] or loss of a number of long- as well as short-range
connections or changes in inter-areal delay due to demyelination [27].

Here, using empirical and computational approaches, we investigate how metastability, defined
as the standard deviation of the Kuramoto order parameter [14, 28], arises from underlying
structural connectome and is able to track age-related shifts in the dynamic working point. We
test 1) how metastability alters globally and locally in resting-state networks (SN, DMN, CEN)
with age, 2) whether metastability properties are preserved in slow and fast time scales, and 3)
what is the relation between age associated alterations in long-range structural connectivity and
metastable, synchronized interareal brain network dynamics.

2 Methods

Subjects

49 healthy subjects (30 females, 19 males; age 18 to 80 years, mean ± SD 41.55 ± 18.44)
participated in this study after providing written informed consent. We divided all subjects into
two groups comprising 25 young participants ranged in age from 18 to 33 years (mean age =
25.7 ±4 years, 13 female) and 24 elderly participants ranged in age from 55 to 80 years (mean
age = 67.99 ± 9 years, 18 female). All experiments were performed in compliance with the
relevant laws and institutional guidelines and approved by the ethics committee of the Charité
University Berlin.
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Data Acquisition

T1 structural magnetic resonance images (MRI) and diffusion-weighted images (DWI) were
acquired at Berlin Center for Advanced Imaging, Charité University Medicine, Berlin, Germany.
MRI was performed on a 3T Siemens Trim Trio scanner and a 12 channel Siemens head coil
(voxel size). Structural (T1-weighted high-resolution three-dimensional MPRAGE sequence; TR
= 1900 ms, TE = 2.52 ms, TI = 900 ms, flip angle = 9 ̸, field of view (FOV) = 256 mm × 256
mm × 192 mm, 256 × 256 × 192 Matrix, 1.0 mm isotropic voxel resolution), diffusion-weighted
(T2-weighted sequence; TR = 7500 ms, TE = 86 ms, FOV = 192 mm × 192 mm, 96 × 96
Matrix, 61 slices,2.3 mm isotropic voxel resolution, 64 diffusion directions), and fMRI data (2-
dimensional T2-weighted gradient echo planar imaging blood oxygen level-dependent contrast
sequence; TR = 1940 ms, TE = 30 ms, flip angle = 78deg, FOV = 192 mm × 192 mm, 3 mm ×
3 mm voxel resolution, 3 mm slice thickness, 64 × 64 matrix, 33 slices, 0.51 ms echo spacing, 668
TRs, 7 initial images were acquired and discarded to allow magnetization to reach equilibrium;
eyes-closed resting-state) were acquired on a 12-channel Siemens 3 Tesla Trio MRI scanner at
the Berlin Center for Advanced Neuroimaging, Berlin, Germany.

Empirical structural connectivity and tract length data

The empirical structural connectivity (SC) for each subject was generated by using the pipeline
described by Schiner et al. [29]. In this pipeline, high-resolution T1 anatomical images were used
to create segmentation and parcellation of cortical and sub-cortical gray matter, white matter
segments. The main pre-processing steps for T1 anatomical images involved skull stripping,
removal of non-brain tissue, brain mask generation, cortical reconstruction, motion correction,
intensity normalization, WM, and subcortical segmentation, cortical tessellation generating GM-
WM and GM-pia interface surface-triangulations and probabilistic atlas- based cortical and
subcortical parcellation. Cortical grey matter parcellation of 34 region of interest( ROI) in
each hemisphere was undertaken following Desikan-Killiany parcellation [30]. The connection
strength (a value ranging from 0 to 1) between each pair of ROIs was estimated by probabilistic
tractography algorithm. SC matrices were generated from each subject’s MRI data and then
summed element-wise to obtain an averaged SC matrix.

The pre-processing steps for the diffusion MRI data were eddy current and motion correction
with re-orientation of b-vectors (b-zero image was linearly registered to the subject’s anatomical
T1-weighted image). Tractography was constrained by seed, target, and stop masks. The fiber
length was represented in millimeters. The 68 ROIs or nodes had no self-connection loops
meaning that the diagonal values of the SC matrix are all zero.

Empirical functional connectivity

The same participants were subjected to a functional MRI scan during which their eyes-closed
awake resting state data were acquired. The resting-state BOLD activity were recorded for a
duration of 22 minutes (TR=2 sec). The BOLD activity was then downsampled to fit the 68
ROIs defined in this parcellation scheme. Aggregated BOLD time series of each region was
z-transformed and pairwise Pearson correlation coefficient was computed to obtain the resting
state functional connectivity (FC) matrix of each subject. An average 68×68 FC matrix was
calculated from each FC matrix. The modeling pipeline was given in Fig. 1 which describes
the different stages of the model simulation, as well as, representative results obtained at all
different stages of our analysis.
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Kuramoto model

In accomplishing our goal, we choose widely accepted Kuramoto model of phase transition and
synchronization. As this model with a few anatomical parameters offers tractability of network
measures of whole brain synchrony and metastability and also has the potential to capture the
key qualitative features of complex brain dynamics enumerated by detailed neural mass models.
We considered each N (N = 68) node as an oscillator and modeled their dynamical interactions
using a modified version of the Kuramoto model of coupled oscillators [24, 28, 31]. This version
of Kuramoto model takes into account two biophysical parameters, conduction delays and the
coupling strength between two nodes. There are two underlying assumptions that local neural
activity is periodic and its state can be described by a single variable, the phase. Secondly, there
is a weak coupling between local neural populations so that amplitude effects can be neglected
[32]. Kuramoto is a less computationally intensive model which can simulate microscopic neural
dynamics related to underlying structural connectivity [14, 28, 33, 34].

To address this, the Kuramoto model (with time delay) coupled amongN brain areas via realistic
anatomical connectivity is defined as,

dθi
dt

= ωi + k

N∑
j=1

Cij sin[θj(t− τij)− θi(t)], (1)

where i, j = 1, 2, · · ·N . Cij , the asymmetric connectivity (connection weights) between the node
i and node j, normalized to 1. N is the total no. of nodes, θi is the phase of the node i, ωi is the
intrinsic frequency of oscillation of the node i, k is the global coupling coefficient which scales
all connections’ strength, and τij is the time delay between the pair of nodes i and j defined as
the ratio of the fiber distance (Lij) and mean conduction speed(v), Lij/v where v is the mean
conduction speed of the neural fibers. We can also define a mean delay as < τ >=< L > /v
where < L > is the mean fiber length across the brain. We do not consider the effect of noise
in this study.

For the sake of simplification, the nodes in the model behave like homogeneous neural masses
within which all neurons oscillate together. The intrinsic frequency of oscillation of such neural
assemblies has been previously shown to lie in the gamma band [35], and thus in our model we
fix the value of ω = 2π×60 Hz. The nodes are free to oscillate, with the phase of the oscillation,
θ, defining the state of the node. This network is thus a phase oscillator. The free parameters
in this model are k and < τ >(ms), for which we performed parameter space sweeps in order to
characterize the network dynamics for the entire set of relevant parameter ranges, and the plots
so computed are called the parameter maps.

Random initial conditions were selected for simulating phase evolution with respect to time.
Furthermore, as this model incorporates time delay we had to specify the phases for a sufficiently
long time interval, say 80sec in order to capture the steady state dynamics and first 10sec were
discarded for all subsequent analysis. The system of N dynamical equations was numerically
integrated by using a variant of the Euler method adapted to noise with a time step ∆t = 0.1
ms. All calculations were performed in MATLAB 2016b (MathWorks) and BrainNet viewer and
Python 3.8 were used for plotting the figures.

Synchronization and metastability

The dynamics of the Kuramoto network of oscillators can be characterized by the order param-
eter R(t), which is defined below,

R(t) =
1

N

∣∣∣∣∣∣
N∑
j=1

eiθj

∣∣∣∣∣∣ . (2)
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R(t), the coherence of oscillators at time t, ranges from 0 for a fully desynchronized or incoherent
state to 1 for a fully synchronized state.

To derive empirical metastability, we first calculated the analytic signal (yj) for BOLD signals
from each brain regions of interest as follows:

yj(t) = xj(t) + iH(xj(t)) = Reiθj(t), (3)

where H(xj(t)) represents Hilbert transform of the original signal xj(t) at j-th ROI. Analytic
signal has advantage over original signal since it discards negative frequency components without
loss of information and makes instantaneous phase (θ(t) of the signal accessible; hence allowing
to explore relationships at higher temporal resolution. Kuramoto order parameter defines mean
phase synchronization or instantaneous coherence in the network as

Rc(t) =
1

Nc

∣∣∣∣∣∣
Nc∑
j=1

eiθj

∣∣∣∣∣∣ . (4)

Here, Nc represents the number of regions (nodes) in the network c. For whole-brain analysis,
Nc = 68, and for different large scale resting-state networks Nc depends on the number of regions
considered. Then metastability is defined as standard deviation of Rc(t) over time.

Fo synchronization at frequency Ω, equation 1 reads [36],

θ̇i = ωi + k

N∑
j=1

Cij sin[θj(t)− Ωτij − θi(t)]

= ωi + k
N∑
j=1

Cij sin[θj − θi − Ωτij ] (5)

The phase difference between each pair of Kuramoto oscillators is given as,

0 = Ω− Ω = ˙θm − θ̇n

= ωm − ωn + k
N∑
j=1

[Cmj sin(θj − θm − Ωτmj)− Cnj sin(θj − θn − Ωτnj)],

= ∆ω + k[Cmn sin(θn − θm − Ωτmn)− Cnm sin(θm − θn − Ωτnm)]

+k

N∑
j=1, ̸=m,n

[Cmj sin(θj − θm − Ωτmj)− Cnj sin(θj − θn − Ωτnj)]. (6)

For symmetric coupling Cmn = Cnm = c(say), τmn = τnm = τ(say). In our experiment ∆ω = 0.
Let, ∆θ = θm − θn, then equation 6 reduced to

0 = kc[sin(∆θ − Ωτ) + sin(∆θ +Ωτ)]

+k
N∑

j=1, ̸=m,n

[Cmj sin(θj − θm − Ωτmj)− Cnj sin(θj − θn − Ωτnj)]

0 = −2kc sin∆θ cosΩτ + Jmn. (7)

Jmn = k
∑N

j=1, ̸=m,n[Cmj sin(θj − θm − Ωτmj) − Cnj sin(θj − θn − Ωτnj)] contains all the other
links towards the nodes m and n apart their direct link. Therefore,

∆θ = sin−1 Jmn

2kc cosΩτ
. (8)

For synchronized state, ∆θ = 0, above equation reduced to

τ =
1

Ω
cos−1 Jmn

2kcpπ
, (9)

where p ∈ N.
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Simulated functional connectivity

The simulated neural activity from the Kuramoto model was converted to the BOLD activity to
have a direct correlation with the empirically recorded BOLD activity from the subjects. The
simulated neural fluctuations were given by the firing rate rn(t) for node n fluctuates around a
fixed value and these fluctuations were obtained by a periodic function of local node phase [28].
We chose a simple sine function for these fluctuations as rn(t) = r0 sin(θn(t)). For simplicity,
we considered the amplitude of the model as r0 = 1. Then we used the Balloon-Windkessel
hemodynamic model to convert the neural signal to BOLD activity. The method was adopted
from previously published works [28]. Snapshots of neural activity for a particular parameter
set (k, τ) at both these levels were shown in Fig. 1 which were seen to be widely variant from
each other.

The simulated BOLD activity was then pairwise correlated to obtain the simulated FC. We
calculated the Pearson correlation and the distance between the two matrices only for the struc-
turally connected pairs to compare the simulated and the empirical FCs. In Fig. 1, we plotted
the measures of similarity between the empirical and simulated FC, identify the regions of the
parameter space where the model predict the experimentally observed functional connectivity
to a remarkable degree. In the central yellow region of the parameter map of FC-correlation,
with values around 0.6 the model provides the best fitting results. Hence, in this regime in the
parameter space, this model could be used as convenient source for generating realistic neural
activity. The parameter map of Euclidean distance also identified the region around the best
fitting values, shown as the dark-blue region. As expected the regions thus identified by the two
independent similarity measures show significant overlap and unless otherwise specified is used
for the remaining analysis.

Selection of brain regions from large scale brain networks

Table 1: Coordinates of selected nodes of three resting-state networks according to De-
sikan–Killiany (DK) parcellation atlas.

Networks Brain regions MNI coordinates(x,y,z)
Left(l) right(r)

Salience network Insula (−41, 13,−6) (43, 12,−6)
CACC (−2, 21, 27) (3, 21, 27)
RACC (−2, 39, 6) (4, 38, 4)

Central executive network RMFG (−34, 53, 17) (43, 45, 21)
CMFG (−45, 18, 46) (43, 14, 43)
SPL (−25,−62, 63) (17,−65, 59)

Default mode network MOF (−4, 44,−14) (7, 45,−13)
IPL (−47,−70, 31) (48,−67, 29)
PCC (−1,−18, 38) (1,−16, 37)

We considered three resting-state large scale brain networks, namely the SN, CEN, DMN (node
details were provided in Table 1). Several studies reported the alteration of interconnections
within and between the DMN, CEN, SN in many psychiatric and neurological disorders, for
instance, Alzheimer’s disease, psychosis, attention deficit/hyperactivity disorder, autism spec-
trum disorder, and depression [37]. DMN comprise of inferior parietal lobule (IPL), posterior
cingulate cortex (PCC), and medial orbitofrontal cortex (MOF) [38]. These regions are consid-
ered as ‘default mode’ of brain function, as they exhibit decreases in activity during a variety of
goal-directed behaviors. Bilateral rostral and caudal middle frontal gyrus (MFG) and superior
parietal lobule (SPL) were selected as nodes of CEN [39]. It plays an important role in decision
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making and executive functions. It has been consistently reported that DMN and CEN maintain
antagonistic relationship in resting state or during task performing in healthy individuals [40].
SN, which comprises of anterior insula and caudal, rostral ACC was previously used in our study
[9], is important for the detection of salient events and switching between other large-scale brain
networks in resting as well as task conditions [41, 42]. SN enables rapid recognition between
goal-directed or goal-oriented salient stimulus from external environments and plays important
role in the dynamic switching of antagonistic activity between the DMN and CEN. But how
this dynamic switching alters in normal aging is unknown.

Determination of long- and short-range connections

Structural connectivity is described by fiber tracts joining different brain regions at the macro
scale [43].dMRI-based tractography is used to characterized SC properties e.g., fiber length and
strength. There have been numerous definitions of long- and short -range SC in the extant
literature [44, 45] depending on their tract lengths. In this work, we used fiber tract length to
define long- and short- range connections in the following manner. In Fig. 2(A), we plotted the
average fiber tract lengths between each pair of regions for the young group. Longer connections
between two regions were depicted by thicker edges whereas thinner edges indicate short-range
connections. Distribution of average fiber tract length for young group has been plotted in Fig.
2(B). First quartiles, ( QY oung

1 , QOld
1 ) and third quartiles, ( QY oung

3 , QOld
3 ) were calculated from

average fiber tract for both young and old group. Subsequently, we considered the minimum
value of first quartiles (Q∗ = minimum(QY oung

1 , QOld
1 )) as lower threshold and maximum value

of third quartiles (Q∗ = maximum(QY oung
3 , QOld

3 )) as upper threshold. Now, the tract lengths
higher than the upper threshold considered as long-range connections and the tract lengths
lesser than the lower threshold considered as short-range connections. The blue vertical lines
in Fig. 2(B) indicate the lower threshold (Q∗ = 222mm) and upper threshold (Q∗ = 581mm)
respectively. The threshold matrices were shown in Fig. 2(C,D). Fig. 2(C) showed only the
long-range connections and Fig. 2(D) showed the short-range connections for young cohort.

We have deleted top 5% long-range structural connections from structural connectivity matrix
of young subject and simulated the model keeping other parameters fixed. Then the difference
was calculated by subtracting the global metastability of young subjects from modified global
metastability with deleted connections. We repeated the calculation of difference of global
metastability after removing 10%, 15%, and 20% long-range connections.

For similarity between structural connectivity matrices, we used Kolmogorov-Smirnov (KS)
similarity as 1

1+KSD , whereKSD > 0 is the Kolmogorov-Smirnov distance between two matrices.

Statistical analyses

We have applied Mann Whitney U test to compare group differences between young and old
subjects. In addition, the two sample Kolmogorov-Smirnov (KS) test was conducted to inves-
tigate whether long-range and short-range connections of older subjects were more disrupted
than long-range and short-range connections of younger subjects. KS tests a null hypothesis
by comparing whether two groups are from the same populations with identical distributions
or not. It does not compare any particular group statistical average quantities e.g., mean or
median of a distribution. For group comparisons, p-values of < 0.05 were considered statistically
significant after FDR corrections.
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3 Results

Empirical measures of metastability for large-scale brain network dynamics

As discusses in the previous section, network level synchronization among the large-scale brain
networks were conveniently captured by the Kuramoto order parameter, R(t). The order pa-
rameter R(t) exhibiting synchronization dynamics as a function of time is plotted for the young
and older group in Fig. 3(A)for the whole brain network (defined as global) and for the three
large-scale brain networks of interest as shown in Fig. 3(B). Interestingly, we found that the
younger group showed higher values for R(t) while maintaining lesser fluctuations than the
order parameter dynamics for the older group. Next, we assessed the metastability of large-
scale neural dynamics, which was measured using 68 regional phase time courses obtained from
resting-state fMRI BOLD data in both young and old subjects and plotted in Fig. 3(C). Then,
we compared metastability within resting-state networks between young and old by using Mann
Whitney U test. Global metastability increased with age but not significantly. Old subjects
showed significantly greater metastability in SN (U = 206, p = 0.04). Metastability in CEN
and DMN increased for older population but not significantly. However, findings for empirical
metastability did not survive false discovery rate (FDR) corrections.

Generation of cortical activity from the Kuramoto model

We used a generalized Kuramoto model with time delay for the generation of cortical activity,
following the procedure described previously in [28] among others [46, 47]. The input parameters
in this modeling scheme were data from MRI diffusion imaging and fiber tractography studies,
i.e. the structural connectome and the fiber distance information termed as the structural
connectivity (SC) matrix and distance matrix respectively. The global dynamical behaviors of
the model, synchronization and metastability are characterized by the mean synchronization
level R and standard deviation of R(t) over the simulated time interval, respectively (Fig. 4).
Fig. 4 (A) showed the behavior of the Kuramoto model at t = 2000ms for three different values of
coupling strength keeping other parameters fixed. At low coupling strength (k = 5) (Fig. 4 (A)
left) each node behaved incoherently, then for k = 27 (Fig. 4 (A) middle) nodes were partially
synchronized, and for k = 35 (Fig. 4 (A) right) nodes were mostly synchronized. In Fig. 4 (B),
the order parameter R(t) (red line) with metastability (yellow confidence interval) were plotted
for three different coupling strengths as defined in Fig. 4(A). Fig. 4 (C) showed metastability
was very low if the system is either completely synchronized or completely de-synchronized and
a large value indicated switching between coherent and incoherent states.

The similarity between the simulated FC and the empirical FC from fMRI data was measured
by taking the Pearson correlation (Fig. 5(A, B)) and Euclidean distance (Fig. 5 (C, D)) plotted
in the two dimensional parameter space given by (k, τ). It was immediately noticeable that
the young group in this data exhibited regions of high correlation, with values as high as 0.6
highlighted by the contour lines in Fig. 5 (A). In contrast, the correlation in the old group,
as shown in Fig. 5 (B), was relatively lower along with the island of high correlation being
substantially reduced. The FC Euclidean distance measure, on the other hand, for the two
groups have a larger overlapping area of agreement in the parameter space. The region of
simultaneous large correlation and small distance corresponds to a mean delay between 12ms
and 24 ms and inter-areal coupling strength value between 15 to 25 for young population and
mean delay of 15ms to 22ms along with coupling strength of 12 to 20 for the older population.
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Synchronization and metastability in slow and fast time scale

Next, we simulated the whole brain dynamics in the best fitted (τ ,k) parameter space to test
whether model predicted network synchrony and metastability associated with age is somewhat
comparable against metastability results obtained from empirical observations. We evaluated
synchrony and metastability globally in the (τ ,k) parameter space for BOLD time signals after
discarding initial 10 seconds of transients. The parameter maps of BOLD signal synchronization
were depicted in Fig. 6 (A,B) and similarly, metastability were plotted in Fig. 6 (C, D) for
both age groups. The older group displayed slightly higher synchronization values than the
younger cohort. However, the parameter maps of metastability (Fig. 6 (C, D)) complement the
results of the synchronization maps, where regions of high metastability coincides with the part
of the parameter regions where partial synchronization was manifested. Interestingly, there was
not much difference in the whole brain metastability between the two groups suggesting some
kind of invariance and preservation of metastable brain dynamics associated with healthy aging
process.

The dynamics of simulated BOLD signals (for all 68 nodes) based on different combinations
of (τ, k) were plotted in Fig. 7 to demonstrate rich network dynamics comprise of Synchrony,
Partial Synchrony, Incoherence. To systematically explore the emergent network dynamics we
have selected three sets of parameters respectively (τ = 8, k = 5), (τ = 20, k = 10), and
(τ = 12, k = 35) from the parameter space where synchronization was low, moderate and high
respectively and plotted the corresponding dynamics in Fig. 7 (A,B), Fig. 7 (C,D), and Fig. 7
(E,F) respectively. It was clear from the Fig. 7 (A,B) that phases of the signals were mainly
incoherent whereas the phases of the signals in Fig. 7 (E,F) were synchronized. But in Fig. 7
(C, D) some phases were synchronized and some of them were desynchronized.

Next, we will focus our interest on the fast time scale, also known as the neural time scale, to un-
derstand our auxiliary research question whether the network measures Synchrony and metasta-
bility patterns remains largely invariant or distinguishable across time scales with healthy aging.
As a first approximation, the fast time scale brain network dynamics is simply the time evolution
of the phases of the individual oscillators. As we are mainly interested in the synchronization
and metastability of the brain, we calculated these values, and performed a parameter sweep
across the two variables τ and k, in order to get the parameter maps of synchronization and
metastability. Fig. 8 (A,B) depict the parameter space of network synchronization and Fig.
8 (C,D) showed the parameter space of metastability for both groups at the neuronal time
scale. While the network synchronization were nearly identical for both age groups the network
metastability was slightly higher in the older group. The parameter maps of synchronization, in
Fig. 8 (A,B) for both age groups, showed with narrow contour lines (marked in white) where rich
and complex brain dynamics co-exist. In this regime, the network was neither in a completely
phase locked state (yellow regions) nor in decoupled incoherent state (blue regions). This region
was wider for older group than younger group suggesting aging probably shifts the identified
parameter space and supports higher transient synchronization. Interestingly, it can be further
observed from Fig. 8(C,D) that the higher values of metastability lied in the same regions of
the parameter where partial synchronization occurs. This is quite similar to the observations
made on the slower time scale. This further crucially implies metastable brain dynamics is not
only preserved across healthy aging individuals but also across two time scales of information
processing and cognition.

The dynamics of the neural oscillations across all the 68 cortical regions in the young population
were represented in the plots of Fig. 9 for different combination of parameters representing
different dynamical regimes as desynchronized, partially synchronized, and fully synchronized
respectively. These neural signals were only a portion of the total time of activity. Parameters
τ = 8, k = 5 lied in desynchronized regime so the neural signals were desynchronized as we can
seen from Fig. 9 (A,B). Similarly,the parameters, (12, 20), (0.5, 40) were in partially synchronized
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and synchronized regime and from Fig. 9(C,D) and Fig. 9(E,F), we can verify the natures of
the oscillations.

Metastability of resting-state functional networks

Next, we analyzed the metastability of resting-state networks (RSNs), crucially, the three large-
scale neurocognitive networks defined earlier, the salience (SN), central executive (CEN), and
default mode network (DMN). The results presented in Fig.10 showed a comparative study of
the variation of metastability across the two age groups, for these three different functional
networks SN, CEN and DMN. Fig. 10 (A) depicted the BOLD metastability map in SN, CEN
and DMN for young and old group. While the metastability of the CEN and DMN do not
show major variations with the age, we found that the metastability of the SN increased slightly
with age. This can be seen in the higher metastability values, spread over a larger area of the
parameter space in the case of the older population. Moreover, the increased metastability,
visualized in the parameter space, occurred in the region where the parameters were relevant
to realistic values and within which the model had high prediction accuracy. The results of
the empirically obtained metastability at the BOLD timescale was compared to the simulated
metastability across the entire parameter space. As a consequence of parameter search, we
have identified regions in the parameter space where the trend of the metastability with age
either agrees or disagrees with the empirically observed results. This grid search procedure
further allowed us to constrain and predict biologically relevant (τ, k) values. For those values
of parameters where the metastability of all the four cases (global (whole brain), SN, CEN, and
DMN) showed an increase with age, agreeing with the empirical observation, we denoted those
points on the parameter space by a circle (o). On the other hand, for the critical parameter
values those resulted in disagreement with the experimental results, denoted by a cross(x). In
this way, the entire parameter space was characterized and the results summarized in Fig. 10
(B) with representative examples being shown in Fig. 10 (C) for BOLD time scale and in Fig.
10 (D) for neural time scale respectively. This helped us identify the areas of the parameter
maps where the simulated results and empirical results were in qualitative agreement.

Analysis of structure

Next, we hypothesize that the observed differences in the metastability for the young and the
old groups across different neurocognitive networks may be arising from the difference in the
proportion of short-and-long-range connectivity in the underlying SC matrix. Therefore, we
attempted to analyze the differences in the structural connectivity patterns across these two
groups. The SC weight versus fiber length distribution may be visualized by plotting the SC
edge strength with respect to the fiber lengths. In the human brain, and indeed in other species
as well, this relation follows a somewhat linear profile when plotted in the log scale for the edge
strength [48]. We plotted the SC weight versus fiber length distribution for the brains of a young
and an old subject in Fig. 11 (A). We used the slopes of these distributions for each subjects,
obtained by a linear regression, as the marker for characterizing the particular network. Mean
slopes for both groups in global and in three networks (SN, CEN, and DMN) were plotted in
Fig. 11(B). Non parametric, Mann Whitney U test has been applied on slopes and no significant
differences have been found for global ( U = 257, p = 0.14), for salience (U = 309, p = 0.48),
for central executive (U = 288, p = 0.32). Only default mode network (U = 214, p = 0.04)
showed significant decrease of slopes for older individuals. But this effect did not survive FDR
correction. This means that the long-distance fibers of DMN in older subjects had very smaller
connection strength than that of younger subjects. We did not see any major differences in the
distribution profiles (slopes) of the brains of the young and the old groups.

Now, in Fig. 12, we explored the changes in long- and short- range connections with age.
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Violin plots were drawn in Fig. 12 (A) for long-range connections and Fig. 12 (B) for short-
range connections of young and old subjects. We applied the KS test to compare whether these
distributions of long-range counts as well as short-range counts were significantly different or not.
The number of long-range connections was significantly reduced for the old group ( p < 10−5,
FDR corrected), though the median values of the long-range fiber tract were almost remain
same as 683.94 for young and 660.61 for old group. The counts of short-range connections were
reduced for the older population but not as significant as the counts long-range connections. The
histogram plot of long-range connections for both groups together was shown in Fig. 12(C). The
dotted lines represent the kernel density estimation for individual distributions. So many long-
range counts were lessened for older population. By Fig. 12(D), vertical distance between the
two cumulative frequencies of long-range connections of young and old groups were increasing
after tract length of 700 mm. Finally, we plotted in Fig. 12(E), the circular maps of top 10%
long-range connections for both groups and found that the stronger connections were mainly
damaged by age. So the length of long-range fiber tract was remain unchanged whereas the
number of long-range connections were significantly decreased with age.

Next, we computed the KS similarity between modified structural connectivity matrix of young
subject with 5% deleted long-/short-range connections and structural connectivity matrix of old
subject. We did this for various percentage of deleted connections and plotted the similarity
values in Fig. 13(A). It is clear that when we deleted the long-range connections from young
subject’s structural connectivity, the new structural connectivity matrices were highly similar
to structural connectivity matrix of old subject. If we compare the similarities between the
reduction of long-range connections and short-range connections then we saw that young SC
matrix much more similar to old SC matrix for reduction of long-range connections than that of
short-range. But similarity gradually decreases as we deleted more and more connections. So,
young SC became more like old SC as we deleted long-range connections, then we simulated the
model to explore how metastability affected by long-range structural disruption.

To establish whether long-range connections has any direct relation with global metastability,
we have deleted top 5% long-range structural connections from structural connectivity matrix
of young subject and calculated the difference by subtracting the global metastability of young
subjects from modified global metastability with deleted connections. So the positive difference
will clearly indicate the enhancement of metastability after deletion of long-range connections.
We repeat the steps for 10%, 15%, and 20% deleted connections. We plotted difference of
global metastability in Fig. 13 (B) for 5%,10%, 15% and 20% deleted long-range connections
respectively. Long-range connections that had been deleted from SC matrix were mainly long-
range connections from the nodes of SN, CEN networks. Positive difference in parameter space
indicates the global metastability increased as we deleted long-range connections.

4 Discussion

Neuroscience literature has primarily emphasized

the investigation of metastability in models of complex behaviors, especially those that demand
dynamic network interactions. So, we simulate a whole-brain Kuramoto model of coupled oscil-
lators with appropriate conduction delay and interareal coupling strength to test the hypothesis
of shifting of dynamic working point with age-associated alteration in network dynamics in both
neural and ultraslow BOLD signal time scales by using synchrony and metastability [24, 49].

Aging entails variability involving different timescale and metastability may be consistent with
other descriptions of capturing brain signal variability at slow and fast time scales. Naik et
al [11] suggested to involve the concept of transient and metastability coordination to track
fluidity of aging and cognition in fast and slow temporal scales. But it is unclear to what
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extent this metastability is able to capture this variability in different time scales. We have
observed that the values of metastability at one timescale has no seemingly direct bearing on the
metastability value at the other timescale. On the other hand, we can also observe that a higher
(lower) neural activity across the BOLD timescale also corresponded to a similar higher (lower)
neural activity at the neural timescale. It was thus exciting to note that despite the apparent
similarity in the neural activity across the timescales, the metastability of the networks at the two
timescales remains independent of each other. So, metastability can track the dynamics changes
ranging from microscopic neural scale to macroscopic BOLD scales of the brain. Metastability
measured using fMRI was enhanced in older subjects compared to younger subjects. Global and
local metastability increased with age which is in line with previous such comparative studies
[10, 11, 17]. Small and subtle changes in the brain across the lifetime of individuals might provide
the basis for the increased metastability for the old population. In view of this, the increase
in metastability for the old population present an interesting and rather counter intuitive case!
It may be hypothesized that this increase may be an inherent coping mechanism of the brain
that served to maintain an optimal degree of cognitive performance by keeping the brain more
‘ready’.

To understand the underlying inherent coping mechanism of the brain that served to maintain
an optimal degree of cognitive performance, we simulated a simple biophysical model- the Ku-
ramoto model- whose behavior has been rather well studied theoretically for generating neural
activity [24, 31]. In this model, the circular phase is sufficient to represent the activity of a
local system (neuron/neural column/cortical area). To make the model more neurobiologically
plausible, time-delay version of the Kuramoto model with two ‘free’ parameters, namely the
mean time delay, τ and the global coupling constant, k are introduced. Time delays in neuronal
systems generated from finite axonal transmission, which is dependent on inter-areal distance
and myelination as well as on synaptic and dendritic processes. Finally, the model was tuned
by sweeping across this two-dimensional parameter space, keeping within bio-physically realistic
limits, thus leading to the ‘parameter maps’ of measures such as synchronization, metastability,
etc. which characterizes the relationship of the underlying anatomy with these network mea-
sures. We first calculated the simulated FC and compared it to the empirical one. We found
a region where the simulated FC best fits the empirical one. The region of high correlation
was confined to a much smaller area with smaller coupling strength in the case of the older
population group. This reduction in the older population may be viewed as a case of the brain
becoming more idiosyncratic with age, something which has been reported in literature [50].
In the young population, a region of high FC correlation suggested that the Kuramoto model
can be a good source of generating realistic neural activity. At the same time, the reduction
in correlation values for the old group indicated that as the brain ages, the model predicted
parameter space may tend to shrink and shift offering lesser accuracy between model fit and the
empirical observations.

The region where simulated FC best matches with empirical FC was delimited by an interval
of sufficiently high coupling and realistic transmission delays where BOLD signals exhibited a
significant level of partial synchrony and metastability. The metastability values were small
outside this region for both group. This suggests in order to work brain at an optimal level
some regions of brain were needed to be coupled as well as decoupled. Also, if metastability,
as it is often described, is the measure of the preparedness of the brain to switch between
tasks [51], the above results imply that this preparedness was highest when the brain was
partially synchronized. With high metastability for old cohort, they were most likely to take
less transitioning between distinct cognitive states at rest. In other words, metastability is, in
this respect, a measure of the balance between the integration and segregation functionalities
of the brain [22, 23], and thus the level of the metastability can be a marker for the optimum
performance of the brain.

The optimal working region got shirked with smaller correlation value for older group of popula-
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tion but empirically global metastability increased for older population. So we can hypothesize
that some local large scale networks are recruited for maintaining its high metastability. Metasta-
bility used for coexistence of compensation and dedifferentiation of different aging theories such
as default to executive coupling hypothesis of aging also known as DECHA [52], posterior to
anterior shift in aging (PASA). SN, involve in a variety of higher cognitive functions including
communication, emotion processing etc. as well as being responsible for switching between the
CEN and the DMN [41, 42] has higher metastability in the same optimal region for older popula-
tion. Our computational findings, alongside empirical observations, provide additional support
that Metastability helps to capture the fact that may be for healthy aging global brain acting
optimally but there are some network scaffolds those are recruited for maintaining the optimal
integrity of the brain with age.

To understand the increased relationship of metastability across topologically distinct functional
networks over the lifespan, we explored the changes in underlying structural connectivity. The
wiring pattern and structure of the brain have been the main focus of the field of connectomics
and network neuroscience in general. The structure of the brain is not constant and changes to it
occur during the lifespan of the individual. We know that the anatomical structure of the brain
follows the so called ‘small-world’ organization [53], which has been found to be widespread
in both artificial and natural systems [54, 55]. Structurally, age-related changes have shown a
decrease in connection strengths [56] which may be a result of demyelination or loss of fibers.
This loss in the structural consistency of the brain may be one of the main factors in the decline
of cognitive ability in aging individuals, which is well documented even in the case of healthy
aging. A key characteristic of brain networks is the distribution profile of the connection strength
with the fiber distance. We saw that as the brain ages, there was a reduction in the number of
connections between the different regions of the brain. However, the slopes of the SC strength
versus the fiber length distribution showed no significant change across the two age groups.
The maintaining of this distribution profile perhaps may be one of the keys to healthy aging as
opposed to pathological aging.

We were more interested to check whether the long-range and short-range connections could be
the reason for higher metastability. In general long-range and short-range tracts are another
important elements of brain structure that are of key importance for the functional-anatomical
organization of the cortex. The higher cognitive functional networks are not preferentially limited
to isolated cortical areas rather widespread over the brain. This leads to the conclusion that the
long-range connections between cortical and sub-cortical areas must be a fundamental structural
parameter in order to sustain the functional complexity [57]. So the long-range connections,
bring down the inter-areal distances, are a strong factor for efficient communication between
functional networks [58].

We found that number of long-range white-matter fiber connections reduced significantly with
age which is in line with the previous findings [7].The disruptions in long-range connections lower
the involvement of number of brain regions in the different functional modules [59] yielding the
fact that the aging brain needs more steps via short-range connections to transfer information
from one part of the brain to another. So we can hypothesize that the brain creates more small
clusters by coupling more regions to maintain its optimal performance. This encourages partial
synchronization with metastability to enhance to compensate for the structural damages. Naik et
al. [11] also suggested the same that high-functioning adults would exhibit higher metastability
to compensate for the structural damages of brain networks during senescence. So, a lesser
number of long-range connections could give rise to higher metastability in older individuals.
We analytically had shown that indirect anatomical links have contribution to synchronization
manifold. We numerically has proved that reduced long-range connectivity in local resting state
networks give rise to metastability in global level.

Although we could convincingly demonstrate analytically and numerically how structural con-
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nectomics plays a crucial role in determining age-associated alterations in network synchrony
and metastable brain dynamics both at neuronal and BOLD time scales, there are also sev-
eral limitations to this work. The Kuramoto model, a system of coupled oscillators, is a less
complex generalization of brain function. For example, the simulation was built on a relatively
low-dimensional connectivity matrix of 68 regions. The sample size was also moderate, and we
may have restricted power to detect some effect, particularly in structural connection to net-
work dynamics. In addition, there are certain limitations inherent in tractography measured
with diffusion MR. It may be challenging to resolve accurately as uncertainty in streamlined lo-
cation increases with the length of the tract. However, despite these limitations, our whole brain
model shed crucial insight into the nature of the relationship between structural connectomics
with age and invariance of network measures synchrony and metastability operating on both
time scales of cognition. This is broadly consistent with empirical findings. We plan to extend
the network-level analysis with a larger group of subjects to correlate the network-level findings
with different cognitive processes. Another future direction could be to consider whether these
results sufficiently generalize while employing other neural mass models, such as the Wilson-
Cowan model. Furthermore, various graph theoretical measures, such as clustering coefficient
and short path length and network communication models such as spreading cascade, could
provide additional insights for Spatio-temporal alterations in metastability and transient waves
that could be examined in future brain network studies.
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[34] Arnaud Messé, David Rudrauf, Habib Benali, and Guillaume Marrelec. Relating structure
and function in the human brain: relative contributions of anatomy, stationary dynamics,
and non-stationarities. PLoS Comput Biol, 10(3):e1003530, 2014.

[35] Kai J Miller, Kurt E Weaver, and Jeffrey G Ojemann. Direct electrophysiological measure-
ment of human default network areas. Proceedings of the National Academy of Sciences,
106(29):12174–12177, 2009.

[36] Spase Petkoski and Viktor Jirsa. Renormalization of the brain connectome: Duality of
particle and wave. bioRxiv, 2020.

[37] Neil D Woodward and Carissa J Cascio. Resting-state functional connectivity in psychiatric
disorders. JAMA psychiatry, 72(8):743–744, 2015.

[38] Lucina Q Uddin, Marco Iacoboni, Claudia Lange, and Julian Paul Keenan. The self and
social cognition: the role of cortical midline structures and mirror neurons. Trends in
cognitive sciences, 11(4):153–157, 2007.

[39] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-driven
attention in the brain. Nature reviews neuroscience, 3(3):201–215, 2002.

[40] Ashley C Chen, Desmond J Oathes, Catie Chang, Travis Bradley, Zheng-Wei Zhou,
Leanne M Williams, Gary H Glover, Karl Deisseroth, and Amit Etkin. Causal inter-
actions between fronto-parietal central executive and default-mode networks in humans.
Proceedings of the National Academy of Sciences, 110(49):19944–19949, 2013.

[41] Devarajan Sridharan, Daniel J Levitin, and Vinod Menon. A critical role for the right
fronto-insular cortex in switching between central-executive and default-mode networks.
Proceedings of the National Academy of Sciences, 105(34):12569–12574, 2008.

[42] Vinod Menon and Lucina Q Uddin. Saliency, switching, attention and control: a network
model of insula function. Brain structure and function, 214(5-6):655–667, 2010.

[43] Olaf Sporns. Brain connectivity. Scholarpedia, 2(10):4695, 2007.

[44] Kim A Meijer, Martijn D Steenwijk, Linda Douw, Menno M Schoonheim, and Jeroen JG
Geurts. Long-range connections are more severely damaged and relevant for cognition in
multiple sclerosis. Brain, 143(1):150–160, 2020.

[45] Minjie Wu, Lisa H Lu, Allison Lowes, Shaolin Yang, Alessandra M Passarotti, Xiaohong J
Zhou, and Mani N Pavuluri. Development of superficial white matter and its structural
interplay with cortical gray matter in children and adolescents. Human brain mapping,
35(6):2806–2816, 2014.

[46] Christopher J Honey and Olaf Sporns. Dynamical consequences of lesions in cortical net-
works. Human brain mapping, 29(7):802–809, 2008.

[47] Frantǐsek Váša, Murray Shanahan, Peter J Hellyer, Gregory Scott, Joana Cabral, and
Robert Leech. Effects of lesions on synchrony and metastability in cortical networks. Neu-
roimage, 118:456–467, 2015.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470424
http://creativecommons.org/licenses/by/4.0/


[48] Mikail Rubinov, Rolf JF Ypma, Charles Watson, and Edward T Bullmore. Wiring cost
and topological participation of the mouse brain connectome. Proceedings of the National
Academy of Sciences, 112(32):10032–10037, 2015.

[49] Juan A Acebrón, Luis L Bonilla, Conrad J Pérez Vicente, Félix Ritort, and Renato Spigler.
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Figure 1: Data driven computational modelling pipeline to simulate whole brain dynamics using
the time-delayed Kuramoto model to generate network level synchrony and metastability at slow
and fast time scales respectively. Orange text box for experimental data from participants, blue
for simulated data, green for generative models to generate network activity at neuronal and
BOLD time scales.
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Figure 2: Determination of long- and short-range white matter tracts. (A) Schematic illustrating
connection length profiles between each brain regions. (B) Based on the distribution of the tract
lengths in young cohort, structural connections were categorized into short-range (< 222 mm)
and long-range connections (> 581 mm). Average (C) long- and (D) short-range connections in
all 68 brain regions for the young cohort.
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Figure 3: Global and local order parameters and empirical metastability for young and old
cohorts. (A) Spatial node map of all the regions and corresponding order parameter, R(t)
for both groups. (B) Spatial ROI maps and order parameter, R(t) of the three resting-state
networks as salience, central executive, and default mode network respectively for both young
and old cohort.(C) Bar plot of empirical metastability of young and old subjects. Empirical
metastability at rest was increased in older subjects compared with younger subjects; Mean
measures of metastability (± SD) estimated using a phase-transformed functional time course
extracted from 25 young and 24 old subjects suggest that global measures of metastability are
increased with age, significantly for salience network (“∗” signifies p < .05, not FDR corrected)
and not significantly for the global, central executive network and for default mode network.
Colors of the nodes and ROIs are not signifying any values.
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Figure 4: Schematic depicting phase synchronization and metastability. (A) Color code
phase circle diagram for desynchronized (left), partial synchronized (middle), and synchronized
state(right); (B) Order parameter (R(t)) for three different nature of synchronization, the red line
is global synchrony (mean of R(t)), and the yellow confidence interval is metastability (standard
deviation of R(t)); (C) Relationship between synchronization and metastability, metastability
is maximum when the system is partially synchronized.
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Figure 5: Contour plot of FC-FC correlation and Euclidean distance between empirical and
simulated FC for young and old subjects in (τ ,k) parameter space. The plots show: (A,B)
FC-FC correlation for young and old subjects respectively. The red dotted lines correspond to
the highest FC-FC correlation values. (C,D) FC-FC Euclidean distance for the same. The white
dotted lines correspond to the lowest FC-FC distance values. The region of high correlation was
confined to a much smaller area with smaller correlation value in the case of the older population
group.
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Figure 6: Global dynamics in the mean delay and global coupling parameter space in BOLD time
scale. Profiles of the synchronization in (A) young, (B) old cohort, and profile of metastability
in (C) young, (D) old cohort.
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Figure 7: BOLD time signals for young group (left column) and old group (right column) at
different points in parameter space. The parameter values are (A,B) τ = 8, k = 5; (C,D) τ = 20,
k = 10; and (E,F) τ = 12, k = 35.
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Figure 8: Global dynamics in the mean delay and global coupling parameter space in neural time
scale. Profiles of the synchronization in (A) young, (B) old cohort, and profile of metastability
in (C) young,(D) old cohort.
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Figure 9: Neural time signals for young group (left column) and old group (right column) at
different points in parameter space. The parameter values are (A,B) τ = 8, k = 5, (C,D) τ = 12,
k = 20, and (E,F) τ = .5, k = 40. For, (A,B) all the signals are mostly desynchronized; (C,D)
the signals of some regions are synchronized whereas some are desynchronized; and (E,F) most
of the signals are synchronized.
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Figure 10: (A) A comparison of the parameter maps of metastability for the SN, CEN, and
DMN in the young and old cohorts shows a marked increase in the metastability of the SN for
the old cohort, but not so in the case of the CEN and DMN. (B) A summary of the different
basins of attraction in the parameter space, showing regions of agreement (o) and disagreement
(x) of the empirical and simulated metastability. (C) Representative examples of metastability
of BOLD signals for both populations at different points on the parameter space marked by (o).
(D) Metastability of neural signals for same points defined in (C).
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Figure 11: (A) A comparison of log(SC) weight vs normalized fiber distance distributions for
the whole brain for a young and old subject. Regression lines are fitted to individual scatter
plots to find their slopes and intercepts of the distributions. (B) Summary of the mean slopes of
the SC weight-fiber distance distributions for the whole brain, salience, central executive, and
default mode network for the two groups. From Mann Whitney U test, we found that the mean
slope of older subjects was significantly lesser than slope of younger subjects for the default
mode network. “ ∗ ” signifies p < .05(Not FDR corrected).
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Figure 12: Violin plots of (A) long-range and (B) short-range fiber tract lengths for young and
old groups. The white dot represents the median value,the thick gray bar in the center represents
the interquartile range. Two sample KS test had been performed to compare two distributions.
The counts of long-range connections were significantly reduced for the older population. The
counts of short-range connections were reduced for the older population but not as significant as
the counts long-range connections. (C) Histogram plot of long-range connections for young and
old groups. The dotted lines represent the kernel density estimation for individual distributions.
(D) Cumulative frequency counts of long-range connections for younger and older individuals.
Vertical arrow line in the plot represents the KS distance. As the length of long-range connections
increase, the number of connections decrease for the older group than the younger group. (E)
Circular graph plots of top 10% long-range connections for both groups. So, the numbers of
stronger long-range connection were damaged with age. p < 10−5 is indicated by “∗∗” and “∗”
signifies p < .001, FDR corrected.
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Figure 13: Similarity between long- and short-range connectivity profiles. (A) KS similarity of
empirical structural connectivity of old group and synthetic structural connectivity matrix with
various percentages of reduced long- and short-range connections. (B) Differences of metasta-
bility in (τ, k) parametric space for 5%, 10%, 20%, and 25% deleted long-range connections
respectively. Difference is calculated by subtracting the metastability of young subject from the
metastability of modified structural connectivity matrix.
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