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Abstract1

2

Recently, a new generation of devices have been developed to record neural activity simulta-3

neously from hundreds of electrodes with a very high spatial density, both for in vitro and in vivo4

applications. While these advances enable to record from many more cells, they also dramati-5

cally increase the amount overlapping “synchronous" spikes (colliding in space and/or in time),6

challenging the already complicated process of spike sorting (i.e. extracting isolated single-neuron7

activity from extracellular signals). In this work, we used synthetic ground-truth recordings to8

quantitatively benchmark the performance of state-of-the-art spike sorters focusing specifically on9

spike collisions. Our results show that while modern template-matching based algorithms are more10

accurate than density-based approaches, all methods, to some extent, failed to detect synchronous11

spike events of neurons with similar extracellular signals. Interestingly, the performance of the12

sorters is not largely affected by the the spiking activity in the recordings, with respect to average13

firing rates and spike-train correlation levels.14

keywords: spike sorting, spike collision, benchmark, overlapping spikes15

1 Introduction16

Accessing the activity of large ensemble of neurons is a crucial challenge in neuroscience. In recent years,17

Multi-Electrode Arrays (MEA) and large silicon probes have been developed to record simultaneously18

from hundreds of electrodes packed with a high spatial density, both in vivo [14, 2] and in vitro19

[10, 4]. With these devices, each electrode records the extracellular field in its vicinity and can detect20

the action potentials (or spikes) emitted by the neighboring neurons in the tissue. In contrast to21

intracellular recording, extracellular recordings do not give a direct and unambiguous access to single22

neuron activity and one needs to further process the recorded signals to extract the spikes emitted by23

the different cells around the electrodes. This complex problem of source separation is termed “spike24

sorting”. While various solutions for small number of channels (tens at max) can be found in the large25

literature on spike sorting algorithms [22], these new devices with thousands of channels challenge the26

classical approach to perform spike sorting.27

Recently, a new generation of spike sorting algorithms have been developed to be able to deal with28

hundreds (or even thousands) of channels recorded simultaneously (see [16, 12] for recent reviews). The29
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extent to which these modern spike sorting algorithm recover all the spikes from a neuronal population30

is still under investigations, and might differ depending on the species, tissue, cell types, activity level.31

While most of the real ground truth recordings [28, 19] are assessing the performance at the single cell32

level, in order to obtain an exhaustive assessment of the spike sorting performance at the population33

level, one must turn to use fully artificial or hybrid dataset [17, 6] to properly compare and quantify34

the performances of the algorithms. But even with such dataset, in most of the studies, errors are only35

measured as False Positive/Negative rates, and the reasons behind failures of the algorithms are often36

overlooked.37

In this study, we focused on a key property of the spike trains, at the core of most of these failures,38

i.e. their fine temporal correlations. Indeed, temporal correlations are ubiquitous in the brain, and the39

higher the number of recorded cells because of the increased density of the probes, the more prominent40

they are. Correlations might have an important role in population coding ([3] for a review), but41

correlated activity for nearby cells results, in the extracellular signals, in overlapping activities and42

thus are harder to identify than isolated spikes. While pioneering work [21] claimed that template-43

matching based algorithms were more suited to recover overlapping spikes (either in space and/or44

time), the extent to which they are is not properly defined. In this work, our aim is to estimate45

how good (or bad) modern spike sorters are in recovering colliding spikes. What are the limits of the46

sorters, and what are the key parameters of the recordings and/or of the neurons that could influence47

these numbers?48

2 Results49

2.1 Simulated recordings50

To test how robust the recently developed spike sorting pipelines are against spike collisions [28, 20, 8,51

13, 15], we generated synthetic datasets using the MEArec simulator [6] (see Methods). More precisely,52

we took the layout of a NeuroNexus probe (A1x32-Poly3-5mm-25s-177-CM32 with 32 electrodes in53

three columns and hexagonal arrangement, a x- and y-pitch of 18µm and 22µm, respectively, and54

an electrode radius of 7.5 µm), and randomly positioned 20 cells in the vicinity of the probe (see55

Figure 1A), so that every simulated neuron has a unique template (i.e. average extracellular action56

potential). Figure 1B shows three sample templates with respectively low, almost null, and high57

similarity. The similarity between templates is computed as the cosine similarity of the flattened58

signals (see Methods) and the random generation of the positions and cell types of the simulated59

neurons (and thus of the templates) gives rise to the similarity matrix displayed in see Figure 1C. This60

similarity, as expected, decreases with the distance between the neurons, computed either from the61

ground-truth positions of the cells from the simulation or estimated as the barycenters of the templates62

(Figure 1D). The more negative the similarity is, the more templates are “in opposition”; the more63

positive it is, the more templates are “similar”. A similarity close to 0 means that templates do not64

overlap and are strongly orthogonal, i.e. dissimilar. Importantly, the simulations allowed us to cover65

rather uniformly the space of cosine similarities between templates, which will be used to assess the66

performance of spike sorters during collisions (Figure 1E).67

To generate the spike trains, we first used a simple approach that forced all the neurons to fire as68

independent Poisson sources at a fixed and homogeneous firing rate of 5 Hz. To make the simulation69

more biologically plausible, we pruned all spikes breaking a refractory period violation of 4 ms. The70

resulting auto- and cross-correlograms for three sample units are shown in Figure 1F (auto-correlograms71

are in green on the diagonal), while Figure 1G and H display the average (red line) and standard72

deviation (grey shaded area) auto- and cross-correlation among all units, respectively. A sample73

snippet of the generated traces from one recording is shown in Figure 1I, for a subset of 10 channels74

out of 32. Due to the independence of the Poisson sources, both the average cross-correlograms75

(Figure 1G) and auto-correlograms – outside the ±4 ms used as refractory period – (Figure 1H) are76

flat.77
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Figure 1: Generation of the synthetic recordings. A) 20 cells are randomly placed in front of a
32-channel NeuroNexus probe layout. The plot shows the location of each cell for one recording. B)
Sample templates generated by neurons that are close too each other (#0 and #1) or far apart (#2).
C) Cosine similarity matrix between all pairs of templates for a sample recording. D) Cosine similarity
as function of the distance between the neurons, either using the real position from the simulations
(orange circles), or the estimated barycenter of the templates (blue circles). E) Histogram of the
cosine similarity distribution from one of the simulated recordings. F) Cross- and auto- correlograms
for three sample spike trains. G) Average auto-correlograms of all units (red line, gray area represents
the standard deviation). H) Average cross-correlogram over all pairs of neurons (red line, gray area
represents the standard deviation around the mean). I) Sample traces from 10 channels of one synthetic
recording.

2.2 Global performance of the spike sorters78

In order to assess the global performances of the sorting procedure on our synthetic datasets, we79

generated 5 recordings with various random seeds and averaged the results. Figure 2 summarizes the80

main findings. First, we noticed that, as seen in Figure 2A, the run time was roughly constant across81

sorters, except for HDSort, with its higher run time. The number of well detected units is similar82

among sorters, as shown in Figure 2B, but it is worthwhile noticing that Kilosort 3 is the only sorter83

producing many false positive and redundant units (see Methods for classification of units). Kilosort 284

and HDSort also identify more false positive then well detected units. Importantly, we did not perform85

any curation of the spike sorting output, but we consider the raw output of each sorter as is.86

To check whether all sorters correctly discovered all templates, we computed the cosine similarity87

between the ground-truth templates from the simulations and the ones found by the sorters, comparing88

such a metric with the accuracy. As it can be seen in Figure 2C, all sorters are on average finding the89

correct templates, with the notable exception of YASS (in grey) and to some less extent HDsort (in90

red). Nevertheless, the overall accuracy of most of the spike sorters is relatively high (∼0.95), except91

for HDsort and Herdingspikes which yield lower scores (Figure 2D). However, this averaged number92

does not tell us anything regarding the nature of these errors. While this error rate might seem low,93

it is likely that it is crucial, since it can potentially originate from the collisions, and thus from the94

correlations among neurons.95
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2.3 Spike sorting performance is affected by spike collisions96

Using fully synthetic recordings with exhaustive ground truth, we can look at how good individual97

spike sorters perform specifically with respect to spatio-temporal collisions. To do so, we computed98

the collision recall (see Methods) as a function of the lag between two spikes, for a given pair of99

neurons. By averaging over multiple pairs of ground-truth neurons with similar template similarity100

(and over multiple recordings, see Methods), we can obtain a picture of how accurate the sorters101

are specifically with respect to the spike time lags and the similarities between templates. Figure 3102

displays the collision recall per sorter as a function of the lag (x-axis), colored by the similarity between103

templates. Each panel shows the performance of a different spike sorter. One can immediately see104

that only few sorters are able to accurately resolve lag correlations that are close to zero, even when105

templates are strongly orthogonal (low cosine similarity). This is the case for Kilosort 1 and 2, and for106

Spyking-circus, all of which use a template-matching procedure that should theoretically explain this107

A B
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2
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Figure 2: Spike sorting performance. A) Average run times over 5 different recordings (see
Methods) for all the tested sorters. Errors bars indicate the standard deviation over multiple recordings.
B) Average number of cells found by the sorters that are either well detected, redundant, overmerged
or considered as false positive (see Methods). Error bars indicates standard deviation over multiple
recordings. C) The average cosine similarity between templates found by the sorters and ground-truth
templates, as function of the accuracy for the given neurons. Ellipses shows standard error of the
means in cosine similarity (x-axis) and accuracy (y-axis). D) Average metrics (accuracy, precision,
recall, see Methods) for all the sorters. Error bars show standard deviation over multiple recordings.
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Figure 3: Collision recall per sorter. Error (quantified as the collision recall, see Methods) for
various sorters and for all possible lags (between -2 and 2 ms), as function of the similarity between
the pairs of templates (color code). All curves are averaged over multiple pairs and multiple recordings
(see Methods).

behavior. However, while performances are still good for Kilosort 1 and 2 even when the average cosine108

similarity between pairs is increased, they slightly degrade for Spyking-circus. Density-based sorters109

(HerdingSpikes and Ironclust), on the other hand, do not have a spike collision resolution strategy110

and this is reflected by their overall poorer performance. It is interesting to notice that Tridesclous,111

HDSort, YASS, and Kilsort 3, also using a template-matching based procedure to resolve the spikes,112

are not properly resolving the temporal correlations even for dissimilar templates. Different template-113

matching strategies are probably the cause of the differences among sorters. For example, HDSort114

and HerdingSpikes do not implement any strategy for spike collision resolution [9] and that is reflected115

in the quick degradation of performance as template similarity increases. KiloSort 1 and 2 used a116

GPU-based implementation of the k-SVD algorithm [1], used in matching learning as a dictionary117

learning algorithm for creating a dictionary for sparse representations. By doing so, it performs118

a reconstruction of the extra-cellular traces via orthogonal template matching pursuit, which is an119

enhancement of the greedy template matching pursuit (used in Spyking-circus and Tridesclous) more120

robust when templates are non-orthogonal. This might explain the boost in performance especially121

striking for templates with high similarity (similarity > 0.8).122

2.4 Generation of controlled spike collision simulated data123

The results shown in the previous section have been obtained only in a particular regime of activity,124

with all neurons firing independently as Poisson sources with an average firing rate of 5 Hz. However,125

neurons usually do not fire independently of each other, but rather have intrinsic correlations, also126

depending on different brain areas, brain states, and species. In addition, the average firing rates127

can also largely vary depending on brain areas. As an example, it is well known that Purkinje cells128

in the cerebellum have a very high firing rate [24] that networks tends to synchronize their activity129
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Figure 4: Controlling spike trains correlations and firing rates. A) Average cross-correlograms
between all pairs of distinct neurons firing as independent Poisson sources at 5Hz (red curve, gray area
represents the standard deviation) B) Same as A, but for auto-correlograms. C) Rater plot showing
the activity of the uncorrelated neurons firing at 5Hz. D-F Same as A-C, but for a rate of 15 Hz and
20 % correlation.

either in slow waves during sleep [25], or during pathological activity (such as epileptic seizures [26]).130

Therefore, assessing how performances may vary during different conditions is important to generalize131

our observations.132

In order to study how spike sorting is affected by correlations and firing rates, we used a mixture133

procedure [5] that allowed us to control precisely the shape of the auto- and cross-correlograms for the134

injected spike trains. More precisely, we decided to explore in a systematic manner three rate levels135

(5, 10 and 15 Hz), and three correlation levels (0, 10, and 20 %). Note that the 5 Hz firing rate with136

0 % correlation corresponds to the scenario displayed in Figures 2-3.137

Figure 4 shows the average of cross- and auto-correlograms and the spike trains of a recording where138

cells are firing as independent Poisson sources at 5 Hz in panels A-C (and thus with 0 % correlation,139

as shown by the flat average cross-correlograms in Figure 4A) and at 15 Hz with 20 % correlation140

(Figure 4D-F). Even though experimental recordings would contain a broader spectrum of firing rates141

and correlations, here we focus on assessing how different firing regimes affect spike sorting performance142

in a controlled setting. One would expect that the increased density of spikes (both in terms of firing143

rates and of synchrony) should degrade the performance of the spike sorters by affecting both the144

clustering step and the template-matching step, which in turn would degrade the resolution of spike145

collisions.146

2.5 Do correlations and firing rates affect spike sorting of spike collisions?147

To assess whether firing rate and spike train correlation affect spike sorting performance, we selected148

all unit pairs with a similarity greater than 0.5. We first averaged the recall curves for all template149

similarities (i.e. we averaged the curves with similarity greater than 0.5 shown in Figure 3). In150

Figure 5A we show the recall with respect to the spike lags averaged over all 9 configurations (3 firing151

rates x 3 correlations) for each sorter. The thick line represents the mean recall and the shaded area is152

the standard deviation over different rate-correlation configuration. All sorters, except YASS, appear153
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Figure 5: Spike sorting performance for different conditions. A) Average collision recall over
the 9 conditions shown in Figure 5 - figure supplement 1 (3 firing rate levels and 3 correlation levels)
as function of the lag between spikes, for pairs of cells with cosine similarity higher than 0.5. The
shaded area shows the standard deviation over the conditions. B) Similarly as A, the average collision
recall as function of the cosine similarity between pairs of cells. C) Mean relative error between the
ground-truth cross-correlograms and the estimated ones, for all sorters, averaged over all pairs with a
similarity higher than 0.5

to have a very consistent curve (low standard deviation) over different configurations and do not seem154

affected by changes in average firing rates and correlations in the spike trains. YASS’ large standard155

deviation can be explained by looking at individual recall curves at different rate-correlation regimes156

(Figure 5 - figure supplement 1 - yellow lines): the spike sorting performance degrades with increasing157

firing rates, but it does not seem to be strongly affected by increased correlation rates. However, we158

should stress that since the collision recall is a relative measure, the same value for a larger number of159

spikes (when firing rate is increased) means that overall, there are more misses for all sorters.160

Similar considerations can be done by looking at the average recall with respect to template simi-161

larity (Figure 5B). To construct this plots, we integrated the curves in Figure 3 over lags for different162

cosine similarities. Also in this case, the curves appear consistent (low standard deviation) with the163

exception of YASS, for which recall is reduced with increased firing rate regimes (Figure 5 - figure164

supplement 2 - yellow lines). It is worth noticing that when the cosine similarity becomes negative, all165

the sorters perform very poorly in properly resolving the overlaps. This could be explained by the fact166

that when a pair of templates is anti-parallel (for example in the left panel of Figure 1A), a subset of167

electrodes might show a negative signal for one template and a positive signal from the other (due to168

return currents in the dendritic signals [11]). Effectively, when a spike collision between the two spikes169

occur, this would lower the amplitude of the negative peak, which could reduce the detectability of170

the spike.171

The collision recall metric is mostly useful to obtain a quantitative insight on the behavior of the172

spike sorting algorithms, but how do these errors transpose in practical situations? To assess this, we173

measure the relative error (in percentage) between the ground-truth cross-correlograms and the ones174

computed from the spike sorting outputs. We then averaged these error curves among all recordings175

and experimental conditions (firing rates and synchrony levels). As shown in Figure 5, the error in176

the estimated cross-correlogram can be as large as more than 50% for small lags, and for some spike177

sorting algorithms such as HDsort, HerdingSpikes or IronClust. Moreover, it is also worth noticing178

the baseline error rate is not the uniform across sorters. From this metric, we can again conclude that179

template-matching based spike sorting algorithms such as KiloSort (1, 2, and 3), Spyking-circus or180

Tridesclous are much better to resolve fine temporal correlations among neurons.181

3 Discussion182

In this study, we showed in a systematic and quantitative manner how spatio-temporal correlations183

can be underestimated during spike sorting. Using synthetic datasets, we compared a large diversity of184

modern spike sorters and showed how they behaved as function of the similarity between the templates185
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Figure 5 - figure supplement 1: Average performances of the spike sorters as function of the temporal
lags. Each panel shows the average collision recall for template pairs with a similarity above 0.5 for a
different condition, in terms of firing rate and correlation levels.

co
lli

si
on

 re
ca

ll
co

lli
si

on
 re

ca
ll

co
lli

si
on

 re
ca

ll

Figure 5 - figure supplement 2: Average performances of the spike sorters as function of the template
similarity. Each panel shows the average collision recall over all lags in [−2, 2] ms for a different
condition, in terms of firing rate and correlation levels.
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and the temporal lags between spikes. As expected, the closer the spikes are in time, the harder is186

it, for all sorter, to properly resolve the overlaps. However, more interestingly, the more similar the187

templates are, the higher the failures are. These failures are striking especially for spike sorters that188

are not relying on template-matching based approaches (HerdingSpikes, Ironclust). For the ones using189

a template-matching based approach (KiloSort, Spyking-circus, Tridesclous, HDSort), the problem190

is less pronounced (with the exception of HDSort) but still present, and therefore this phenomenon191

should be taken into account when making claims about the synchrony.192

To our surprise, the global behavior of the spike sorters did not depend much on the overall193

firing rate and/or the correlation levels. This allows us to generalize the findings and we think that194

the quantitative results shown here could be translated to various in vitro or in vivo recordings from195

different brain regions and species. As shown in Figure 5, while the variability over different conditions196

is rather high for some algorithms, template-matching based algorithms tend to be rather robust and197

overall better in resolving spike collisions. This is a very encouraging sign towards a unified and198

reproducible automated solution for spike sorting [17, 7], agnostic of the recording conditions.199

The results shown in the paper were obtained with purely artificial recordings, since we need200

exhaustive information on the ground-truth spiking activity of all neurons to quantitatively compare201

and benchmark different spike sorters. However, it would be interesting to generalize these observations202

with real recordings, assuming one would have a proper ground truth at the population level. Indeed,203

such a ground truth is needed to compute the collision recall and see how sorters behave as function204

of lags and similarities between templates. To our knowledge, such a ground truth does not exists205

[28, 19, 9]. While one could try to generate an “approximated" ground truth by combining the output206

of several spike sorters with an ensemble spike sorting approach (as in [7]), the disagreements among207

sorters are currently so high that this process is hard if not impossible, if one want to sample from a208

large number of pairs.209

While missing spikes for very dissimilar templates and small lags is problematic, the errors made for210

very similar templates may be less frequent depending on the probe layout and neuronal preparation.211

Indeed, such errors strongly depends on the distribution of template similarities between all pairs of212

recorded cells, and this distribution might differ from recording to recording. For example, in the213

retina [27] one would expect highly synchronous cells, of the same functional type, to be far apart from214

each other because of an intrinsic tiling of the visual space. Such properties are unknown in vivo or215

in cortical structures, but might bias the distribution of template similarities between nearby neurons,216

and thus modify the estimation of collision recalls.217

4 Methods218

All the code used to generate the figures is available at https://spikeinterface.github.io/.219

4.1 Simulated datasets220

We used the MEArec simulator [6] to generate synthetic ground truth recordings. In brief, MEArec221

uses biophysically detailed multicompartment models to simulate the extracellular action potentials, or222

so called “templates". For this study, we used 13 cell models from layer 5 of a juvenile rat somatosensory223

cortex [18, 23]. Templates are then combined with spike trains and slightly modulated in amplitude224

to add physiological variability. Additive uncorrelated Gaussian noise is finally added to the traces.225

We generated simulated recordings with 20 neurons randomly positioned in front of the probe, a noise226

level of 5 µV and a sampling rate of 32 kHz. To obtain more robust results, we generated 5 recording227

per conditions with various random seeds. The spike times were kept unchanged, but the positions228

and the templates of the 20 neurons were changed in each of the individual recording. This allowed us229

to populate the distribution of cosine similarities between pairs.230
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4.2 Generating spike trains with controlled correlations231

To generate the recordings with various firing rates and correlations levels, we used the mixture process232

method described in [5]. Since by default the method generates controlled cross-correlograms with a233

decaying exponential profile, we modified it to generate cross-correlograms with a Gaussian profile, in234

order to have more synchronous firing for small lags. The Gaussian profile can be seen in Figure 4D,235

with a standard deviation σ = 2.5ms. By setting three different rate levels (5, 10 and 15 Hz) and three236

different correlation levels (0, 10 and 20 %) this gave rise to 9 conditions, so to 45 recordings in total237

(5 recordings per conditions, see above).238

4.3 Template similarity239

We define the template for neuron i as Ti ∈ RTxC , with T representing the number of samples and240

C the number of channels. After flattening the template by concatenating the signals from different241

channels (Tf
i ∈ RT ·C), the similarity between two neurons i and j is quantified via the cosine similarity242

defined as follows:243

similarity =
Tf

i ·T
f
j

‖Tf
i ‖‖T

f
j ‖

= cos(θ) (1)

where θ is the angle between the two (T ·C)-dimensional vectors Tf
i and Tf

j . The cosine similarity244

is therefore bounded between -1 (templates are anti-parallel) and 1 (templates are parallel). A cosine245

similarity of 0 means that the templates are orthogonal.246

4.4 Spike sorters247

All the spike sorters used in this study were run using the SpikeInterface framework [7], with default248

parameters. The following are the exact versions that we used for the different spike sorters: Tridesclous249

(1.6.4), Spyking-circus (1.0.9) [28], Herdingspikes (0.3.7) [13], Kilosort (v1, 2, or 3) [20], YASS (2.0)250

[15], Ironclust (5.9.8) [8], HDSort (1.0.3) [9]. The desktop machine used has 36 Intel Xeon(R) Gold251

5220 CPU @ 2.20GHz, 200Go of RAM and a Quadro RTX 5000 with 16Gb of RAM as a GPU.252

4.5 Spike sorting comparison253

All the quantitative metrics between the results of the spike sorting software and the ground-truth254

recording were made via the SpikeInterface toolbox.255

When comparing a spike sorting output to the ground-truth spiking activity, first an agreement256

score between each pair of ground-truth and sorted spike trains is computed as:257

scoreij =
#nmatches

#nigt +#njsorted −#nmatches

where #nigt and #njsorted are the numbers of spikes in the i-th ground-truth spike train and the258

j-th sorted spike trains, respectively. #nmatches is the number of spikes within 0.4 ms between the259

two spike trains.260

Once scores for all pairs are computed, an hungarian assignment is used to match ground-truth261

units to sorted units [7]. All spikes from matched spike trains are then labeled as: true positive (TP),262

if the spike is found both in the ground-truth and the sorted spike train; false positive (FP), if the263

spike is found in the sorted spike train, but not in the ground-truth one; and false negative (FN), if264

the spike is only found in the ground-truth spike train.265

After labeling all matched spikes, we can now define these unit-wise performance metrics for each266

ground-truth unit that has been matched to a sorted unit:267

accuracy =
#TP

#TP +#FP +#FN
(2)
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precision =
#TP

#TP +#FP
(3)

recall =
#TP

#TP +#FN
(4)

The global accuracy, precision, and recall values shown in Figure 2D are the average values of the268

performance metrics computed by unit.269

Using the unit metrics and the output of the matching procedure, we can further classify each270

sorted unit as:271

well detected: sorted units with an accuracy ≥ 0.8272

false positive: sorted units that are not matched to any ground-truth unit and have a score < 0.2273

redundant: sorted units that are not the best match to a ground-truth unit but have a score ≥ 0.2274

overmerged: sorted units with a score ≥ 0.2 with more than one ground-truth unit275

In order to generate the spike lag versus recall figures (e.g. Figures 3-5 - figure supplement 1) we276

expanded the SpikeInterface software with several novel comparison methods and visualization widgets.277

In particular, we extended the ground-truth comparison class to the CollisionGTComparison, which278

computes performance metrics by spike lag. In addition to the agreement score computation and the279

matching described in the previous paragraphs, this method first detects and flags all “synchronous280

spike events” in the ground-truth spike trains. Two spikes from two separate units are considered to281

be a “synchronous spike event” if their spike times occur within a time lag of 2 ms. The synchronous282

events are then binned in 11 bins spanning the [−2, 2] ms interval and the collision recall is computed283

for each bin. With a similar principle, we implemented the CorrelogramGTComparison to compute284

the lag-wise relative errors in cross-correlograms between ground-truth units and spike sorted units285

(Figure 5C).286
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