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Abstract

A central problem in genomics is understanding the effect of individual DNA variants.

Multiplexed Assays of Variant Effect (MAVEs) can help address this challenge by

measuring all possible single nucleotide variant effects in a gene or regulatory

sequence simultaneously. Here we describe MaveDB v2, which has become the

database of record for MAVEs. MaveDB now contains a large fraction of published

studies, comprising over two hundred datasets and three million variant effect

measurements. We created tools and APIs to streamline data submission and access,

transforming MaveDB into a hub for the analysis and dissemination of these impactful

datasets.

Background

Genomes contain both genes that encode RNAs and proteins and non-coding

regulatory elements that modulate gene expression. Variation within genomes

produces interindividual differences that govern a multitude of traits, including many

that relate to disease. Because DNA sequencing is now inexpensive and widely

deployed, human genetic variants are being discovered at a staggering pace. For

example, approximately 241 million small variants comprising single nucleotide

changes and small deletions/insertions have been identified in 140,000 individuals in

gnomAD [1]. Of these variants, 4.6 million are single amino acid changes (i.e. missense
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variants). 4.5 million missense variants have been identified among 200,000

individuals in the UK Biobank [2]. In contrast, only 437,000 missense variants have

been annotated in ClinVar, of which greater than 70% are currently variants of

uncertain significance and thus cannot be used for clinical decision making [3].

Understanding how these existing variants, as well as the ones we will discover as

more individuals are sequenced, impact molecular, cellular and organismal phenotypes

represents a central challenge for genomics.

In the past, genetic variants would be tested for functional effects in bespoke assays

singly or in relatively low numbers, but more recent technologies have enabled the

increasingly popular multiplexed assays of variant effect (MAVEs) approaches [4]. In a

MAVE, the functional effects of thousands or tens of thousands of variants of a DNA

regulatory region, coding genes, UTRs or other functional elements are simultaneously

experimentally determined. To achieve this scale, a large library of variants is made and

tested in a pooled fashion, with high-throughput DNA sequencing used to read out

variant effects (for a detailed description see [5–7]). The result is a comprehensive

variant effect map, which contains the experimentally measured effects of most or all

of the possible single nucleotide or missense variants. Variant effect maps are of high

utility. For example, in genes where germline variants can increase disease risk, variant

effect maps can help to resolve up to ~70% of clinical variants of uncertain significance

[8]. Variant effect maps can also be used to probe the protein sequence/function

relationship [9–42], assist in protein design [43], reveal protein structure [44,45],

elucidate regulatory DNA and gene function [46–49] and train or evaluate variant

effect predictors [50–52]. Thus, multiplexed functional data are poised to have a major

impact, and efforts are now underway to scale up and apply MAVEs to a significant

fraction of the human genome [53–55].

However, multiplexed functional data availability has been a major hurdle. In 2019 we

created MaveDB, a public, open source repository for multiplexed functional data [56].

MaveDB allows researchers to store, share, and access processed multiplexed variant

functional data and associated metadata in a standardized, searchable format.

MaveDB implements an easy-to-use web interface that facilitates data deposition by

researchers. However, MaveDB suffered from three key limitations. First, it contained

only a small fraction of the data available at the time. Second, data from new

multiplexed assays such as saturation genome editing [14,57] were not compatible

with the original MaveDB data model. Finally, MaveDB was not designed with

federation across genomic data resources in mind.

Here we describe several technical advances and data model improvements

implemented in MaveDB v2, as well as provide a progress update on our extensive

curation of previously-published multiplexed assay results and expansion of database

content. We have improved the user experience for contributors by adding API-based

user uploads and a companion Python module for researchers with bioinformatics or
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data science experience. We have updated our data model by adding a new type of

record for imputation or the combination of results across multiple experiments. We

have also refined and formalized our variant representation, allowing us to support

more diverse types of MAVE variants and associated experimental designs, while also

improving compatibility with existing international standards. In addition to these

technical improvements, we have curated 161 new datasets from the literature,

encompassing two million new variants and more than tripling the total number of

variant effect measurements in the database.

Database functionality and content

MaveDB is designed to store and distribute multiplexed variant functional data,

including scores, associated data and metadata. A MAVE dataset minimally includes a

collection of variant effect scores that describe the functional consequences of

nucleotide or amino acid variants. Each variant effect score can also be associated with

a variance estimate, variant frequency or other data. The metadata includes

descriptions of the experimental and data analysis methods and target information,

such as the sequence and accession numbers in other databases.

MaveDB has a hierarchical structure populated by score set, experiment, and

experiment set records. Score sets contain the variant effect scores and associated

data columns, such as variance estimates and variant counts, details about the

experimental target sequence, and a description of the score calculations. Experiments

group together multiple score sets that depend on the same raw data, thereby

improving discoverability for users, and describe the assay that was performed.

Experiment sets do not have any data or metadata themselves, but group related

experiments, such as multiple assays performed on a single target and described in the

same publication.

Meta-analysis score sets

In addition to standard score sets linked to an experiment and its raw data, MaveDB v2

implements meta-analysis score sets. These new records are linked to one or more

existing score set records, and are used to describe a distinct version of the scores that

have been transformed in some way. For example, a dataset that has imputed the

values of missing scores would be best represented as a meta-analysis score set linked

to the pre-imputation scores, ensuring the pre-imputation scores are preserved and

discoverable. Another example is a set of scores that result from the combination of

multiple existing score sets (Figure 1).

We recommend that users upload minimally-transformed scores as standard score

sets to MaveDB, and create new meta-analysis score sets that describe normalization

or imputation steps as applicable. This enables other researchers who want to build

models that would be sensitive to data normalization or evaluate their own
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normalization methods to make use of the data without having to perform a full

re-analysis from counts or sequence reads.

With its hierarchical data model and the introduction of meta-analysis score sets,

MaveDB enables provenance tracking for individual variant measurements from a

multiplexed assay. This tracking is critical for downstream usage, particularly in clinical

pipelines, where it is essential to understand the independence of different data

sources for evaluating variant pathogenicity using the ACMG guidelines [58].

Figure 1: Representative structure for a meta-analysis score set. The cartoon depicts the relationship

between experiment sets, experiments, score sets, and meta-analysis score sets for a real-world dataset.

Two assays were performed on the gene NUDT15 and combined into a resulting “function score” that

summarized performance across both assays [41]. The meta-analysis score set that combines these

results is shown on the far right, and is described in MaveDB under urn:mavedb:00000055-0-1.

Standardized variant representation

Previously MaveDB used a variant representation based on the Enrich2 [59] output

format, which was in turn inspired by the HGVS Sequence Variant Nomenclature [60].

Starting with MaveDB v2, we have adopted a revised variant representation we call

MAVE-HGVS. MAVE-HGVS is a subset of HGVS version 20.05. HGVS nomenclature is

comprehensive and very expressive, and consequently includes syntax that is not

needed to represent variants from multiplexed variant functional data. While packages

exist for parsing HGVS [61,62], they are intended for use in human genetics and rely on

sequence database entries that are not always available for multiplexed assays.

MAVE-HGVS is an easy-to-parse subset of the HGVS nomenclature that captures the

types of variants that routinely occur in MAVE datasets while not relying on external

sequence databases or identifiers.

In addition to the specification, MAVE-HGVS has a reference Python implementation,

mavehgvs. We use this implementation in MaveDB v2 to validate variants when

multiplexed variant functional data are uploaded to the database, both to make sure

that the variant strings are in a valid format and to ensure that variants are consistent

with the target sequence.
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MAVE-HGVS offers three major improvements over the old MaveDB format. First,

MAVE-HGVS is much more easily convertible to standard HGVS. Second, the previous

format did not define target-identical (“wild type”) variants in a standard way and was

not able to define target-identical variants by position, a feature that is needed for

MITE-Seq datasets [31]. Finally, we can continue to draw from HGVS as support for

new variant types is needed. We have already taken advantage of this by adding splice

variants to more faithfully represent datasets curated from the literature.

Community tools

To empower the MAVE community, we developed MaveTools, a Python library

designed for interactive development environments like Jupyter notebooks [63],

replacing our previous command-line tool mavedbconvert. MaveTools has functions to

convert commonly-used variant representations such as Enrich seqid [64] to

MAVE-HGVS and create MAVE-HGVS strings that describe the differences between

pairs of codons. MaveTools also implements a local version of the dataset validation

logic used by the MaveDB server, making it easier for users to identify and resolve

formatting errors. In addition to MaveDB-specific features, we are augmenting the

library with general utility functions for researchers working with MAVE datasets.

MaveDB, mavehgvs, and MaveTools are all distributed under OSI-approved open

source licenses and development activity is ongoing in their public GitHub repositories

(see Code availability section). We envision that MaveTools will become a valuable

community resource, particularly for students and others who are new to working with

MAVE data. We welcome contributions and engagement from other members of the

community in those spaces or by contacting us directly.

Improved API support

The previous version of MaveDB only accepted data via web form. We now also

support data deposition through REST API. The API uses the same logic and validation

as the web interface, ensuring continuity and data integrity. This makes depositing

some datasets much more efficient, such as a series of similar assays that measure

variant effects under different concentrations of a small molecule. We hope that

authors of MAVE analysis pipelines will consider adopting this API endpoint as an

output option.

MaveTools provides REST API wrappers so users with a bioinformatics or data science

background can query the database and upload or download datasets. By formatting a

Python object that contains appropriate metadata and file paths for score and count

files, users can validate the data and upload it to the server within a script or

interactive session. Researchers who are building machine learning models or

otherwise using large amounts of MAVE data can also use the wrappers to automate

downloads. The MaveTools documentation and source code repository includes
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example Jupyter notebooks for both upload and download that users can follow and

modify.

We have also added a new API endpoint that allows users to download data on

individual variants. This feature currently only supports the MaveDB variant IDs that

are assigned when the variants are created in our database, but we are in the process

of mapping these IDs to more widely-used accession numbers, particularly for genes of

clinical relevance.

Figure 2: Growth of datasets and availability over time. We compiled a list of 238 publications that

contained at least one new MAVE dataset and determined whether counts, scores, or raw sequence data

were made available in supplementary information. At present, we have made 46% of all datasets for

which scores were available accessible via MaveDB, and work is underway to add the remaining

datasets.

Database curation and contents

When the original MaveDB manuscript was published in 2019, data from only 7% of

publications at the time were included. Since then, as with many databases, the gap in

representation has grown. Thus, we launched a concerted effort to deposit published

datasets that were not yet included in MaveDB. Our curation team spanned three

sites: WEHI/University of Melbourne in Melbourne, Australia; University of

Washington in Seattle, USA; and Harvard University in Boston, USA.

To enable the discovery, reuse, and interpretation of data in MaveDB, we developed a

robust process for curating and summarizing these heterogeneous experimental

results, including training materials, much of which has been incorporated in the

updated documentation pages in MaveDB v2. Key information was abstracted from

the associated publications and synthesised into a title, short description, abstract, and

methods for each experiment and score set record. Accession numbers for raw data

and target sequences for each dataset were also included. Each draft MaveDB entry
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was peer reviewed by at least one other MaveDB curator to ensure all relevant

information was present and accurate before inclusion in the database. In addition to

writing the free text sections and organizing associated metadata, our curation team

also formatted scores and related values from supplemental tables.

As a result of these efforts, MaveDB now contains 231 datasets from 68 publications.

This comprises 46% of all published papers for which data was available, 28% of

published papers overall (Figure 2). Furthermore, MaveDB now makes available 20

datasets from 7 papers that were not provided as part of their original publications.

Conclusions

Measuring, predicting and understanding variant effects on a genome-wide scale are

key challenges. MAVEs are an important approach for overcoming these challenges,

but the data must be stored in a stable, standardized fashion along with the metadata

required to enable reanalysis, modeling and prediction. Moreover, MAVE datasets

must be easily discoverable, and MAVE data must appear in other commonly used data

portals.

MaveDB v2 marks a major improvement to our data model and ability to handle these

heterogeneous datasets. It improves upon the previously-used variant representation

and furthers our aim to standardize and share data. MaveDB v2 also incorporates new

API features, including the ability to request data on individual variants and upload

data via script. These features are supported by open source software designed to

serve the research community.

Additionally, we launched a massive curation effort involving 161 datasets, ultimately

populating MaveDB with nearly half of all published data. This equates to three million

variant measurements. Going forward we strongly encourage data generators to

deposit their data directly into MaveDB prior to or upon publication.

Code availability

MaveDB source code is available at https://github.com/VariantEffect/MaveDB. It is

distributed under the AGPLv3 software license.

mavehgvs source code is available at https://github.com/VariantEffect/mavehgvs. It is

distributed under the 3-Clause BSD software license.

MaveTools source code is available at https://github.com/VariantEffect/MaveTools. It

is distributed under the 3-Clause BSD software license.
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