1	
2	
3	
4	Testing the effect of oxytocin on social grooming in bonobos
5	
6	James Brooks ^{1,2*} , Fumihiro Kano ^{2,3,4*} , Hanling Yeow ^{1,2} , Naruki Morimura ^{1,2} , Shinya Yamamoto ^{1,5}
7	¹ Wildlife Research Center, Kyoto University
8	² Kumamoto Sanctuary, Kyoto University
9	³ Center for the Advanced Study of Collective Behaviour, University of Konstanz
10	⁴ Max-Planck Institute of Animal Behavior
11	⁵ Kyoto University Institute for Advanced Study, Kyoto University
12	*Co-first authors
13	
14	Correspondence to: James Brooks
15	Email: jamesgerardbrooks@gmail.com (JB)
16	Address: 990, Otao, Misumi, Uki City, Kumamoto Prefecture, 8693201, Japan
17	

18 Abstract:

19 Oxytocin has attracted research attention due to its role in promoting social bonding. In bonobos 20 and chimpanzees, the two Pan species closely related to humans, urinary oxytocin is known to 21 correlate with key behaviours related to social bonding, such as social grooming in chimpanzees 22 and female-female sexual behaviour in bonobos. However, no study has demonstrated that the 23 administration of oxytocin promotes real-life social interactions in Pan, leaving it unclear whether 24 oxytocin is merely correlated with social behaviors or does affect them in these species. To test 25 this, we administered nebulized oxytocin or saline placebo to a group of female bonobos and 26 subsequently observed the change in their gross behavior during free interaction. We found an 27 overall effect of more frequent grooming in the oxytocin condition. However, on the individual 28 level this effect remained significant for only one participant in our follow-up models, suggesting 29 future work should explore inter-individual variation. Our results provide some experimental 30 support for the biobehavioural feedback loop hypothesis, which posits that some functions of the 31 oxytocin system support the formation and maintenance of social bonds through a positive 32 feedback loop; however, further tests with a larger number of individuals are required. Our results, 33 at a minimum, demonstrated that oxytocin affects spontaneous, naturalistic social interactions of 34 at least some female bonobos, adding to accumulating evidence that oxytocin modulates complex 35 social behaviors of Pan.

Keywords: Oxytocin, bonobos, social bonding, biobehavioural feedback loop, social grooming, *Pan paniscus*

39 Introduction:

40	Oxytocin is a hormone neuropeptide conserved through mammalian evolution and plays diverse
41	roles in regulating social behaviors across species. Among non-human great apes, the majority of
42	studies have been conducted through measurement of urinary oxytocin following key social
43	behaviours. Crockford et al. [1] showed that urinary oxytocin levels in wild chimpanzees increase
44	following social grooming, a key socio-positive behavior widely present in nonhuman primates,
45	and proposed that a positive feedback loop through oxytocin may have evolved to support social
46	bonding in this species. Relatedly, Moscovice et al. [2] found that urinary oxytocin levels in wild
47	female bonobos increased following same-sex sexual behaviour, genito-genital (GG) rubbing.
48	Bonobos also increased proximity and coalitionary support among females after GG-rubbing;
49	though it remains unclear if oxytocin played a direct role in these behavioural changes. Other
50	studies have additionally demonstrated that urinary oxytocin in chimpanzees rises after food
51	sharing [3], reconciliation [4], border patrols [5,6], and group hunting [5,7], further suggesting its
52	importance to social bonds and coordination.

53 In several primate species, studies have demonstrated exogenous oxytocin can impact a 54 wide range of social behaviours (reviewed in [8]). In macaques, several studies have demonstrated 55 that oxytocin alters social gaze, such as increased attention to eyes [9], reduced attention to 56 negative and fearful facial expressions [10] as well as social threats [11], and more gaze following 57 [12]. In one of the first to test the effect of oxytocin in spontaneous social behaviour among 58 multiple macaques, although still confined to primate chairs in a laboratory setting, Jiang and Platt 59 [13] found evidence that oxytocin flattened the dominance hierarchy and enhanced synchrony of 60 mutual gaze. Marmosets similarly showed an increase in attention to eyes [14] following oxytocin

administration and an increase in anxiety and vigilance following administration of an oxytocin
antagonist [15]. Another study found that oxytocin promoted huddling in marmosets, while an
oxytocin antagonist reduced social proximity and huddling [16]. On the other hand, in capuchin
monkeys oxytocin was found to reduce food sharing through increasing interindividual distance
[17]; the authors interpreted these results as derived from oxytocin's anxiolytic effect, which
increased social distance and thereby decreased opportunities for food sharing [17].

67 The results of three studies measuring behaviour following oxytocin administration in non-68 human great apes were mixed. Proctor et al. [18] administered oxytocin to eight chimpanzees 69 individually for one trial each in both saline and oxytocin conditions then observed them in their 70 regular social groups. Although they did not find significant effects for any behaviours measured. 71 the authors note that it may be due to methodological issues, such as in establishing an effective 72 dose of oxytocin for chimpanzees or influence from groupmates who did not receive oxytocin 73 before social interaction. Hall et al. [19] similarly found no effect of oxytocin when chimpanzee 74 dyads were administered oxytocin or saline placebo and subsequently tested in a token exchange 75 task. Each participant chose one of two tokens to exchange and received rewards based on the 76 choice of both participants in distributions based on games such as the prisoner's dilemma and 77 hawk-dove. However, although this study administered oxytocin to a dyad, the authors reported 78 the same methodological concerns for the oxytocin administration procedure as well as a 79 confound between experimental condition and order. No clear patterns emerged in either the 80 placebo or oxytocin conditions, limiting interpretation of oxytocin's possible effect. On the 81 contrary to these studies reporting null results, Brooks et al. [20] found that oxytocin enhanced 82 species-typical social gaze, increasing eye contact in bonobos but not chimpanzees, indicating that

oxytocin can modulate gaze behaviour. While the species difference in Brooks et al. cannot be
attributed to differences in oxytocin administration procedure, it remains unclear whether the lack
of effect in Proctor et al. and Hall et al. is due to methodology of oxytocin administration or that
exogenous oxytocin fails to significantly affect chimpanzee real-life social interaction.

87 Therefore, currently there is no study demonstrating that the administration of oxytocin 88 affects spontaneous social interactions of nonhuman great apes, leaving it unclear whether 89 oxytocin does cause any change in key social behaviors of great apes or just is correlated with 90 those behaviors. Moreover, the biobehavioural feedback loop hypothesis suggests that an 91 oxytocin positive feedback loop has evolved to support Pan social bonding [1]. Although it is 92 central to this hypothesis that both socio-positive interactions cause oxytocin release and that 93 oxytocin can lead to socio-positive interactions, there is no direct evidence showing that oxytocin 94 promotes any socio-positive interaction in Pan.

95 Given recent progresses in this line of research, it is worthwhile to test whether oxytocin 96 promotes key social behaviours related to social bonding in *Pan* using the updated methods of 97 oxytocin administration. While previous studies with chimpanzees administered oxytocin to one 98 individual or a dyad at a time, and subsequently observed the social interaction between this 99 individual and group mates, we were able to administer oxytocin to whole subgroups of female 100 bonobos simultaneously. For practical reasons, we could only test bonobos (not chimpanzees) in 101 this study design, though similar future work on chimpanzees will also be necessary. In this study, 102 we administered nebulized oxytocin or saline placebo to female bonobos following the methods 103 employed in Brooks et al. [20] and subsequently observed the change in their gross interactive

104 behavior, including grooming and GG-rubbing, as well as other noninteractive behaviours during

105 their free interaction.

107 Methods:

108 Ethics statement:

109	All bonobo participants received regular feedings, daily enrichment, and had ad libitum access to
110	water. No change was made to their daily care routine for the purpose of this study. Apes were
111	never restrained at any point. We carefully considered the safety of the oxytocin administration as
112	in previous studies. Again, we based this decision on the fact that 1) oxytocin is often administered
113	to human children and adults, 2) oxytocin is active for only a short period of time following
114	administration, 3) oxytocin is naturally produced in bonobos and chimpanzees following relevant
115	behaviors [1,2] , and 4) no previous studies administering oxytocin intranasally to chimpanzees or
116	bonobos reported any agonistic interaction [18–20]. All female bonobos were taking birth control
117	(details can be found in supplementary material) and thus no bonobos were pregnant at any time
118	during the course of this experiment. Ethical approval number was WRC-2020-KS014A. This study
119	complied with the American Society of Primatologists Principles for the Ethical Treatment of Non-
120	Human Primates, as well as all applicable laws in the country where it was conducted.
121	

122 Participants:

Four adult female bonobos at Kumamoto Sanctuary participated in this research. Details about participant ages and rearing histories can be found in supplementary material (Table S1). Animals were not food or water deprived at any time and were given both physical and social environmental enrichment in their daily life. The bonobos live in a dynamic grouping structure where three of the four females are together on any given day, and the fourth is with two male

128	bonobos. These two males were not involved in this study because one male refuses to participate
129	in any oxytocin experiments, and our aim was to test whole groups at a time with the same
130	condition. Three of the females join the male bonobos with varying frequency, while the fourth
131	(Lenore) is always with other female bonobos. Individuals thus had a varying number of trials, with
132	Lenore having the most due to never joining the male group (24 trials), followed by Lolita (20
133	trials), followed by Louise and Ikela (14 trials each) who are most often with the males. Transfers
134	between groups typically occur in the evening and are kept consistent for at least one day and up
135	to one week. The bonobos therefore had been in the same grouping structure for the whole day
136	prior to the start of experiments.
137	
138	Administration procedure:
139	Oxytocin administration procedures followed Brooks et al. [20]. Briefly, oxytocin was dissolved in
139 140	Oxytocin administration procedures followed Brooks et al. [20]. Briefly, oxytocin was dissolved in saline at a concentration of 40IU/mL. The oxytocin solution or placebo control was nebulized into

143 the administration period). We paused counting the time while apes' noses were outside the box.

144 Participation to this administration was voluntary. Three of the bonobos could simultaneously

participate in oxytocin administration in their typical enclosure, while the fourth (lkela) preferred

to move to another room to participate in the administration procedure. Thus, on days when Ikela

- 147 was in the group, we first completed the administration procedure with Ikela (accompanied by
- 148 other participant bonobos), and then returned her to the home enclosure with the other
- 149 participant bonobos; the other participant bonobos were then administered oxytocin (or saline

150	placebo control). On days when Ikela was not in the group, all participants were administered
151	oxytocin (or saline placebo) in their home enclosure. All group members received the same
152	condition (saline placebo or oxytocin) on any given day of experiments and finished administration
153	procedures within 30 minutes of one another.
154	One trial was performed in an experimental day. The order of conditions was pseudorandomized
155	such that the same condition (placebo and oxytocin) never occurred more than twice in
156	consecutive trials (experimental days) and that the same number of trials were conducted for
157	placebo and oxytocin condition for each participant and for each grouping structure. We had a
158	minimum of 2 days between trials to avoid any possible carryover effect of oxytocin. On each
159	experimental day, the experiment was performed between 11:00 and 12:15, and the observation
160	window therefore started between 11:30 and 12:45. Experimental days followed the same feeding
161	schedule; bonobos were fed breakfast around 9:00, and additional greenery is available for
162	foraging throughout the day. Experiments took place over five calendar months across two
163	calendar years.
164	

165 Observation procedure:

166 Observation began 30 minutes after completion of administration procedures to the last individual,

and lasted for one hour. This window was chosen based on previous studies [8], where oxytocin's

168 effect is typically measured in the window between 30 minutes and 2 hours after completion of

- administration procedures. In our experiment, the last individual to complete administration
- 170 procedures was always within 30 minutes of the first individual to finish, and thus all participants

171	were observed for one hour, starting and finishing between 30 minutes and 2 hours following
172	completion of administration procedures on any given day. We chose this window in order to
173	maximize data collection within the active window of oxytocin while ensuring consistency
174	between trials and participants, where observation windows were kept constant at 1 hour per trial
175	and all data points for all individuals were within the 30 minutes to 2 hour window employed in
176	previous studies.
177	Observation methods combined scan and event sampling. Specifically, every 2 minutes,
178	interindividual proximity was estimated for each dyad into one of four categories; in contact,
179	within arm's reach (one individual could extend their arm to touch the other), < 3 meters, and > 3
180	meters. In addition, at the same 2 minute intervals, we coded each individual's behaviour
181	(grooming - including direction and partner(s), resting, self-directed behaviour, moving, eating).
182	Finally, we recorded all occurrences of play, GG-rubbing, abnormal behaviour (in this group
183	primarily regurgitation and reingestion), and aggression towards groupmates (including displays).
184	We additionally recorded any agonistic or socio-sexual behaviour during the administration
185	procedures and during the 30 minutes before the formal observation window to check if the
186	presence of such interactions could account for our results. No agonistic behaviour was observed,
187	and GG-rubbing occurred on 4 trials during administration procedure, on 2 trials before oxytocin
188	condition and 2 trials before saline placebo condition.
189	Analysis

All analyses were conducted in R [27]. Behavioural scan data was analyzed with binomial GLMMs
(Generalized Linear Mixed Models) with package Ime4 [28], where each individual at each

192	sampling point was characterized as either engaged in (1) or not engaged in (0) a given behaviour.
193	The model included a fixed effect of condition as a test effect and also fixed effects of time, the
194	square of time (time ²) and grouping structure (where a unique value was given for each possible
195	combination of individuals) as control effects. The model also included random effects of
196	participant and day (a factor with a unique value for each experimental day), as well as random
197	slopes of each fixed effect for each random effect. Numeric effects were z-transformed to have a
198	mean of 0 and the standard deviation of 1. Random slope structure was kept maximal, except that
199	the interaction between random slopes and intercepts was removed due to issues with
200	convergence [29]. The model structure was thus: behaviour \sim condition + time + time ² + group + (1
201	+ group + condition + time + time ² individual) + (1 + group + condition + time + time ² day).
202	For all GLMMs we checked model stability by comparing our models to those which
203	excluded levels of the random effects one at a time. We additionally calculated odds ratio (OR)
204	estimates and 95% confidence intervals for all significant effects. For the grooming data, we
205	analyzed rates of active grooming (giving or mutual grooming) on the individual level, where
206	receiving grooming was valued as 0 for not actively grooming another individual. Given

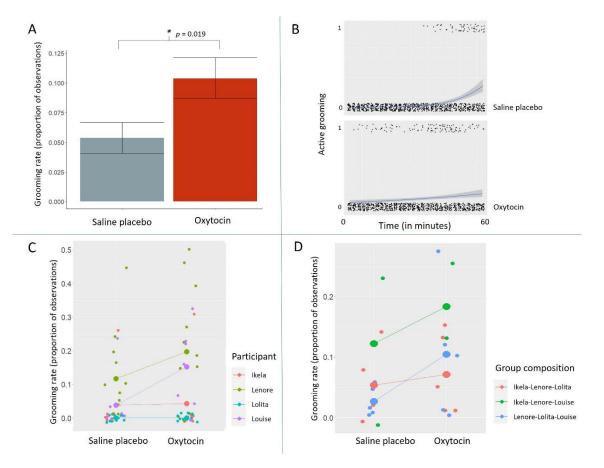
207 considerable inter-individual variation observed by visual inspection of the data, we additionally

tested each individual with the same model structure for significant effects (without the random

effect of participant). We here used a significance threshold of 0.0125 (0.05/4) to correct for

210 multiple testing at the individual level. Finally, we ran models excluding each level of participant to

211 check the overall model stability.


212 Proximity data was analyzed using a CLMM (cumulative link mixed model) on ordinal data
213 using the package "ordinal" [30]. Fixed and random effect structures were the same as those in

214	the behavioural scan data a	alveis avce	nt for the individual	narticinant var	iable was replaced by
Z14	the behavioural scall data a	ialysis, exce	putor the mulvidual	participarit var	able was replaced by

- 215 dyad (a unique value for each dyad), and the addition of two random effects to represent the two
- 216 individuals within a dyad (randomly distributed as individual variable 1 and 2).
- 217 All occurrence data was analyzed with a binomial GLMM, where each individual for each
- 218 day was characterized as having engaged in (1) or not engaged in (0) a given behaviour. The fixed
- and random effect structure was the same as in the scan behaviour models, except for the time
- 220 variables were removed due to data being summarized across a given observation day. Model
- syntax for all model types can be found in supplemental material.
- For all models, statistical significance of effects was calculated using a likelihood ratio test(using the "drop1" function in R).
- 224

225 Results

- 226 Our model with active grooming as response revealed a significant effect of condition (oxytocin,
- saline placebo; β = 1.16, SE = 0.49, χ^2 = 5.47, p = 0.019, OR = 3.18 (95% CI: 1.23, 8.23); Table 1,
- Figure 1). In our stability check analysis excluding each participant one-by-one in the model, the
- 229 effect of oxytocin on grooming was significant in all models except for that excluding Louise
- 230 (excluding lkela: β = 0.79, SE = 0.31, χ^2 = 5.27, p = 0.022; excluding Lenore: β = 1.28, SE = 0.64, χ^2 =
- 231 8.97, *p* = 0.0027; excluding Lolita: β = 0.88, SE = 0.36, χ^2 = 5.06, *p* = 0.025; excluding Louise: β =
- 232 0.59, SE = 0.37, χ^2 = 2.34, p = 0.13). In our individual-level analysis of grooming, we found a
- significant effect of condition only for Louise using a significance threshold of 0.0125 (lkela: β =
- 234 0.86, SE = 1.51, χ^2 = 0.24, p = 0.63; Lenore: β = 0.79, SE = 0.35, χ^2 = 4.61, p = 0.032; Lolita: model
- could not run (as Lolita never actively groomed in our dataset); Louise: $\beta = 1.15$, SE = 0.40, $\chi^2 =$
- 236 9.09, *p* = 0.0026).

238

Figure 1: Rates of active (giving) grooming in the oxytocin and saline placebo conditions over the

observation window. A) Absolute rates of grooming across all trials and participants B) Time

course of grooming by condition, 1 represents giving grooming and 0 represents not giving
 grooming C) Grooming rates by participant and condition (small circles represent grooming rates

by trial, large circles represent mean grooming rates across trials) D) Grooming rates by group

structure by condition (small circles represent grooming rates by trial, large circles represent mean

245 grooming rates across trials).

246

Table 1; Details of grooming and self-directed behaviour models with significant terms in bold.

Response	Term	Estimate [®] ± [®] SE	χ^2	df	р
Active grooming	(Intercept)	-15.57±6.29			
	Test predictors:				
	Condition	1.156±0.49	5.47	1 0	.019*
	Control predictors:				
	Group		4.73	20	.094.

	lkela-Lenore-Louise	12.61±6.29			
	Lenore-Lolita-Louise	8.14±6.70			
	Time (time + time^2)	1.59±0.44	9.15	1	0.0025*
Self-directed behaviour	(Intercept)	-2.81±0.60			
	Test predictors:				
	Condition	-0.33±0.14	5.16	1	0.018*
	Control predictors:				
	Group		3.09	2	0.21
	lkela/Lenore/Louise	-0.094±0.53			
	Lenore/Lolita/Louise	0.75±0.53			
	Time	-0.31±0.13	4.42	1	0.035*

248

249

250 There was also a significant reduction in self-directed behaviour in the oxytocin compared to placebo condition (β = -0.33, SE = 0.14, χ^2 = 5.16, p = 0.018, OR = 0.72 (95% CI: 0.54, 0.94); Table 1). 251 252 In our stability check analysis excluding each participant one-by-one in the model, the effect of 253 oxytocin on self-directed behaviour was significant in the model excluding Lenore and the model excluding Lolita (excluding lkela: β = -0.26, SE = 0.13, χ^2 = 3.52, p = 0.061; excluding Lenore: β = -254 255 0.41, SE = 0.14, χ^2 = 8.89, p = 0.0029; excluding Lolita: β = -0.51, SE = 0.16, χ^2 = 9.81, p = 0.0017; excluding Louise: $\beta = -0.34$, SE = 0.17, $\chi^2 = 3.65$, p = 0.056). In our individual-level analysis, we 256 found a significant effect only for Ikela using a significance threshold of 0.0125 (Ikela: β = -0.71, SE 257 = 0.21, χ^2 = 12.19, p = 0.00048; Lenore: β = -0.15, SE = 0.28, χ^2 = 0.27, p = 0.60; Lolita: β = -0.59, SE 258 = 0.24, χ^2 = 5.58, p = 0.018; Louise: β = -0.58, SE = 0.41, χ^2 = 2.48, p = 0.11). 259

260 There were no significant differences in interindividual proximity (β = -0.15, χ^2 = 0.32, p = 0.57),

frequency of the abnormal behaviour regurgitation and reingestion (β = -1.05, SE = 0.66, χ^2 = 2.65,

262 p = 0.10), or rate of rest ($\beta = -0.10$, SE = 0.18, $\chi^2 = 0.34$, p = 0.56) between the oxytocin and placebo

- 263 condition. Bonobos engaged in GG-rubbing only once (oxytocin condition) and displayed no
- aggression toward groupmates or any bouts of play during the observation period. See
- 265 supplementary material Table S2 for full details of all models.

267 Discussion:

268	We found that the grooming rates of captive female bonobos were higher in the oxytocin
269	compared to saline placebo condition, consistent with the predictions of the biobehavioural
270	feedback loop hypothesis of oxytocin in bonobo social bonding. However, when conducting
271	individual-level analyses this was only significant after correcting for multiple testing in one
272	participant (Louise). There was no significant effect of oxytocin on inter-individual proximity,
273	suggesting the increased rate of grooming is not merely a consequence of increased proximity.
274	The bonobos also engaged in self-directed behaviour less in the oxytocin compared to placebo
275	condition (though again this was significant on an individual level in just one participant - Ikela),
276	which is potentially related to its anxiolytic effect, though it should be noted we did not distinguish
277	between kinds of self-directed behaviours such as self-scratching or self-grooming which may have
278	different relations to stress. The proportion of rest and frequency of regurgitation and reingestion
279	did not differ between conditions, while GG-rubbing, play, and aggression were rarely or never
280	observed during our 1-hour observation window, likely due to low overall tension, precluding
281	formal analysis.

282 Despite our overall model showing an increase in grooming in the oxytocin condition, our 283 individual-level analyses revealed only one individual, Louise, a 48-year-old female bonobo 284 relatively dominant to other groupmates. Lenore, a 38-year-old, also groomed groupmates more 285 in the oxytocin compared to the saline condition, but was not significant after correcting for 286 multiple testing. Ikela, a 29-year-old, groomed slightly more, but this effect was also not significant. 287 Lolita was never observed actively grooming throughout our experiment, and thus her rate of 288 grooming was completely unchanged by oxytocin. Future studies are needed to examine what

289	factors drive these potential individual differences. It is also important to note that given social
290	grooming necessarily requires a grooming partner, and given our experimental design
291	administering the same condition to all group members simultaneously, oxytocin's effect on the
292	group may not be entirely reducible to the individual level. Oxytocin may as a whole promote a
293	group dynamic more conducive to grooming, which is measurable in the behaviour of certain key
294	individuals. This possibility can be directly tested by administering oxytocin compared to saline
295	placebo only to Louise, and always saline placebo to others, and examining if the same effect is
296	found.

297 Although we addressed some previous methodological issues, there are several important 298 limitations in this study. Due to limited possibility of testing, enclosures suitable for detailed 299 observation, and some apes' willingness to join experiments, the sample was limited to four adult 300 female bonobos. Moreover, previous work has indicated sex-specific effects of oxytocin [31–33], 301 and thus it remains unclear whether our results can be generalized to different sex pairs, though it 302 should be noted that Crockford et al. [1] did not find significant differences between female-303 female, female-male, and male-male dyads in urinary oxytocin level following grooming in wild 304 chimpanzees. We also could not investigate the possible effect of different dominance rank, 305 rearing history, age, or genetic background contributing to differences in the amount of change 306 between conditions across individuals, which should be directly explored in the future. Moreover, 307 the small number of participants did not enable us to test the effect of existing social bond 308 strength and relatedness among groupmates, which may interact with the observed increase in 309 grooming.

310	Finally, while we found an effect of oxytocin on rates of social grooming at least in some
311	individuals, we did not find any effect on rates of GG-rubbing. An increase in urinary oxytocin
312	following GG-rubbing was reported by Moscovice et al.'s [2]. We observed GG-rubbing just once in
313	the experiment's observation window. GG-rubbing is typically infrequent in our study group of
314	bonobos, particularly under normal conditions in their home environment as in our main
315	observational window. Floor effects may thus be responsible for the lack of an effect, and future
316	studies focused on contexts where GG-rubbing is more likely to occur (e.g., feeding, reunions) will
317	be necessary to determine whether or not oxytocin increases propensity to engage in GG-rubbing
318	in female bonobos.
319	In conclusion, we found that exogenous oxytocin promotes social grooming in at least
320	some female bonobos when administered to the whole group. Although much future work is
321	necessary, our results demonstrate that oxytocin does affect a socio-positive behavior of a Pan
322	species during spontaneous, naturalistic social interactions, filling some gap between both
323	previous field studies on ape urinary oxytocin and experimental administration studies on non-ape
324	species. Moreover, although limited, our finding offers some experimental evidence for the
325	biobehavioural feedback loop hypothesis for oxytocin in bonobo social bonding when combined
326	with previous research showing increased urinary oxytocin in bonobos and chimpanzees following
327	socio-positive interaction [1,2] (note also that while peripheral measures such as urinary
328	measurement allow non-invasive data on primates, central oxytocin release following specific
329	social behaviours has also been found in rodents [34]). Future work should test a larger number of
330	individuals to test potential differences in oxytocin's effect between species, should examine inter-
331	individual variation with respect to social closeness and centrality, and should study how social

332	contexts such as feeding tension interact with this effect. Our results, at minimum, demonstrate
333	that oxytocin can affect socio-positive behaviour in at least some bonobo individuals during
334	natural social interactions, adding to accumulating evidence on its importance to <i>Pan</i> sociality.
335	
336	
337	Acknowledgements:
338	We thank the bonobos at Kumamoto Sanctuary for participating in this study. We also thank
339	Etsuko Nogami and the other caretakers at Kumamoto Sanctuary for their support throughout this
340	project, Dr. Satoshi Hirata for his advice and support, and Dr. Yutaro Sato for helping in data
341	collection. This study was funded by Japan Society for the Promotion of Science (KAKENHI
342	#21J21123 to J.B., #19H01772 and #20H05000 to F.K., and #19H00629, #22H05653, and
343	#22H04451 to S.Y.)

344 References:

345	1.	Crockford C, Wittig RM, Langergraber K, Ziegler TE, Zuberbühler K, Deschner T: Urinary
346		oxytocin and social bonding in related and unrelated wild chimpanzees. Proceedings of the
347		Royal Society B: Biological Sciences 2013, 280 :20122765.

- Moscovice LR, Surbeck M, Fruth B, Hohmann G, Jaeggi A V., Deschner T: The cooperative
 sex: Sexual interactions among female bonobos are linked to increases in oxytocin,
 proximity and coalitions. Hormones and Behavior 2019, 116:104581.
- Wittig RM, Crockford C, Deschner T, Langergraber KE, Ziegler TE, Zuberbühler K: Food
 sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild
 chimpanzees. Proceedings of the Royal Society B: Biological Sciences 2014, 281:20133096.
- Preis A, Samuni L, Mielke A, Deschner T, Crockford C, Wittig RM: Urinary oxytocin levels in
 relation to post-conflict affiliations in wild male chimpanzees (Pan troglodytes verus).
 Hormones and Behavior 2018, 105:28–40.
- Samuni L, Preis A, Mundry R, Deschner T, Crockford C, Wittig RM: Oxytocin reactivity during
 intergroup conflict in wild chimpanzees. Proceedings of the National Academy of Sciences
 2017, 114:268–273.
- Samuni L, Preis A, Deschner T, Wittig RM, Crockford C: Cortisol and oxytocin show
 independent activity during chimpanzee intergroup conflict. *Psychoneuroendocrinology* 2019, 104:165–173.
- 363 7. Samuni L, Preis A, Deschner T, Crockford C, Wittig RM: Reward of labor coordination and
 364 hunting success in wild chimpanzees. Communications Biology 2018, 1:138.
- Bauman MD, Murai T, Hogrefe CE, Platt ML: Opportunities and challenges for intranasal
 oxytocin treatment studies in nonhuman primates. American Journal of Primatology 2018,
 80:1–8.
- 368 9. Dal Monte O, Noble PL, Costa VD, Averbeck BB: Oxytocin enhances attention to the eye
 369 region in rhesus monkeys. Front Neurosci 2014, 8:41.
- Parr LA, Modi M, Siebert E, Young LJ, Rd G: Intranasal oxytocin selectively attenuates rhesus
 monkeys' attention to negative facial expressions. *Psychoneuroendocrinology* 2013,
 doi:10.1016/j.psyneuen.2013.02.011.
- Ebitz RB, Watson KK, Platt ML: Oxytocin blunts social vigilance in the rhesus macaque.
 Proceedings of the National Academy of Sciences 2013, 110:11630–11635.
- Putnam PT, Roman JM, Zimmerman PE, Gothard KM: Oxytocin enhances gaze-following
 responses to videos of natural social behavior in adult male rhesus monkeys.
 Psychoneuroendocrinology 2016, 72:47–53.

378 379	13.	Jiang Y, Platt ML: Oxytocin and vasopressin flatten dominance hierarchy and enhance behance behavioral synchrony in part via anterior cingulate cortex. Scientific Reports 2018, 8:1–14.
380 381 382 383	14.	Kotani M, Shimono K, Yoneyama T, Nakako T, Matsumoto K, Ogi Y, Konoike N, Nakamura K, Ikeda K: An eye tracking system for monitoring face scanning patterns reveals the enhancing effect of oxytocin on eye contact in common marmosets . <i>Psychoneuroendocrinology</i> 2017, 83 :42–48.
384 385 386	15.	Cavanaugh J, Carp SB, Rock CM, French JA: Oxytocin modulates behavioral and physiological responses to a stressor in marmoset monkeys . <i>Psychoneuroendocrinology</i> 2016, 66 :22–30.
387 388 389	16.	Smith AS, Ågmo A, Birnie AK, French JA: Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata . <i>Hormones and Behavior</i> 2010, 57 :255–262.
390 391 392	17.	Brosnan SF, Talbot CF, Essler JL, Leverett K, Flemming T, Dougall P, Heyler C, Zak PJ: Oxytocin reduces food sharing in capuchin monkeys by modulating social distance. <i>Behaviour</i> 2015, 152 :941–961.
393 394 395	18.	Proctor D, Calcutt SESE, Burke K, de Waal FBMFBM: Intranasal Oxytocin Failed to Affect Chimpanzee (Pan troglodytes) Social Behavior. Animal behaviour and cognition 2016, 3 :150–158.
396 397 398	19.	Hall K, Smith M, Russell JL, Lambeth SP, Schapiro SJ, Brosnan SF: Chimpanzees Rarely Settle on Consistent Patterns of Play in the Hawk Dove, Assurance, and Prisoner's Dilemma Games, in a Token Exchange Task. <i>Animal behavior and cognition</i> 2019, 6:48–70.
399 400 401	20.	Brooks J, Kano F, Sato Y, Yeow H, Morimura N, Nagasawa M, Kikusui T, Yamamoto S: Divergent effects of oxytocin on eye contact in bonobos and chimpanzees . <i>Psychoneuroendocrinology</i> 2021, 125 :105119.
402 403	21.	Nagasawa M, Okabe S, Mogi K, Kikusui T: Oxytocin and mutual communication in mother- infant bonding. <i>Frontiers in Human Neuroscience</i> 2012, 6 :31.
404 405	22.	Rilling JK, Young LJ: The biology of mammalian parenting and its effect on offspring social development . <i>Science</i> 2014, 345 :771–776.
406 407 408	23.	Da Costa APC, Guevara-Guzman RG, Ohkura S, Goode JA, Kendrick KM: The Role of Oxytocin Release in the Paraventricular Nucleus in the Control of Maternal Behaviour in the Sheep . <i>Journal of Neuroendocrinology</i> 1996, 8 :163–177.
409 410	24.	Insel TR, Young LJ: The neurobiology of attachment . <i>Nature Reviews Neuroscience</i> 2001, 2 :129–136.

- 411 25. Nagasawa M, Ogawa M, Mogi K, Kikusui T: Intranasal Oxytocin Treatment Increases Eye412 Gaze Behavior toward the Owner in Ancient Japanese Dog Breeds. Frontiers in Psychology
 413 2017, 8:1624.
- 414 26. Nagasawa M, Mitsui S, En S, Ohtani N, Ohta M, Sakuma Y, Onaka T, Mogi K, Kikusui T:
 415 Oxytocin-gaze positive loop and the coevolution of human-dog bonds. *Science* 2015,
 416 348:333–336.
- 417 27. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
 418 Statistical Computing 2019,
- 419 28. Bates D, Mächler M, Bolker B, Walker S: Fitting Linear Mixed-Effects Models Using {Ime4}.
 420 Journal of Statistical Software 2015, 67:1–48.
- 421 29. Barr DJ, Levy R, Scheepers C, Tily HJ: Random effects structure for confirmatory hypothesis
 422 testing: Keep it maximal. *Journal of Memory and Language* 2013, 68:255–278.
- 423 30. Christensen RHB: ordinal: Regression Models for Ordinal Data. 2019,
- 424 31. Gao S, Becker B, Luo L, Geng Y, Zhao W, Yin Y, Hu J, Gao Z, Gong Q, Hurlemann R, et al.:
 425 **Oxytocin, the peptide that bonds the sexes also divides them.** *Proceedings of the National*426 *Academy of Sciences of the United States of America* 2016, **113**:7650–4.
- 427 32. Caldwell HK: Oxytocin and sex differences in behavior. Current Opinion in Behavioral
 428 Sciences 2018, 23:13–20.
- 33. Dumais KM, Bredewold R, Mayer TE, Veenema AH: Sex differences in oxytocin receptor
 binding in forebrain regions: Correlations with social interest in brain region- and sex specific ways. Hormones and Behavior 2013, 64:693–701.
- 432 34. Neumann ID, Landgraf R: Balance of brain oxytocin and vasopressin: implications for
 433 anxiety, depression, and social behaviors. *Trends in Neurosciences* 2012, 35:649–659.
 - anxiety, depression, and social benaviors. Trends in Neurosciences 2012