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Abstract
Human cognition recruits diverse neural processes, yet the organizing computational and
functional architectures remain unclear. Here, we characterized the geometry and topography of
multi-task representations across human cortex using functional MRI during 26 cognitive tasks
in the same subjects. We measured the representational similarity across tasks within a region,
and the alignment of representations between regions. We found a cortical topography of
representational alignment following a hierarchical sensory-association-motor gradient,
revealing compression-then-expansion of multi-task dimensionality along this gradient. To
investigate computational principles of multi-task representations, we trained multi-layer neural
network models to transform empirical visual to motor representations.
Compression-then-expansion organization in models emerged exclusively in a training regime
where internal representations are highly optimized for sensory-to-motor transformation, and not
under generic signal propagation. This regime produces hierarchically structured
representations similar to empirical cortical patterns. Together, these results reveal
computational principles that organize multi-task representations across human cortex to
support flexible cognition.
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Introduction
Humans can perform a variety of tasks in daily life that involve diverse cognitive functions. What
are the core neural and computational architectures that facilitate flexible cognition? Current
efforts to uncover the neural bases of human cognition typically design carefully controlled
experimental paradigms that target specific cognitive functions while measuring spatial patterns
of brain activity1,2. While this approach has been fruitful for identifying where cognitive processes
map to in the brain, it is unable to reveal how information is represented within brain regions. In
contrast, advancements in data analysis have enabled the characterization of fine-grained
representations of sensory stimuli within brain regions of individual subjects3,4. However, an
overarching understanding of how fine-grained representations are organized across diverse
cognitive functions and across brain areas remains poorly studied.

Studies in experimental neuroscience and human functional magnetic resonance
imaging (fMRI) have revealed the spatial organization of cognitive functions and specialization
across cortex5. For example, by mapping the stimulus-response properties of different brain
areas, researchers have identified regional correlates of working memory6, visual processing7,
and motor function8. More recently, meta-analytic human neuroimaging studies have made
progress in characterizing the organization of functional specialization and flexibility by
aggregating datasets from many tasks and studies9,10, finding functional specificity in unimodal
(sensorimotor) areas and flexibility in transmodal (association) areas11,12. These prior
approaches typically used datasets with brain activations collected from only a single task for
each subject. The single-task nature of prior datasets, including meta-analyses which aggregate
over them, fundamentally limits their ability to reveal the structure of neural representations
within brain regions because fine-grained spatial patterns do not align well across subjects13.
Thus, studying the detailed representational cortical topography for diverse cognitive processes
requires datasets in which multiple tasks are collected per subject, enabling fine-grained
representational analyses not feasible with coarse-grained meta-analytic approaches.

The measurement of many tasks from the same subjects would allow for the
characterization of multi-task representational structure – a key element for flexible cognition.
Analytically, a leading approach to facilitate this endeavor is representational similarity analysis
(RSA)3,4. RSA measures geometrical properties of representations within a brain region by
comparing the similarity of multivariate activations (e.g. across voxels in fMRI) across different
task conditions. Representational geometry then can be compared across brain regions4, as
well as between brain data and computational models14,15. While this approach can identify
task-relevant representational geometries for specific brain regions, previous studies have
typically been limited to isolated tasks in specific domains (e.g., perceptual tasks)16,17. This limits
the interpretation of representational geometry within and between brain regions, since such
tasks only recruit a small subset of the diverse cognitive processes of which humans are
capable.

Representational geometry provides a unifying framework for relating neural data and
computational models to understand principles of perceptual and cognitive function. In
particular, studies have compared representations from different brain regions in human fMRI to
the internal representations in deep neural network models of sensory processing, including in
vision and audition15,18. Despite active interest in modeling multi-task cognition19,20, models of
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multi-task cognitive function have not been related to functional differences across brain regions
due in part to lack of empirical characterization of multi-task representations in the brain.

Here we use a human fMRI dataset with 26 tasks per subject to probe the computational
properties of multi-task representations across the entire cortex. We first characterized the
multi-task representational geometry within each cortical area. Analysis of how these
representations align and vary across areas revealed a hierarchical organization of
representational variation, which spanned from sensory, to association, to motor areas. We also
quantified the dimensionality of multi-task representations for each cortical region. Along this
sensory-association-motor axis, we found that multi-task representational dimensionality first
compressed from sensory to association areas, and then expanded from association to motor
areas. To investigate computational principles of multi-task representations, we trained
multi-layer, feedforward artificial neural networks to transform empirical visual to motor
representations. Compression-then-expansion organization in network models emerged
exclusively in a training regime where internal representations are highly optimized for
sensory-to-motor transformation, and not under generic signal propagation21,22. Moreover, this
regime produces hierarchically structured representations similar to those in the brain. Together,
our findings reveal the hierarchical organization of multi-task representations in the human
brain, and establish a framework to develop neurally-inspired computational architectures for
multi-task cognition.

Results

Analytic approach to studying multi-task representations
RSA of empirical data was central to our data analytic approach (Fig. 1)4. RSA approximates the
representational geometry of a set of multivariate vertex activations by comparing the similarity
of activation vectors across different task conditions. By performing RSA on each brain region
separately, we could produce representational similarity matrices (RSMs) for every brain region
(Fig. 1a). Critically, RSMs were calculated at the individual-subject level, which ensures that
fine-grained representational geometries would not be lost through cross-subject averaging of
activations. Because each subject’s cortex is registered to a common atlas and parcellated into
discrete areas23, individual-level results can be combined to characterize the average RSM for
each cortical area. With RSMs from all cortical areas in the Glasser parcellation, we performed a
variety of new analyses. First, we compared the similarity of RSMs between cortical areas  —
i.e., the representational alignment (RA)  — and mapped the topography of RA variation across
cortex (Fig. 1b). Second, we characterized properties of representational geometry, such as
dimensionality, and how they vary across the cortical hierarchy (Fig. 1c). Finally, we built
computational models of representational transformation across the cortical hierarchy and
evaluated the correspondence between the model’s internal representations and empirical
observations (Fig. 1d).
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Figure 1. Overview of analytic approaches to study the geometry and topography of multi-task
representations in fMRI data. a) Representational geometry of brain parcels is characterized by RSA
applied to subject-specific vertex activation patterns within each parcel4. Using subject-specific activation
patterns ensures that fine-grained representational geometries would not be lost through cross-subject
averaging. This enables estimation of a representational similarity matrix (RSM) for each brain region
using vertices within that region. b) Using each region’s RSM, we can characterize the topography of
representations by measuring the representational alignment (RA) – the similarity of regional RSMs –
between all pairs of brain regions. c) We next ask how representational geometry changes across the
sensory-motor hierarchy. An example of a high-dimensional geometry is one with a strong diagonal, but
weak off-diagonal. In contrast, a low-dimensional geometry is one with a lack of structure in the RSM and
high similarity in activation patterns between conditions. d) Given the empirical results, we identify the
conditions by which similar hierarchical representations emerge in the internal layers of feedforward
neural network models trained to produce sensory-to-motor transformations.

A publicly available dataset with 26 cognitive tasks
Characterizing fine-grained multi-task representations across cortex requires a dataset that
collected many tasks per subject, which is rare in neuroimaging. We used the multi-domain task
battery (MDTB) human fMRI dataset with 26 cognitive tasks, comprising up to 45 unique task
conditions, collected per subject24 (Fig. 2a). Data were collected across four imaging sessions,
enabling within-subject cross-validation analyses across task conditions. This facilitated the
characterization of multi-task representational geometries at the within-subject level across the
entire cortex (Fig. 2c).
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Figure 2. Leveraging the multi-domain task battery (MDTB) dataset to investigate multi-task
representational geometries. a) The MDTB dataset consists of 26 distinct tasks with up to 45 unique
task conditions, and was previously made publicly available24. The tasks were split across two sets. Every
subject performed each set of tasks twice across different fMRI sessions. b) Task blocks were interleaved
across each fMRI session. For each block, instructions were presented for 5 seconds, followed by a task
which was performed continuously for 30 seconds until the subsequent block. c) Whole-cortex group-level
activation maps for 12 of 26 cognitive tasks. (See Supplementary Fig. 1 for all task activation maps.)

Measuring the similarity of task content between brain regions with RA
We used the multi-task representational geometry of each cortical area to characterize the
topography of representational variation across cortex (Fig. 3a). The representational geometry
of each area was reflected in its RSM. The RSM of each cortical area was computed using the
vertices within each of 360 areas in the multi-modal parcellation of Glasser et al. atlas23. We
specifically chose this parcellation due to improved delineation of somatotopic and visuotopic
areal organization (motor and visual receptive fields, respectively) that are not accounted for in
atlases defined solely on resting-state fMRI23. To characterize the inter-regional similarity of
multi-task representations, RA was computed as the cosine similarity of the RSMs between two
regions (Fig. 3b), which produces a whole-cortex RA matrix (Fig. 3c). One common way to
characterize the large-scale organization of cortex is through resting-state functional
connectivity (RSFC)25,26. We found that the similarity of multi-task RA and resting-state was
moderate ( , p < 0.0001; Fig. 3d), suggesting that the cortical multi-task RA matrixρ = 0. 37
offered unique information from typical RSFC analyses.
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Figure 3. The cortical organization of multi-task representations. a) Three example RSMs taken from
visual, motor, and prefrontal areas. RSMs consisted of 45 task conditions, cross-validated across imaging
runs. b) RA between pairs of cortical areas is quantified by measuring the cosine similarity between their
RSMs. c) RA and d) RSFC for all pairs of cortical areas. e, f) Previously identified RSFC networks. g)
Segregation ) of the RA and RSFC matrices, defined as the difference of within-network ( )(𝑆

𝑟𝑒𝑔𝑖𝑜𝑛
𝑋

𝑤𝑖𝑡ℎ𝑖𝑛

and between-network ( ) values, divided by within-network values. h) Unimodal regions have𝑋
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

greater segregation for RA relative to RSFC, and transmodal regions have less segregation for RA
relative to RSFC. This was despite no difference in overall segregation between RA and RSFC. i, j) The
cortical topography of RA segregation is correlated with the RSFC principal gradient, a proxy of intrinsic
hierarchy. (Green/red dots reflect transmodal/unimodal regions, respectively.)  (***p=<0.001).

Network topography of RA relates to the brain’s intrinsic organization
We next characterized RA in the context of the well-established functional network organization
of the brain. RSFC can be used to assign each cortical area to a functional network25–27, and this
network organization is strongly related to cognitive task activation patterns28. We measured the
segregation of RA in relation to the segregation of RSFC. Conceptually, segregation measures
how isolated a network’s representations/FC are in relation to other networks of the brain.
Segregation of a measure (e.g., RA or RSFC) for a given brain region is calculated as the
difference between its within-network and between-network values, divided by the
within-network value (Fig. 3g,h)29. Thus, if a visual region’s RSM was highly local (and unique)
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to the visual network, then its segregation would be high. First, we found that unimodal regions
had significantly higher RA segregation relative to transmodal regions (t358=12.99, p<10e-31)
(Supplementary Fig. 2b). We did not observe a significant difference in mean segregation
between RA and RSFC at the whole-cortex level (t358=-1.24, p=0.22). However, we found that
RA had exaggerated differences in segregation by network: unimodal networks had significantly
higher segregation for RA relative to RSFC (t112=-3.33, p=0.001), and transmodal networks had
significantly lower segregation for RA (t244=-4.24, p<10e-04) (Fig. 3g,h). These results illustrate
that representations in unimodal regions were more isolated, while transmodal regions were
more distributed.

We sought to evaluate the relationship between RA segregation with previously reported
measures of hierarchical organization. Large-scale topographic gradients of cortical
organization have been defined using task-free MRI measures30,31. Extracting the principal
components of the RSFC matrix produces a unimodal-transmodal hierarchical gradient (as the
first principal component) and a sensory-to-motor hierarchical gradient (as the second principal
gradient)30. Moreover, the unimodal-transmodal RSFC gradient has previously been shown to
be highly related to the cortical T1w/T2w map (an MRI-contrast correlate of intracortical myelin
content)32. Thus, we correlated RA segregation with the principal gradient of RSFC (leading
component of a principal component analysis on the RSFC matrix; , non-parametric p𝑟 = 0. 39
< 0.001; Fig. 3i,j)30, and the T1w/T2w myelin map ( , non-parametric p < 0.001;𝑟 = 0. 36
Supplementary Fig. 2f,g). These findings establish a link between task-free properties of
hierarchical organization with multi-task representational topography.

Task representational dimensionality is associated with the
unimodal-transmodal hierarchy
Recent experimental and modeling studies have investigated the role of dimensionality of
stimulus representations during task states33,34. Representational dimensionality refers to the
dimensionality of the task state space. However, most prior studies evaluated the
representational dimensionality of either a specific task (e.g., perceptual task) or within a
specific brain region, such as the prefrontal cortex34. Here we evaluated the representational
dimensionality across 45 task conditions, and across the entire human cortex.

We measured the representational dimensionality by measuring the participation ratio of
the RSM for each cortical region (Fig. 4a)35–37. Intuitively, the participation ratio is a statistical
estimate of dimensionality, and is related to the flatness of the eigenvalues of the RSM (e.g., a
flatter scree plot corresponds to higher dimensionality). For instance, if the activation pattern is
highly similar for all task conditions (a highly correlated RSM), dimensionality will be low. In
contrast, if the activation pattern for a task condition is uniquely similar to itself (with low
similarity to other task conditions), then dimensionality will be high (Fig. 1c). (Note
high-dimensionality corresponds to strong diagonal versus off-diagonal components in the
RSM.) In addition, we estimated the multi-task (45-way) decoding as a complementary measure
of dimensionality, since decoding has also been previously used to estimate dimensionality34.
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Figure 4. The representational dimensionality of task activations follows hierarchical organization.
a) We estimated multi-task representational dimensionality using two approaches: 1) Estimating the
dimensionality of the cross-validated RSM, where refers to the i-th eigenvalue of the RSM; 2)λ

𝑖

Performing within-subject decoding across all possible task conditions (n=45), with cross-validation
across sessions (split-half). b) The representational dimensionality and c) multi-task decoding accuracy of
each cortical parcel. d) Across cortex, representational dimensionality was positively correlated with the
first principal gradient of RSFC, with unimodal regions containing higher representational dimensionality
than transmodal regions. Green dots reflect unimodal regions. Red dots reflect transmodal regions. (See
Supplementary Fig. 3 for equivalent plots for the decoding approach.) (***p=<0.001)

We found that the representational dimensionality (using participation ratio) and the
multi-task decoding accuracy of each region were highly correlated across cortical areas
(r=0.94, non-parametric p<0.001) (Fig. 4b,c), suggesting that both approaches were reliable
methods for estimating representational dimensionality. Next, we addressed whether
representational dimensionality was related to intrinsic hierarchical organization. Indeed, we
found that representational dimensionality and multi-task decoding were highly correlated with
the RSFC principal gradient (r=0.49, non-parametric p<0.001) and T1w/T2w myelin map
(r=0.41, non-parametric p<0.001) (Fig. 4d; Supplementary Fig. 3). These results illustrated that
like representational segregation, representational dimensionality was also higher in unimodal
regions than in transmodal regions (t358 = 6.54, p<10e-9; Fig. 4d). These findings are consistent
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with previous studies that have found that higher-order association areas typically have
relatively low decoding accuracies, even for tasks that heavily involve those regions38.

As control analyses, we tested for the effects of parcel size and number of task
conditions. Although parcel size and representational dimensionality are positively correlated
(r=0.45, non-parametric p<0.001), after conditioning on parcel size as a covariate using linear
regression, the associations between representational dimensionality and hierarchical
organization remained significant (correlation with RSFC gradient 1, r=0.42, non-parametric
p<0.001; correlation with T1w/T2w myelin map, r=0.33, non-parametric p<0.001)
(Supplementary Fig. 3c). We tested for robustness to the number of task conditions by randomly
sampling subsets of task conditions, and found that the hierarchical differences in
representational dimensionality were robust if at least 10 task conditions were included
(Supplementary Fig. 4a-c).

Compression-then-expansion of task representations across the
sensory-motor hierarchy
We next sought to map the dominant topographic axis of RA variation across cortex. Thus, we
performed a principal component analysis to extract the first principal gradient of cortico-cortical
RA. In contrast to the unimodal-transmodal principal gradient exhibited from RSFC (Fig. 3i),
RA’s principal gradient exhibited a sensory-to-motor gradient (Fig. 5a). This sensory-motor
gradient was similar to the second principal component of RSFC that also reflects a transition
from sensory-to-motor cortices (Fig. 5b). Indeed, we found that the sensory-motor RSFC
gradient 2 was highly correlated with the RA principal gradient (r=0.59, non-parametric
p<0.001), suggesting that in contrast to RSFC, the dominant axis of variation in RA places
sensory and motor representations on opposite ends (Fig. 5c).

We next sought to evaluate how representational dimensionality changed across this
sensory-motor hierarchy, using the sensory-motor RSFC gradient 2. We fit several competing
statistical models to evaluate how representational dimensionality (dependent variable) changed
as a function of the sensory-motor gradient (independent variable): linear, quadratic, and
exponential decay models. We computed the Bayesian information criterion (BIC) and the
Akaike information criterion (AIC) for model selection, which takes into account the maximum
likelihood of each model while penalizing models with more free parameters. We found that the
quadratic model had the lowest BIC and AIC of all models (Supplementary Fig. 5), suggesting a
convex quadratic fit best explained representational dimensionality as a function of
sensory-motor hierarchy (Fig. 5d). The quadratic dependence was robust to task condition
subsampling (Supplementary Fig. 4d-f). This analysis revealed that representational
dimensionality first compressed, then expanded, across the sensory-motor hierarchy.

To verify compression-then-expansion from sensory-to-motor systems, we grouped
regions together by their system-level association. We found that both sensory and motor
systems had greater dimensionality than association regions (Sensory vs. Association, t319 =
7.22, p < 10e-11; Motor vs. Association, t283 = 2.59, p = 0.01) (Fig. 5e). Finally, to further
establish compression-then-expansion along the RA hierarchy, we created 10 bins of brain
regions sorted by the loadings of the RA principal gradient (Fig. 5f). We fitted a continuous
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piecewise linear regression model, varying the breakpoint between the two line segments at
every bin between 2 and 9, and selecting the model with highest R2, which resulted in the
piecewise model with a breakpoint at bin 3 (see Methods). We then tested the statistical
significance for the coefficients of the piecewise regression (i.e., for a negative slope from bin 1
to 3 and a positive slope from bin 3 to 10). Indeed, confirming the compression-then-expansion
of representational dimensionality across the sensory-motor hierarchy, we found a negative
slope from bin 1 to 3 (t7 = -12.51, p < 0.001) and a positive slope from bin 3 to 10 (t7 = 2.55, p =
0.038) (two-sided test).

Figure 5. Principal component of the RA matrix reveals a sensory-motor gradient that
compresses-then-expands task representations. a) Similar to estimating intrinsic RSFC gradients, we
extracted the principal component of the cortical RA matrix, which showed striking similarity to the b) 2nd
RSFC (i.e., sensory-motor) gradient. c) Correlation between the sensory-motor RSFC gradient and the
principal RA gradient. d) We plotted the representational dimensionality against the RSFC sensory-motor
gradient, and found that the 2nd-order convex polynomial model was a better fit than a 1st order
polynomial model, and an exponential decay model (Supplementary Fig. 5). This suggested that
representational dimensionality compressed then expanded across the sensory-motor hierarchy. e) Same
as in d, but after grouping together sensory (visual and auditory network), motor (somatomotor network),
and association (all other network) parcels according to network affiliation. f) Same as in panel d, but after
placing regions into 10 bins according to the RA hierarchy (i.e., binning regions together with similar
loadings). Using a continuous piecewise linear model, we found a significant negative-then-positive slope
best accounted for dimensionality, consistent with compression-then-expansion of dimensionality. (Note
statistical tests in panels e and f are two-tailed tests.) (***=p<0.0001, *=p<0.01)

Compression-then-expansion of task representations in a feedforward ANN
emerges during rich training

We next sought to investigate computational mechanisms that could potentially explain
the compression-then-expansion of representational dimensionality observed in fMRI data.
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Interestingly, a recent study of feedforward artificial neural network (ANN) models trained on
object recognition tasks observed expansion-then-compression of representational
dimensionality, counter to our empirical findings in the brain39. Thus, we first asked how the
compression-then-expansion phenomena of representational dimensionality emerges in ANNs.
We used multilayer, feedforward linear ANNs with tied weights to study how fMRI activations in
visual areas were successively transformed into motor activations under different learning
regimes. (Corresponding analyses of an ANN without tied weights are shown in Supplementary
Fig. 6.)

The representations learned by an ANN can depend strongly on the training regime.
Prior research has shown that small alterations to weight initialization parameters can greatly
impact the structure of the learned hidden representations in ANNs21,22. Specifically, those
studies found during a “rich” training regime (in which network initializations had small weight
variances), ANNs learned lower-dimensional and structured representations. In contrast, during
a “lazy” training regime (in which weight initializations had large variances), task performance
was achieved by randomly projecting input features into a high-dimensional embedding in
hidden layers. Therefore, we examined dimensionality and representations as a function of the
rich and lazy training regimes.

Using the sensory-motor RSFC gradient 2 (Fig. 5b), we selected two brain regions on
opposite ends of this axis (defined by the lowest and highest loadings). This resulted in a visual
and a motor parcel (Fig. 6a). Note that these sensory and motor parcels had highly similar
RSMs to V1 and M1, respectively, suggesting that the gradient-selected parcels were
appropriate to model early sensory to late motor transformations in data (Supplementary Fig.
7a-c). We then took the fMRI activations of each of the 45 task conditions, and trained an ANN
with 10 hidden layers using weight initializations with different standard deviations (SD) to
predict motor fMRI activations (Fig. 6b). We trained 20 random initializations for each specific
weight initialization (ranging from 0.2 to 2.0, in 0.2 increments).
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Figure 6. Multi-task representations in human cortex were consistent with ANN representations
trained in a rich regime. a) We identified the brain parcels at the bottom (visual parcel) and top (motor
output parcel) of the sensory-motor RSFC gradient 2, and extracted their vertex-wise task activation
patterns. b) We trained a feedforward ANN with 10 hidden layers to predict multi-task activations in the
motor parcel using vertex-wise activations from the visual parcel. c) The representational dimensionality
(participation ratio of RSMs) of each layer with different weight initialization SDs. We observed
compression-then-expansion of representations in rich training regimes. d) We fit a 2nd-order polynomial
regression to the dimensionality across weight initializations. We plotted the quadratic coefficient (positive
for convex) and the overall R2 fit to assess how dimensionality changed across ANN layers. R2 peaked
during rich training regimes, and was consistent with a convex fit. e) We compared the overall similarity of
the RSMs of ANNs at each layer with the RSMs for every region in the brain, finding stronger similarity
when the ANN was trained in the rich regime (<1.0 SD initialization). f) We compared the RSMs of ANNs
to the empirical brain RSMs at each bin along the sensory-motor gradient for rich (<1.0) and lazy (>1.0)
learning regimes. g) Empirical gradient bins were defined by partitioning the sensory-motor RSFC
gradient 2 into 10 distinct sets of regions sorted by their gradient loadings.

After ANN training converged, we measured the representational dimensionality of each
ANN’s hidden layer. We found that rich training regimes (e.g., weight initialization SD = 0.2)
showed compression-then-expansion across layers, consistent with empirical data (Fig. 6c). As
with the empirical data, we fit a 2nd-order polynomial regression to model dimensionality as a
function of ANN layer depth. We found that in the rich regime, in particular for weight
initializations starting at an SD of 0.2, the quadratic fit was convex and had higher R2 fit (Fig.
6d). This illustrated that rich regimes were consistent with empirical data in producing
hierarchical representations that first compressed, then expanded, across layers.
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We next sought to evaluate whether representations learned in the rich regimes were
more similar to fMRI representations. While ANNs and fMRI data have different spatial
dimensions, direct comparison between ANNs and empirical data could be performed in a
task-representational space. Therefore, we compared the RSMs of every cortical parcel from
data with the RSM of every ANN layer for rich (i.e., less than 1.0 SD weight initializations) and
lazy (i.e., greater than 1.0 SD weight initializations) learning regimes. We found that despite
keeping fixed all parameters other than weight initializations, hidden representations learned in
the rich regime were more similar with those found in empirical data (rich, cosine=0.42; lazy,
cosine=0.37; rich vs. lazy, t198=15.28, p<10e-34; Fig. 6e). We then partitioned brain parcels into
10 bins of 36 parcels and sorted them according to their loading relative to the sensory-motor
RSFC gradient (Fig. 6g). We correlated the RSMs of each bin with each ANN layer according to
depth (e.g., similarity of RSMs for ANN layer i with fMRI bin i). We found that the later 8 out of
10 bins/layers had higher similarity in the rich learning regime (for 8/10, all FDR-corrected
p<10e16). While the first two fMRI bins had greater correspondence with the lazy learning
regime, these first two bins primarily consisted of visual cortical areas. Empirically, we found
visual areas to contain high-dimensional representations. Since the lazy learning regime
typically embeds input features in a high-dimensional space, the higher similarity of the lazily
trained ANN with visual regions was unsurprising. Thus, with the exception of early visual areas,
we find that the rich learning regime has greater correspondence with fMRI data in terms of both
representational dimensionality and content.

Richly trained ANNs learn hierarchical representational transformations
Having modeled the successive transformation of fMRI activations from visual to motor regions
in a feedforward ANN, we next sought to characterize the properties of ANNs that contributed to
better correspondence with empirical brain data. First, we characterized the structure of
representations that emerged in ANNs trained under different learning regimes. This was done
through a similar data analytic strategy as in the empirical data: For each layer, we computed its
RSM using each of the 45 activation patterns, and then computed the cosine similarity of that
layer’s RSM with the RSMs from all other layers (Fig. 7a). This produced a layer-by-layer RA
matrix for different weight initializations (Fig. 7d). We found that ANNs trained in the rich regime
learned sequentially structured representations that were consistent with structured
representations in empirical data (Fig. 7b-d). In other words, adjacent layers had high RA to
each other, but distal layers had low RA to each other. We quantified this by calculating the
mean of the ANNs RA matrix for each weight initialization (Fig. 7e) and the dimensionality of the
RA matrix (Fig 6f,g). Here, dimensionality was approximated by the amount of variance
explained by the first principal component of the RA matrix; the larger the variance explained,
the lower the dimensionality. We found that the higher (lazier) the weight initialization, the
greater the overall RA across layers and the lower the dimensionality (rich vs. lazy cosine
difference=-0.12, t18=-124.70, p<10e-28; Rich vs. lazy variance explained by first PC
diff=-15.52%, t18=-99.10, p<10e-26). In contrast to the rich training regime, the lazy regime had
nearly no representational structure for weight initializations with an SD greater than 1.2,
suggesting that no representational transformations occurred in the hidden layers, and output
activations were transformed in only the last layer (Fig. 7d).
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Figure 7. Analysis of the ANN revealed that richly trained ANNs learn diverse and structured
representations consistent with empirical data. a) We computed the RA between all layers by
computing the cosine similarity between the RSMs of each hidden layer. b) For comparison, we sorted
the empirical fMRI RA by the RSFC sensory-motor (2nd) gradient, and c) downsampled it into 10 discrete
bins for comparison with the ANN analysis. d) The RA for ANNs by layer across weight initializations.
ANNs trained in the rich regime (e.g., weight initializations < 1) learn differentiated and structured
representations. In contrast, ANNs trained in the lazy regime largely produced impoverished
representations that only transformed sensory representations in the final layer. e) The average cosine
similarity of each RA matrix by weight initialization. f) Cumulative variance explained plot of the first three
components of the RA matrix under different weight initializations. g) Variance explained of only the first
principal component of the RA matrix. h) Initialized and trained norm of ANN weights as a function of
weight initialization. i) The kurtosis of the degree distribution during initialization and after training. j)
Dimensionality of the ANN’s connectivity weights.

Next, we characterized properties of the learned ANN weights. In line with previous
work, we first calculated the Frobenius norm of weights under different weight initializations21.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470432


(Weights with a large Frobenius norm are sampled from a distribution with wide variance.) We
found that under the rich training regime, relative weight norms significantly increased from
initialization to convergence, relative to the lazy regime (weight norm change, Rich=2.37,
Lazy=-0.40, Rich vs. lazy t18= 3038.38, p<10e-54) (Fig. 7h). We also calculated the kurtosis of
the weight distribution, which measures the tailedness of the weight distribution. Even though
we initialized all weights from a Normal distribution (which has a Fisher kurtosis of 0), we found
that the kurtosis of richly trained networks increased from initialization, producing a heavy-tailed
weight distribution, which is a commonly observed feature of empirical brain networks40. In
contrast, lazily trained networks maintained a Fisher kurtosis of 0 (weight kurtosis change,
Rich=0.27, training=0.001, Rich vs. lazy t18=192.20, p<10e-31) (Fig. 7i). Finally, we
characterized the dimensionality of the weights to gain insight into the successive
representational transformations in the ANN. Specifically, we performed singular value
decomposition (SVD) on the weights and calculated the participation ratio of the singular values.
We found that that weight dimensionality was lower for rich vs. lazy training regimes
(participation ratio: 142.31 vs. 47.92; t18=-913.86, p<10e-44) (Fig. 7j). These findings suggest
that across layers, richly trained ANNs with low-dimensional weights collectively produced highly
diverse and modular patterns of representations across layers, consistent with empirical data
(Fig. 7c,d).

Transformational trajectories from visual to motor representations
To provide a state-space intuition of the different representational transformations in rich and
lazy ANNs, we characterized the transformational trajectories from visual to motor
representations. This involved plotting ANN transformations in a 2D space. The y-axis reflected
the alignment (inner product) with visual representational geometry and the x-axis reflected the
alignment with motor representational geometry. While a single linear transformation would map
directly visual to motor representations (dashed line; Fig. 8a), we hypothesized that
compression-then-expansion would occur by first compressing representations along the visual
axis, followed by expansion along the motor axis (blue curve, Fig. 8a). This is in contrast to the
alternative, where motor representations first expand with minimal loss of visual representations
(red curve in Fig. 8a). In agreement with this theory, we found that richly trained ANNs first
compressed along the visual axis, followed by growth along the motor axis (Fig. 8b). This is
consistent with the notion that higher-order brain areas (i.e., similar to intermediate layers in an
ANN) contain functionally distinct representations from input (visual) and output (motor)
representations, and are low-dimensional (Fig. 6c). In contrast, lazy ANN representations
maintained high similarity to visual input representations, with visual-to-motor representational
transformations primarily implemented in the final read-out weights.
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Figure 8. Trajectories of representational transformations from visual to motor content. a) A theory
of how representations transform across layers/brain areas, from visual to motor representations. Axes
reflect the similarity (computed as the inner product) to the visual input region’s RSM (y-axis) and the
motor output region’s RSM (x-axis). Hidden layer representations can then be plotted along these two
dimensions by calculating the inner product between the sensory and motor RSMs. b) We plotted the
ANN’s internal representations along these two dimensions, finding that rich representations are
consistent with compression first along the visual axis, then expansion along the motor axis. In contrast,
lazy ANNs preserve visual representations in hidden layers until the final read-out weights transform
visual into motor representations. Note that y- and x-axis are not necessarily orthogonal, and are plotted
as such for visualization purposes. Each dot in the scatter plots reflects a different ANN initialization and
layer.

Discussion
Using RSA-based techniques, we mapped the multi-task representational organization of
human cortex. We found that RA segregation (an inter-region measure) and the
representational dimensionality (a regional measure) was associated with the
unimodal-transmodal hierarchy. However, when evaluating the dominant axis of variation of
cortico-cortical RA, we found that the principal RA gradient was organized along a
sensory-association-motor axis. This revealed that representations compressed-then-expanded
from sensory perception, to integrative representations in association areas, to motor action. To
explore the computational mechanisms of hierarchical multi-task representations in the brain,
we used feedforward ANNs to study how representations compressed-then-expanded from
input to output. We found that during a rich ANN training regime, the ANN learned structured
and hierarchical representations that 1) compressed-then-expanded representations and 2) had
greater similarity to representations found in fMRI data. Further analysis of the ANN revealed
that this training regime produced low-dimensional connectivity weights with a heavy-tailed
distribution, consistent with observations made in empirical brain networks40. Together, these
findings characterize the topographic organization of multi-task representations in cortex, and
provide a framework for understanding how these representations emerge in computational
models.

Meta-analytic studies that aggregate data across experiments have previously provided
coarse-grained atlases of cognition across the brain9,10. However, because aggregating data
across subjects, experimental designs, and MRI scanning protocols can make it difficult to
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directly compare tasks directly, these studies primarily mapped the univariate activations of
individual brain regions to tasks. One recent study collected many tasks per subject and, by
using individualized encoding models, identified the clustering of tasks in a latent cognitive
space41. Our study complements that study by focusing instead on the cortical topography of
multi-task representations, rather than relationships of tasks in a latent encoding space. The
generalizability of findings from any multi-task study is limited by the selection of tasks included
in the experimental design. Thus, it will be important for future studies to evaluate other task
types and datasets, including modular and ecologically valid tasks42. Nevertheless, the insights
gained from multi-task studies illustrate the importance of collecting significant amounts of data
per subject to reveal fine-grained relationships between neural and cognitive processes17,43,44.

Our findings of hierarchical gradients in task representations adds to a growing literature
identifying hierarchy as a fundamental principle of cortical organization. Early seminal work
using tract-tracing techniques revealed hierarchical connectivity organization in the macaque
visual cortex45. More recent work has shown that such hierarchical organization can be studied
in humans in vivo with structural and functional MRI and electrophysiology technology. These
studies have focused on identifying structural32, transcriptomic31, RSFC30, and intrinsic timescale
signatures of hierarchical organization46,47. Most of these hierarchical descriptions used task-free
MRI data, and here we establish an overarching link that bridges multi-task representations with
fundamental hierarchical organization. Other studies that evaluate the role of functional and
anatomical connectivity organization have also identified network hubs in association
regions48,49. This is consistent with our finding that association areas contain integrative
representations that link the sensory and motor representations that lie on opposing ends of the
sensory-motor axis. Future studies can explore how specializations of association cortex, in
long-range anatomical connectivity and local microcircuitry, contribute to the formation of
low-dimensional integrative representations.

We found that a rich training regime produced hidden representations that were
significantly more similar to empirical brain representations, suggesting that the brain also
learns feature-rich representations. What is the utility of low-dimensional, feature-rich
representations in the brain? One recent study, by Flesch and colleagues, suggested that
feature-rich representations are useful for transfer learning and generalization to novel
conditions21. Specifically, they showed that feature-rich learning projects input features onto
low-dimensional, orthogonal manifolds that minimize inference while maximizing the robustness
of task information, producing generalizable representations. Consistent with their findings
generalizable representations in frontoparietal areas, here we found low-dimensional
representations across association cortex. Low-dimensional representational geometries are
likely useful for generalization, in brains and in models, because many distinct tasks recruit
shared neurocomputational mechanisms, such as modular processing. Moreover, recent work
suggests that learning multiple different tasks naturally produces low-dimensional and abstract
representations50. Thus, it will be important for future studies to provide a unified understanding
of the contribution of low-dimensional representations for rapid reconfiguration and
generalization to novel tasks51.

Our computational modeling results provide a parsimonious framework to study
representational transformations in relation to empirical data. There are multiple directions in
modeling and analytics that future studies can explore. First, we used a simple feedforward
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ANN, motivated by our findings of a dominant sensory-to-motor gradient. Future models can
examine the impact of more complex and recurrent ANN architectures of internal
representations52,53. We found that representations depended strongly on the training regime,
which we controlled by weight initialization following prior literature21,22. Future modeling should
explore alternative training methods for ANNs to examine how they alter the similarity to
empirically observed representations. For instance, training strategies, such as continual and/or
curriculum learning, can promote modularity of internal representations and generalization of
task performance20,54. Finally, future studies should examine the metrics used to quantify
structure and similarity in empirical and model representations. For instance, inherent
constraints on RSMs can be used to define alternative measures of RA55,56. Therefore, it will be
important for future work to explore the space of biologically-relevant strategies that produce
feature-rich, hierarchical representations in models which can be quantitatively related to neural
datasets.

In conclusion, we characterized the geometry and topography of 26 diverse cognitive
tasks across the human cortical hierarchy, and provide insight into the computational
mechanisms that produce similar representations in ANNs. Overall, analysis of the task
representational hierarchy revealed a sensory-to-motor gradient that
compressed-then-expanded task representations. Subsequent modeling of these task
activations in ANNs revealed that a rich training regime can reproduce representations that
were consistent with empirical data. This finding provides a framework to explore how to build
ANNs that learn task representations in a brain-like manner. We expect these findings to spur
new investigations into how the study of multi-task representations in the brain can inform new
models of multi-task performance in machine learning models.

Methods

Multi-domain task battery dataset
Portions of this section are paraphrased from the dataset’s original publication’s Methods
section24. We used the publicly available multi-domain task battery (MDTB) dataset24. The
MDTB dataset contains task fMRI data for 24 subjects collected at Western University (16
women, 8 men; mean age = 23.8 years, s.d. = 2.6; see24 for exclusion criteria). All participants
self-reported to be right-handed. Briefly, the MDTB dataset contains 26 unique cognitive tasks
with up to 45 different task conditions per participant. Participants first scanned all tasks in set A,
and returned for a second session to perform tasks in set B (Fig. 2a). Each task set session
consisted of two imaging runs each. Half of the subjects had sessions separated by 2-3 weeks,
while the other half had sessions separated by a year. Of the 24 subjects, a separate
resting-state fMRI scan was collected for 18 subjects. Resting-state FC analyses presented in
Fig. 3 were performed using this subset of subjects.

A large battery of tasks was selected to broadly recruit cognitive processes from many
functional domains (Fig. 2a). Set A consisted of cognitive, motor, affective, and social tasks. Set
B contained eight tasks that were also included in set A (e.g., theory of mind and motor
sequence tasks), and nine unique tasks. Both sets contained 17 tasks each. Additional details
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regarding the experimental tasks and conditions have been previously reported (see
Supplementary Table 1;
https://static-content.springer.com/esm/art%3A10.1038%2Fs41593-019-0436-x/MediaObjects/4
1593_2019_436_MOESM1_ESM.pdf)24.

Tasks were performed once per imaging session for 35 s blocks. Task blocks began with
a 5 s instruction screen followed by 30 s of continuous task performance. While most tasks
consisted of 10-15 trials per block, the number of trials per task ranged from 1 to 30 (e.g.,
go/no-go task versus movie watching). 11 of the 26 tasks were passive, meaning no behavioral
responses were required (e.g., movie watching). For the remaining tasks, responses were made
with either left, right, or both hands using a four-button box. Responses were made with either
index or middle fingers of the assigned hand(s). Performing all tasks within a single imaging run
for each participant ensured a common baseline between tasks, enabling fine-grained multi-task
analyses. Additional details regarding trial structure, inter-trial-interval timings, etc., have been
previously reported24

fMRI preprocessing
Resting-state and task-state fMRI data were minimally preprocessed using the Human
Connectome Project (HCP) preprocessing pipeline within the Quantitative Neuroimaging
Environment & Toolbox (QuNex)57,58. The HCP preprocessing pipeline consisted of anatomical
reconstruction and segmentation, EPI reconstruction and segmentation, spatial normalization to
the MNI152 template, and motion correction. Additional nuisance regression was performed on
the minimally preprocessed time series. Consistent with previous reports59, this included six
motion parameters, their derivatives, and the quadratics of those parameters (24 motion
regressors in total). We also removed the mean physiological time series extracted from the
white matter and ventricle voxels. We also included the quadratic, derivatives, and the
derivatives of the quadratic time series of each of the white matter and ventricle time series (8
physiological nuisance signals). This amounted to 32 nuisance parameters in total, and was a
nuisance regression model that was previously benchmarked60. In addition to nuisance
regressors, task fMRI data was also modeled with task regressors to extract activation
estimates described below.

fMRI task activation estimation
We performed a single-subject task GLM analysis on fMRI task data to estimate vertex-wise
surface activations for each task condition on the CIFTI grayordinate space61. We modeled a
separate regressor for every trial within each imaging run, similar to a beta series model
(Rissman et al., 2004). The instruction period for each task was not included in the task
regressors. This enabled the estimation of specific task conditions within each task block (e.g.,
congruent versus incongruent conditions for the Stroop task). Each regressor (trial) was
modeled as a boxcar function from the onset to offset of the trial (0s indicate off, 1s indicate on),
and then convolved with the SPM canonical hemodynamic response function to account for
hemodynamic lags63. Activations for a task condition were then obtained by averaging the
activation beta coefficients across trials within each imaging run, resulting in one task condition
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activation per run. Task GLMs were performed using the LinearRegression function within
scikit-learn (version 0.23.2) in Python (version 3.8.5).

Representational similarity analysis and representational alignment
We performed a split-half, cross-validated RSA to characterize the geometry of task
representations across cortex (Kriegeskorte et al., 2008). RSA was performed for each parcel in
the Glasser et al. (2016) atlas using vertices within each parcel23. Critically, RSA was performed
at the subject-level to ensure that fine-grained representations were subject-specific and that
activations would not be averaged across subjects. (Group averaging was computed after
RSMs were constructed for each subject at every parcel.) We used all task conditions, resulting
in a 45 x 45 RSM. We used cosine similarity to measure the distances between task activations.
Despite many alternative metrics64,65, we specifically chose the cosine similarity, since it also
takes into account the overall mean magnitude of activation across a set of vertices (in contrast
to Pearson correlation). Cross-validation was achieved by measuring the cosine similarity of
activation patterns of the first and second imaging sessions (i.e., a split-half cross-validation).
This was possible since all tasks (in set A and B) were performed in two separate imaging runs.
This ensured a non-trivial diagonal element (i.e., not equal to 1), which revealed the test-retest
reliability (or similarity) of the activation patterns of the same task condition.

Inter-regional representational alignment (RA) was calculated by measuring the cosine
similarity of the upper triangle elements (including the diagonal) of two region’s RSMs. Related
measures have also been previously introduced under the term “representational
connectivity”4,55,66.

Network segregation
Network segregation for RSFC and multi-task RA was measured as the difference between
within-network and between network FC/RA, divided by within-network FC/RA29. Networks were
defined using a previously published whole-brain resting-state network partition27. Network
segregation29 was calculated for each region separately using either the RA or FC matrix.
Specifically, the segregation of a region was calculated as𝑆

𝑟𝑒𝑔𝑖𝑜𝑛
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𝑋
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out-of-network FC/RA.

Representational dimensionality and multi-task decoding
Representational dimensionality was measured as the participation ratio of the multi-task RSM.
The participation ratio was calculated as
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where corresponds to the representational dimensionality of region , and corresponds to𝑑𝑖𝑚
𝑋

𝑋 λ
𝑖

the eigenvalues of the RSM of region with eigenvalues. Intuitively, the flatter the𝑋 𝑚
eigenspectrum of region ’s RSM, the higher the dimensionality.𝑋

To complement representational dimensionality, we also measured the multi-task
decodability (45-way classification) of each region using a minimum-distance classifier. We used
the cosine angle as our measure of distance and split-half cross validation. Thus, a successful
classification indicated that the diagonal element of a region’s cross-validated RSM was greater
(i.e., smallest distance) than all other off-diagonal elements for a given row (see Fig. 4a).

We performed additional control analyses to account for parcel size (i.e., the number of
vertices) when calculating representational dimensionality and multi-task decodability. This was
performed by conditioning on (regressing out) the number of vertices from each measure using
linear regression (regression was performed across parcels). We then re-calculated the
correlation across brain maps (e.g., myelin map vs. representational dimensionality) using the
residual values (Supplementary Fig. 3b,c).

Gradient analysis
Cortical gradients were calculated using a principal component analysis (PCA) on parcellated
data. For resting-state FC gradients, PCA was applied on the cortical FC matrix. For RA
gradients, PCA was applied on the cortical RA matrix. Consistent with previous studies
(Margulies et al., 2016), matrices were thresholded to include only the top 20% of values prior to
extracting gradients. All correlation-based statistical tests involving gradients (i.e., spatial
correlations across cortex) were performed using spatial autocorrelation-preserving permutation
tests that generated random surrogate brain maps (Burt et al., 2020). We used the BrainSMASH
toolbox to generate 1000 random surrogate brain maps for each cortical map of interest, and
non-parametric p-values were calculated from the null distribution. Therefore, the lowest
precision non-parametric p-value we obtained was 0.001.

Testing for compression-then-expansion in empirical data
Assessing compression-then-expansion in empirical data involved fitting representational
dimensionality to sensory-motor hierarchy loadings using regression models (Fig. 5d and
Supplementary Fig. 5). We specifically used RSFC sensory-motor gradient 2 loadings (𝑥
variable) as the regressor to predict the representational dimensionality of each parcel (𝑦
variable). For model adjudication, we used used several competing regression models,
including:

Linear model: 𝑦 = β
0

+ β
1
𝑥 + ϵ

Quadratic model: 𝑦 = β
0

+ β
1
𝑥 + β

2
𝑥2 + ϵ

Exponential decay model: 𝑦(𝑡) = 𝑁
0
𝑒−λ𝑡 + ϵ

where was the fitted coefficient term, and was the residual error term. For the 2nd-orderβ
𝑖

ϵ

quadratic model, a positive 2nd-order coefficient indicated a convex quadratic. Selection of the
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model was based on the lowest Akaike Information Criterion and Bayesian Information Criterion
(Supplementary Fig. 5).

To further verify compression-then-expansion across the sensory-motor hierarchy, we
binned together groups of 10 bins of 36 parcels according to their RA principal gradient loading
(Fig. 5a). To establish compression-then-expansion along this gradient, we fit a piecewise linear
model with the functional form

𝑦 = β
0

+ β
1
𝑥

1
+ β

2
𝑥

2
+ ϵ

We trained a piecewise linear model for every possible breakpoint (i.e., where and𝑥
1

< 𝑖 𝑥
2

> 𝑖

for every bin between 1 and 10; 8 possible models). Note that were values for and 0𝑖 𝑥
1

𝑥 < 𝑖

otherwise, and were values for and 0 otherwise. After identifying the model with the𝑥
2

𝑥 > 𝑖

greatest fit evaluated using R2, which turned out to be the model with the breakpoint at ,𝑖 = 3
we tested the statistical significance for the beta coefficients and , with the hypothesis thatβ

1
β

2

they should be negative and positive, respectively. A negative and positive slope for andβ
1

β
2

would reflect a compression of representational dimensionality from input to the breakpoint, and
then an expansion from the breakpoint to the output.

ANN modeling and training
We modeled the transformation from visual fMRI activations to motor activations using a linear
feedforward ANN. This enabled the characterization of the transformation as a sequence of
linear transformations. fMRI activations were selected based on lying on opposite ends of the
RSFC sensorimotor gradient (i.e., region with the lowest/highest loadings). Input activations
were normalized across vertices before training. Inputs and outputs corresponded to the
vertex-level fMRI task activations for each parcel. We used the RSFC sensorimotor gradient
rather than the task-based RA gradient to avoid any potential confounds of selecting activations
from the same task data. The input and output parcels corresponded to parcel 338 and 235 in
the Glasser et al. (2016) atlas, respectively (Glasser et al., 2016). We built the ANN with 10
hidden layers with tied weights (500 units per layer), and was defined by the equations

𝐻
1

= 𝑋𝑊
𝑖𝑛

+ 𝑏
𝑖𝑛

𝐻
𝑖

= 𝐻
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𝑊
ℎ𝑖𝑑

+ 𝑏
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𝑌 = 𝐻
𝑛
𝑊

𝑜𝑢𝑡
+ 𝑏

𝑜𝑢𝑡
+ ϵ

where was the input fMRI activation from the visual parcel, mapped vertex activations into𝑋 𝑊
𝑖𝑛

the hidden unit space, were the input biases, was the hidden unit activations for layer , up𝑏
𝑖𝑛

𝐻
𝑖

𝑖

to (i.e., 10), and were the weights and biases for the hidden layers, was the𝑛 𝑊
ℎ𝑖𝑑

𝑏
ℎ𝑖𝑑

𝑌

predicted motor fMRI activation in the motor parcel, and was the residual error term. Using tiedϵ
weights and a linear model reduced the number of free parameters in the model, thereby
constraining the solutions and simplifying the model for subsequent analysis. Using tied weights
also increased computational efficiency during training. However, we also ran the model without
tied weights (where and were distinct for each layer), yielding computationally similar𝑊

ℎ𝑖𝑑
𝑏

ℎ𝑖𝑑

results (Supplementary Fig. 6).
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ANN hidden layer weights were initialized from a Xavier normal distribution, with mean 0
and a scaling factor ranging from 0.2 to 2.0 in increments of 0.268. Biases were initialized to be
0. Training was implemented using a mean squared error cost function and the Adam optimizer
with an initial learning rate of 0.000169. Training was stopped once the mean squared error fell
below a threshold of 0.2.

We fit ANNs for each subject’s activations separately. For every subject, we trained 20
networks with different random initializations. For each ANN analysis, statistics and network
properties (e.g., dimensionality, weight norms, etc.) were averaged across subjects, and
statistical tests were performed on the 20 random initializations.

All models were built using PyTorch version 1.4.0 and Python version 3.8.5.

ANN analysis
Trained ANNs were subject to analysis to characterize both the learned intermediate
representations and weight distribution properties. Model RSMs were generated by propagating
subject-level activations across all tasks through the hidden layers. Cross-validated RSMs were
constructed and analyzed identically to fMRI data (e.g., cosine similarity and then participation
ratio to estimate its dimensionality; Fig. 6c). As in our fMRI analysis, we used a split-half
cross-validation where we compared task activations between the first and second imaging
sessions of each task set. We fitted the dimensionality across ANN layer depth using a
2nd-order polynomial regression to assess how representational dimensionality changed
throughout the network (Fig. 6d). A positive and negative 2nd-order coefficient indicated a
convex and concave quadratic, respectively.

We compared the representational geometries produced by the ANN with the
representational geometries found in empirical fMRI data. To directly compare ANN and
empirical RSMs, we partitioned cortex into 10 bins containing 36 parcels each (Fig. 6g). Cortical
bins and their ordering were determined by the RSFC sensory-motor gradient, where parcels
with similar loadings (were placed in adjacent bins) (Fig. 5a). We computed the cosine similarity
of each region’s RSM with each ANNs layer’s RSM. To evaluate the correspondence between
representations in each cortical bin and each ANN layer, we averaged the cosine values across
parcels within each bin (Fig. 6f). This was done for ANNs trained under the rich regime (weight
initializations less than 1) and the lazy regime (weight initializations greater than 1).

We assessed the inter-layer RA within the ANN for different weight initializations (Fig.
7a), which is similar to inter-region RA measured in fMRI data (Fig. 3c). This was defined as the
cosine similarity between RSMs between pairs of ANN layers (Fig. 7a). We also analyzed the
properties of the trained and initialized ANN weights. This included calculation of the Frobenius
norm, Fisher kurtosis, and singular value decomposition of the weight matrices under different
weight initializations. Dimensionality of the ANN’s weights were performed by measuring the
participation ratio of the singular values. All statistical analyses were carried out in Python
version 3.8.5 using the NumPy (version 1.18.5) and SciPy (version 1.6.0) packages.
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Data availability
All data in this study has been made publicly available on OpenNeuro by King and colleagues24.
(URL: https://openneuro.org/datasets/ds002105/)

Code availability
All code related to this study will be made publicly available on GitHub. Analyses and models
were implemented using Python (version 3.8.5).
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Supplementary Figures

Supplementary Figure 1. Whole-cortex group activation maps for all 26 cognitive tasks. Activation
maps reflect the GLM beta values, and were averaged across conditions within each task.
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Supplementary Figure 2. Comparing segregation of whole-cortex RSFC and RA between
unimodal-transmodal areas and functional networks. a, b) Force-directed graphs comparing RSFC
and RA community structure (color-coated by functional networks). c) Segregation of RSFC and d) RA
whole-cortex matrices. e) The direct comparison of differences in segregation between RA and RSFC for
unimodal and transmodal regions (same as Fig. 3h). f, g) Association of regional RA segregation with the
cortical myelin map (T1w/T2w structural map). h) Segregation of RSFC by functional networks. i)
Segregation of RA by functional networks. Note that for both RA and RSFC, sensorimotor networks have
higher segregation than association networks. Network key: VIS1=Visual 1; VIS2=Visual 2;
SMN=Somatomotor; VMM=Ventral multimodal; AUD=Auditory; DAN=Dorsal attention; DMN=Default
mode; CON=Cingulo-opercular; PMM=Posterior multimodal; FPN=Frontoparietal; LAN=Language;
ORA=Orbital-affective. Colors of each network correspond to colors in panel Fig. 3e)
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Supplementary Figure 3. Representational dimensionality and multi-task decoding produce
similar associations with intrinsic hierarchy, even after controlling for parcel size. a) Correlation of
multi-task decoding with the principal RSFC gradient and myelin map across regions. b) After removing
parcel size (i.e., the number of vertices within each parcel) as a covariate (via linear regression), a strong
association between decodability and intrinsic hierarchy was maintained. c) Same analysis as in panel b,
but using representational dimensionality rather than decodability. All correlations in a, b, and c resulted in
a non-parametric p<0.001 using surrogate brain maps that accounted for spatial autocorrelation67
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Supplementary Figure 4. Random subsamples of the task set show similar association with both
the unimodal-transmodal and the sensorimotor hierarchy. a) The association between
representational dimensionality and the principal RSFC gradient (unimodal-transmodal hierarchy) with the
entire task set. b) We randomly sub-sampled (without replacement) tasks to downsize the RSMs of all
parcels, and then measured the correlation between representational dimensionality and RSFC gradient
1. For each sub-sample size, we repeatedly chose (i.e., 45 choose n) 20 times to estimate the robustness
of the association with arbitrary selection of tasks. We found that the association increased and stabilized
as we increased the number of tasks. c) Same as in b, but using the myelin map. d) The
compression-then-expansion fit of representational dimensionality and the sensorimotor (RSFC gradient
2) hierarchy. We estimated the 2nd-order polynomial fit for randomly sub-sampled tasks, and assessed
the coefficient of 2nd-order polynomial fit. The higher (and more positive) the parameter, the more convex
the compression-then-expansion was. We found increased compression-then-expansion as the number
of randomly sampled tasks were included. f) Same procedure as e, but measuring the R-squared of the
polynomial fit rather than the 2nd-order coefficient term.
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Supplementary Figure 5. Establishing compression-then-expansion of representational
dimensionality across the sensory-motor hierarchy via model adjudication. a) We fit the
representational dimensionality of parcels across the sensory-motor RSFC gradient using three
competing models: Quadratic (2nd-order polynomial), linear, and an exponential decay model, where
separate models were fit for loadings less than and greater than 0. b) The Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) for all models, which takes into account the maximum
likelihood of each model while penalizing the number of parameters. Quadratic models had the smallest
values for both AIC and BIC. c,d) Same as panels a and b, but using the RA principal gradient. Quadratic

models were defined as . Linear models were defined as .𝑦 = β
0

+ β
1
𝑥 + β

2
𝑥2 + ϵ 𝑦 = β

0
+ β

1
𝑥 + ϵ

Exponential decay models were defined as .𝑦(𝑡) = 𝑁
0
𝑒−λ𝑡 + ϵ
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Supplementary Figure 6. Training an ANN with untied weights results in qualitatively similar
results. We trained a 5-layer ANN with untied weights to produce qualitatively similar results to the ANN
in the main manuscript. We reduced the number of layers from 10 to 5 and the number of hidden units
from 500 to 250 for computational efficiency. (An ANN with untied weights has significantly greater
parameters than one with tied weights.) a) Representational dimensionality of ANN layers for different
weight initializations. b) ANN architecture. c) Richly trained ANNs had significantly higher similarity with
representations found in empirical data relative to lazily trained ANNs. d) Similarity to fMRI data by layer
(rich minus lazy ANNs). e) Representational alignment of each ANN’s layer (cosine similarity between
RSMs). f) Overall similarity of representations across ANN layers. Greater representational dissimilarity
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(across layers) is found in richly trained ANNs. g) Variance explained of the first principal component for
each of the RA matrices in panel e. h) Frobenius norm of the weight distribution across initializations. i)
The kurtosis (tailedness) of the weight distribution across layers under different weight initialization
schemes. j) SVD of ANN weights. k) Dimensionality (participation ratio) of the weights for different
initializations. Richer training regimes produce low-dimensional weights.
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Supplementary Figure 7. Supplemental information ANN modeling during rich and lazy training
regimes. The similarity between a) the RSMs for V1 and the gradient-identified input parcel for model
construction and b) the RSMs for M1 and the gradient-selected motor output parcel. Overall, the
representational geometries were highly similar between V1 and the input RSM, and M1 and the motor
output RSM. d) The training cost (i.e., number of training epochs required) for different weight
initializations. Visualization of RSMs for example ANNs (one initialization each) for e) rich, f) intermediate
(i.e., initialization SD=1.0), and g) lazy training regimes.
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