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Abstract

Theories on the evolutionary origins of altruistic behavior have a long history and have become a canonical
part of the theory of evolution. Nevertheless, the mechanisms that allow altruism to appear and persist are still
incompletely understood. The spatial structure of populations is known to be an important determinant. In
both theoretical and experimental studies, much attention has been devoted to populations that are subdivided
into discrete groups. Such studies typically imposed the structure and dynamics of the groups by hand. Here,
we instead present a simple individual-based model in which organisms spontaneously self-organize into
spatially separated colonies that themselves reproduce by binary �ssion and hence behave as Darwinian
entities in their own right. Using software to automatically track the rise and fall of colonies, we are able
to apply formal theory on multilevel selection and thus quantify the within- and among-group dynamics.
This reveals that individual colonies inevitably succumb to defectors, resulting in within-colony “tragedies
of the commons”. Even so, altruism persists in the population because more altruistic colonies reproduce
more frequently. The emergence of the colonies themselves depends crucially on the length scales of motility,
altruism, and competition. This recon�rms the general relevance of these scales for social evolution, but also
stresses that their impact can only be understood fully in the light of the emergent eco-evolutionary spatial
patterns. The results also demonstrate that emergent spatial population patterns can function as a starting
point for transitions of individuality.
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1 Introduction1

Over the past decades, a rich body of theoretical research has been devoted to the evolution of social behaviors [1,2

2]. In particular, much theory has focused on the evolution of cooperation [3, 4], and more narrowly, altruism [5,3

6]: behavior that is costly to the actor but bene�cial to its interaction partners. Historically, how natural selection4

could favor altruism has been a puzzle, but in broad terms the solution has long been understood: altruism can5

be selected if its bene�ts accrue disproportionately to altruists, thus o�setting their costs [3, 7–9]. Nevertheless,6

the mechanisms that allow such an interaction structure to exist and persist are still a matter of intense study7

and debate [4].8

Many classical studies considered populations that are subdivided into distinct groups (e.g., [10–14]). In such a9

group or “multilevel” structure, altruistic behavior can be selected provided altruists tend to be grouped together10

and groups with a higher proportion of altruists tend to have higher mean �tness [11]. In nearly all theoretical11

models of multilevel selection, the group structure and group-level dynamics are imposed or presupposed by the12

de�nition of the model. In contrast, we here present a very simple individual-based model in which altruistic13

organisms self-organize into discrete colonies. Moreover, these colonies themselves spontaneously reproduce by14

growth and binary �ssion and hence act as Darwinian entities in their own right. In time, each individual colony15

is fated to collapse; but when it does, another colony grows and divides, giving rise to the kind of multi-level16

dynamics that in previous models had to be imposed by hand [14]. Such rudimentary, emergent higher-level17

entities could be a �rst step towards a full “transition of individuality” [15].18

The model describes a spatial environment inhabited by motile organisms that reproduce and interact locally.19

As has long been known, local interactions combined with local mating and reproduction can foster altruism20

if motility is limited, because this allows altruists to aggregate in assorted neighborhoods where they mainly21

bene�t each other [16–18]. However, mathematical and computational models have revealed an important22

limitation [19–22]. If not only social interactions but also competitive interactions take place locally (“soft”23

selection [23, 24]), altruists in assorted domains tend to compete with other altruists, in which case the bene�ts24

of altruism may be largely or fully canceled by the concomitant increased competition. This local Malthusian25

trap is alleviated somewhat if the local carrying capacity increases with the proportion of altruists (“elastic”26

selection), which allows clusters of altruists to become net population sources [25]. Importantly, it can also be27

avoided if competitive interactions reach beyond the social group or neighborhood, so that clusters of altruists28

can support each other at the expense of others [17, 19, 22, 26]. This highlights the importance of the relative29

scales of motility, altruism, and competition [1]. As a rule, altruism is favored by limited motility and local social30

interactions, but global competition.31

Long-range competition can come in many implicit forms. For instance, the life cycle of organisms may32

include a dispersal stage such that individuals can �rst cooperate with relatives and then compete with non-33

relatives [19], or the group dynamics may include a global mixing stage in which groups or neighborhoods are34

periodically fragmented and new ones are seeded [27–29]. To study the e�ects of the scales of motility, altruism35

and competition systematically, the model presented here is deliberately designed such that these scales can be36

set explicitly and independently. As it turns out, their role is much more intricate than anticipated because they37

play an essential role in the emergence of the colonies and hence in the resulting multilevel eco-evolutionary38
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Figure 1. Illustration of the model. (a) The model considers a population of individuals, here represented as circles,
in an explicitly spatial habitat. Individuals reproduce, die, and move stochastically, and are characterized by their level
of altruism, indicated in color. Altruism is costly to the actor, but bene�cial to recipients: it increases their reproduction
rate. (b) For concreteness, imagine that each altruist produces a public good and secretes it locally. The contribution of a
particular altruist to the concentration of public good falls with the distance (green curve) and increases with the level of
altruism of the actor (vertical arrow). At the same time, individuals compete for a limiting resource: the reproduction rate
of each individual is inhibited by each individual in its neighborhood (red curve). The scale of altruism �a and the scale
of resource competition �rc are indicated. (c & d) The competition experienced at any coordinate (panel c, red contour
plot) and the availability of public good at any position (panel d, green contour plot) are obtained by summing up the
contributions of all individuals.

dynamics.39

To quantitatively analyze model simulations, we use software that automatically tracks the rise and fall40

of colonies. Subsequently, we apply existing formal theory to quantify the contributions to selection at the41

individual and colony levels. This demonstrates that, within colonies, natural selection favors defectors who42

pro�t from the altruists in their neighborhood but do not share in the costs. But colonies characterized by a43

higher average level of altruism survive longer and reproduce more frequently, resulting in positive selection at44

the colony level. The steady level of altruism that eventually establishes can be understood as a balance between45

these forces: a perpetual “tragedy of the commons” [30] within colonies, compensated by positive selection46

among them.47

2 Results48

2.1 Brief description of the model49

We start with a brief speci�cation of the model; details are supplied in the Methods.50

The model considers a population of discrete individual in a two-dimensional (2D) or one-dimensional (1D)51

habitat (see Fig. 1a). Individuals possess just one continuous trait �, representing their investment in altruistic52

behavior, and they do only three things: move, in an unbiased fashion modeled by di�usion; die, at a constant53

(Poisson) rate; and reproduce asexually.54

The rate of reproduction of each individual depends on three quantities. First, it decreases with the individual’s55

own investment in altruism: altruism is costly. A level of altruism of � = 0.05 means that the individual sacri�ces56

5% of its reproduction rate relative to a defector (� = 0) under the same conditions. Second, the reproduction rate57

also decreases with the population density in the individual’s local neighborhood. This models competition for58
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parameter symbol default (2D) default (1D)
death rate d 1 1
scale of altruism �a 1 1
reproductive de�cit per unit of the trait value c 1 1
basal reproduction rate g0 5 5
scale of competition �rc 4 4
motility (di�usion) constant kD 4 × 10−2 3 × 10−2
factor scaling carrying capacity K 40 100
basal bene�t of altruism b0 1 0.5
maximal bene�t altruism bmax 5 2
mutation probability upon reproduction � 1 × 10−3 5 × 10−4
mean e�ect size of mutations m 5 × 10−3 5 × 10−3

scale of motility �m =
√
2kD/d 0.283 0.245

Table 1. Model parameters and their default values for simulations with the 1D and 2D habitat. Units of time, length, and
trait are de�ned such that the death rate d , the scale of altruism �a, and the reproductive de�cit per unit of the trait are 1.
All other parameters are expressed in these units.

resources and establishes a �nite carrying capacity. The local population density is measured as a Kernel Density59

Estimate (KDE) , using a normal distribution with standard deviation �rc as the kernel function. This means that60

individuals compete strongly with each other only if their spatial separation is of order �rc or less (see Fig. 1b,61

red line, and 1c), so that �rc can be interpreted as the scale of competition. Third, an individual’s reproduction62

rate increases if altruists are present in its local neighborhood (Fig. 1b, green line, and Fig. 1d). The altruism63

experienced at a given position y, denoted A(y), is again quanti�ed as a KDE, but now individuals are weighted in64

proportion to their level of altruism �. Although the model is not intended to mimic a speci�c altruistic behavior65

or mechanism, it is convenient to think of A(y) as the concentration of some public good secreted by altruistic66

organisms. If more and more public good is added to the local neighborhood, the bene�t eventually saturates.67

The standard deviation of the kernel function used to calculate A(y) is called �a and generally di�ers from �rc.68

Because individuals pro�t signi�cantly from the public good produced by others only if their separation is of69

order �a or less, �a can be interpreted as the scale of altruism.70

It is worth emphasizing that, contrary to some other models [31, 32], complete defectors (with � = 0) are71

perfectly viable; altruism is not required for the survival of the population.72

When an individual reproduces, the o�spring appears at the coordinates of the parent; afterwards, parent and73

o�spring move independently and thus part ways. O�spring usually inherits the trait value of the parent, but74

with a small probability a mutation occurs that increases or decreases it at random.75

In simulations, space and time are discretized, and periodic boundary conditions are imposed. Default76

parameter values are listed in Table 1. Throughout the text, the time unit is the inverse of the death rate, called77

the “generation time”. Importantly, the scale of altruism �a is used as the unit of length and hence �a = 1 by78

de�nition. Thus, just two length scales remain: the scale of competition �rc and the scale of motility, �m. The79

latter is de�ned as the typical (that is, root-mean-square) distance traveled by an individual in a generation time80

(see Methods).81
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2.2 Emergent colonies and multilevel dynamics in the 2D habitat82

The complex behavior of the simple model is illustrated in Fig. 2, which presents results of a single simulation83

run using a 2D habitat. These results are representative for the default parameters (see replicates in Fig. S1)84

but the parameters themselves have been chosen deliberately to enable the evolution of altruism. In particular,85

motility is slow and the scale of competition �rc is four times larger than the scale of altruism �a.86

As shown in Fig. 2a, all individuals are initialized as defectors, but in time the mean level of altruism steadily87

increases (thick colored line) before reaching a plateau. To con�rm that this rise is largely due to natural selection88

rather than random drift or mutational bias, we measured the cumulative contribution of natural selection (black89

line), which is consistently positive (also see Fig. S1 and Appendix A.2).90

The surprising spatial dynamics of the simulation are visualized in the snapshots of Fig. 2b and, more91

mesmerically, in Movies S1-3. While individuals are initially distributed uniformly at random, they spontaneously92

organize into dense colonies surrounded by “exclusion zones”. These colonies subsequently organize into a93

hexagonal pattern; to illustrate this, a hexagonal grid is overlaid in the right-most panel of Fig. 2b. To further94

characterize the pattern we determined the radial distribution function, which is de�ned as the distribution of95

distances between all pairs of individuals, normalized by the random expectation (Fig. 2c). The long-ranged96

oscillations in this distribution reveal a lattice constant of a ≈ 8.4, consistent with estimates based on the number97

of colonies found in the habitat (see Methods). The mechanism producing the pattern is analogous to that98

of the famous Turing patterns in reaction–di�usion systems [33], as will discuss in some detail below and in99

Appendix B.100

The pattern, however, is not static. In Fig. 2d, enlargements are shown of a small region of the habitat.101

Consider the colony marked by the red circle. Initially, the colony is mostly blue, indicating that most individuals102

in this colony are highly altruistic. In time, however, the color degrades from blue to brown, re�ecting a decline103

in altruism, and eventually the colony goes extinct. As best seen in Movies S1–3, this fate is bestowed on many104

colonies in the simulation. This suggests that altruistic colonies are sensitive to corruption by defectors that105

occasionally appear by mutation or invasion from neighboring colonies, resulting in a within-colony “tragedy of106

the commons” [30].107

In the same �gure, however, green arrows point to what happens after a colony disappears: a di�erent colony108

nearby initially grows in size and then spontaneously divides in two, locally restoring the hexagonal pattern.109

Daughter colonies inherit their over-all color from their parent colony. Importantly, it appears in Movie S1–3110

that colonies with a high mean level of altruism divide particularly rapidly and thus manage to multiply and111

spread.112

All in all, these observations suggest that the colonies themselves behave like Darwinian replicators: they113

die, reproduce by binary �ssion, and show heritable variation in their level of altruism. Moreover, in view of114

the tragedy of the commons seen within colonies, the colony-level dynamics appear crucial for the evolution of115

altruism.116
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Figure 2. Altruism and colonies emerge in the two-dimensional habitat. Results are shown from a representative
simulation run (see Fig. S1 for replicates) with default parameters (see Table 1). (a) Mean level of altruism versus time
(thick colored line) as well as the cumulative contribution of natural selection (black), which is consistently positive (see
Appendix A.2). (b) Snapshots of the simulation habitat; also see Movies S1–3. In time, the population self-organizes into
a hexagonal pattern of discrete colonies. A section of a hexagonal grid is superimposed in the right-most panel. (c) The
hexagonal pattern is also apparent from the radial distribution function at t = 8000, the distribution of distances between
pairs of individuals normalized by the random expectation. Black arrows indicate the distances occurring in an exact
hexagonal grid with grid constant a = 8.4 and their relative frequency. (d) Enlargements of a small domain of the habitat,
showing that the colonies behave like Darwinian entities: they disappear as a result of a within-colony tragedy of the
commons [30] (red circle and cross), and reproduce by binary �ssion (green arrows).
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2.3 Colony formation is crucial for the evolution of altruism117

So far, the evidence we presented on the dynamics of colonies has been anecdotal and qualitative. To further118

study the behavior of the model and obtain quantitative results, we now shift to a one-dimensional habitat.119

Simulations with a one-dimensional habitat are considerably faster, allowing many parameter settings to be120

explored, and are analyzed more readily, both mathematically and computationally.121

Automated multilevel lineage tracking122

Qualitatively, the behavior of the 1D model is analogous to that of the 2D model. Fig. 3a shows a section of123

the space-time arena for a simulation with default parameters (see Table 1). The left-hand side of the �gure124

(gray scale) presents the population density. The striped pattern clearly reveals the formation of regularly125

spaced colonies that can persist for thousands of generations. An algorithm was used to detect these colonies126

automatically and track them in time (see Methods). The right-hand side of the �gure plots the center of mass of127

the tracked colonies; colors represent the mean level of altruism of the individuals populating the colonies. In128

the middle part of the �gure, density and traces overlap to showcase their consistency. Some traces suddenly129

end, indicating that the colony went extinct. Such events are detected automatically and indicated with a black130

square. From the �gure, it is apparent that prior to the death of a colony the mean level of altruism always131

declines, suggesting a tragedy of the commons. In other places, traces suddenly fork, which is also automatically132

marked with orange circles. Clearly, the colonies in the 1D habitat reproduce by binary �ssion (like their 2D133

counterparts); the daughter colonies inherit their color from their parent. Again it appears that more altruistic134

colonies divide more frequently.135

Colonies emerge due to a linear instability and enable altruism136

The mechanisms behind the emergence of colonies in the 1D habitat can be studied mathematically using linear137

stability analysis (LSA). We envision a population of individuals with a �xed level of altruism � homogeneously138

distributed over a large habitat that is populated at carrying capacity. Next we superimpose a tiny periodic139

density variation with some wavelength � and derive under which conditions this perturbation is expected140

to grow exponentially, resulting in “colonies”. This also allows us to make approximate predictions on the141

wavelength of the emerging pattern, i.e., the distance between colonies. Details are found in Appendix B and142

Fig. S2.143

The LSA reveals that colonies are expected to develop only for certain combinations of the scales of altruism,144

competition, and motility (Fig. 3c; remember that �a = 1 by de�nition). As the LSA elegantly demonstrates145

(Appendix B) the appearance of colonies is determined by a tug of war between these three forces. Altruism146

by itself tends to amplify di�erences in local density: areas with a high density contain more altruists, which147

positively a�ects the reproduction rate and hence further increases the density. This drives the emergence148

of colonies. However, this force is weak for density variations with a wavelength shorter than ∼ �a, which149

average out within the scale of altruism. Resource competition quenches density di�erences because it suppresses150

reproduction in densely population areas. This force, however, is weak for variations with wavelengths shorter151

than ∼ �rc, which are averaged out within the scale of resource competition. Lastly, random motility also tends152
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Figure 3. The origins of altruism and colony formation in the one-dimensional habitat. (a) Dynamics of a
representative simulation run (see Fig. S3) with default parameters (Table 1). A small domain of space-time is visualized.
The left-hand part of the �gure shows the local population density; the striped pattern indicates that regularly spaced
colonies develop. The right-hand side plots the center of mass of each colony; color indicates mean level of altruism. The
two representations overlap in the middle of the �gure to demonstrate their consistency. Black squares mark the deaths of
colonies; orange circles indicate reproduction of colonies by binary �ssion. (b) Prediction from linear stability analysis. (See
also Appendix B and Fig. S2.) Colonies are expected to emerge in the yellow part of the phase diagram where the scale of
competition is clearly larger than the scale of altruism (�a = 1 by de�nition) and the scale of motility is small. The red
cross marks the default parameters used in panel (a). (c) Simulation results testing the prediction of panel (b). As predicted,
colonies emerge only in the region to the right of the red line, which is copied from panel (b): the variance of the local
population density increases precipitously when the line is crossed. (d) Mean level of altruism at the end of evolutionary
simulations. Altruism evolves only in the regime where colonies can form. Each data point plotted represents the mean of
three independent replicate simulations. (e) Same as (d), but as a function of mutation probability �. Two independent
replicates are plotted in gray; colored circles represent their mean value.
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to homogenize the density, but this force is ine�ective against variations with wavelengths that are larger than153

∼ �m because random motion is famously slow at large scales. Together, this means that colonies form only if154

�m is small compared to the other scales and �a is clearly smaller than �rc, so that wavelengths exist that are155

too long to be quenched by motility, long enough to be ampli�ed by altruism, but too short to be suppressed by156

resource competition (see Fig. S2a).157

To test these predictions, Fig. 3c presents results from a large number of simulations using a range of values of158

�m and �rc (19 × 21 = 399 simulations in total) in which all individuals are given an immutable value of � = 0.05.159

Each simulation quanti�ed to what extent colonies developed by simply measuring the variance in the local160

population density. The results are as expected: when crossing over from the linearly stable (blue) to the linearly161

unstable (yellow) region of Fig. 3b the variance in the local density increases precipitously. The wavelengths162

of the emerging patterns —typically close to 2�rc— also broadly match predictions (Fig. S2c,f). We therefore163

conclude that the LSA accurately describes and explains the emergence of the colonies.164

From the observations of both the 1D and the 2D model it appeared that the emergence of colonies is important165

for the evolution of altruism. This suggests that appreciable levels of altruism should evolve only in the parameter166

regime where colonies can emerge for reasonable levels of altruism (the linearly unstable, yellow region of167

Fig. 3b,c). This is con�rmed by a series of simulations for various scales of motility and competition (Fig. 3d).168

Because the colony formation depends on the existence of altruism, but the persistence of altruism in turn169

depends on the formation of colonies, the process must pull itself up by the bootstraps. Random mutations plus170

local reproduction spontaneously result in unstable colonies with modest levels of altruism and high internal171

levels of drift. This occasionally produces a colony that is altruistic enough to reproduce, which starts to spread172

rapidly.173

Factors other than the spatial length scales clearly also a�ect whether altruism prevails. If the scale of174

competition becomes too large relative to the scale of motility, the mean level of altruism su�ers (Fig. 3d, e.g.175

at �rc = 5 and �m = 0.1). Also, the stability of colonies against corruption by defectors is a�ected by the rate176

with which such defectors are created by mutations. In line with this, the mean level of altruism decreases177

if the mutation probability is increased (Fig. 3e). That said, altruism emerges for a broad range of mutation178

probabilities.179

2.4 Quantitative measurement of multilevel selection components180

To formally analyze and quantify the role of the colony dynamics in the selection of altruism, we make use of181

two existing mathematical results. Both are based on subtly di�erent formalizations of the concept of group182

selection that are sometimes referred to as multilevel selection (MLS) 1 and 2 [13, 35] (see Appendix A for brief183

derivations).184

Each of the two results relies on a di�erent application of the Price equation [34, 36, 37]. The Price equation185

decomposes the change in the population mean of a trait � over a time interval Δt into two parts: the selection186

di�erential S, which quanti�es the contribution of natural selection, and the transmission term T , re�ecting187

systematic di�erences between the trait value of ancestors and their o�spring.188

MLS 1 is based on the fact that, in a population that is subdivided into groups, the selection di�erential S can189
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Figure 4. Quanti�cation of multilevel selection: two approaches. (a) The �rst approach (MLS 1) is to mathemati-
cally split the natural selection measured acting on the organisms into two parts: selection within and selection among
colonies [34]. (See Appendix A.3.) For the simulation shown in Fig. 3a, this calculation was done for each subsequent
interval of 80 generations (see Methods). Plotted is the change in the mean level of altruism (black), and the within-colony
(red) and among-colony (blue) components of selection. The rotated histograms on the right-hand side show distributions
based on second half of the simulation, indicated with the gray background. In this part of the simulation, the population
mean level of altruism no longer changed systematically. However, within-colony selection is nearly always negative,
compensated by positive among-colony selection. (b) The second approach (MLS 2) describes evolution at the level of the
colonies. (See Appendix A.4.) Evolution taking place within colonies then appears as a transmission bias: a bias in the
change between ancestor and o�spring colonies in the colony mean level of altruism. This transmission bias (red) tends to
be negative, but is compensated by positive selection at the colony level. Fig. S3 shows the results of two more replicate
simulations.
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be split into two components: S = Swithin + Samong. Here Swithin is the (weighted) mean of the selection di�erential190

measured within groups, while Samong is the covariance between a group’s mean trait value and its mean �tness,191

which can be interpreted as the selection among groups.192

Our observations suggested that selection within colonies tends to be negative, which is to say that Swithin193

is systematically negative. To compensate, Samong would have to be positive as a rule. To test this, we split the194

simulation illustrated in Fig. 3a into 2000 time intervals of 80 generations each and calculated Swithin and Samong195

for each of these time intervals. The results, plotted in Fig. 4a, con�rm the expectations. Over the last 1000 time196

intervals (shaded background in Fig 4), the mean level of altruism no longer changed signi�cantly. (Mean change197

per time interval: (0.9 ± 2.0) × 10−5, where the uncertainty denotes a 95% con�dence interval; see Methods.) But198

over the same period, the within-colony component of selection was negative during 97.6% of the time intervals,199

averaging (−3.8±0.4) × 10−4. In contrast, the among-colony component was positive in 98.7% of the time intervals,200

with a mean of (4.2 ± 0.4) × 10−4. Hence, selection within colonies is indeed negative (re�ecting the within-colony201

tragedy of the commons), but this is compensated by a positive among-colonies component of selection.202

The analysis of MLS 1 applies the Price equation to the population of individuals. MLS 2 instead applies it to203

the population of colonies. The mean level of altruism of individuals in a colony, Φ, is now considered a trait of204

that colony, and the �tness of a colony is de�ned as the number of o�spring colonies that is has at the end of the205

time interval. The Price equation can then be used to describes the change in the mean level of altruism of the206

colonies. The selection di�erential S now measures whether colonies with a high value of Φ tend to produce207

more o�spring colonies, and hence can be interpreted as the colony-level selection on Φ. The transmission term208

T now quanti�es to what extent the Φ-value of o�spring colonies systematically di�ers from those of their209

ancestral colonies. Hence, T characterizes the internal evolution of colonies.210

We suspected that colonies with a higher mean level of altruism reproduce more frequently, and hence211

that the colony-level selection is predominantly positive. To test this, we applied the MLS 2 framework to the212

same 2000 time intervals used for the MLS 1 analysis, making use of the automatically acquired colony-level213

lineage traces to measure the �tness values of the colonies. The result, plotted in Fig. 4b, again con�rms the214

expectations. Over the last 1000 time intervals, the mean level of altruism of colonies Φ no longer changed215

signi�cantly. (Mean change per time interval: (0.9 ± 2.0) × 10−5.) In the same window, colony-level selection was216

positive in 82.2% of the time intervals, and negative in only 1.6%. (In the remaining intervals, none of the colonies217

reproduced or died, resulting in a colony-level selection of precisely 0.) Its mean value was (4.7 ± 0.5) × 10−4.218

This was compensated by the colony-level transmission term, which was negative in 97.5% of the intervals, with219

an average of (−4.6 ± 0.4) × 10−4. From this we conclude that the mean level of altruism of individual colonies220

tends to decrease with time, compensated by an increased rate of reproduction of colonies with a higher level of221

altruism.222

3 Discussion223

Above, we have presented a simple model of the evolution of altruism. Despite its simplicity, the model displays224

complex dynamics. Under suitable parameter settings, a linear instability permits a process of evolutionary225

bootstrapping in which colonies of altruists emerge that themselves reproduce by binary �ssion. Quantitative226
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measurements demonstrated that defectors have the upper hand within colonies, but that colonies with a higher227

mean level of altruism reproduce more frequently. The net e�ect is that a signi�cant level of altruism persists in228

the population.229

Complex biological systems invariably show a hierarchical organization, with collectives of individuals at230

one level forming entities at a higher level. The evolution of such hierarchical structures involves transitions231

in which collectives of individuals start to behave as Darwinian individuals. An important open question in232

evolutionary theory is what mechanisms and conditions allow such transitions in individuality to take place [15].233

While many theoretical models study evolution in hierarchical population structures, most take this structure as234

given (e.g., [14, 38]). In other models the spatial dynamics do spontaneously produce hierarchical structures, but235

with aggregates that cannot naturally be considered Darwinian entities because they are either too short-lived236

or do not replicate in a clear-cut sense (e.g., [39–41]). In yet other models, the formation of collectives is initially237

“sca�olded” by preexisting environmental structure [15]. In this light, a distinguishing feature of the current238

model is that group-level Darwinian replicators emerge spontaneously by self-organization; to our knowledge,239

few other models have this property (but see [42]). The formation of spatial density patterns is very common in240

nature and can result from various mechanisms [43]. The model that we presented recon�rms that, even in the241

absence of a preexisting ecological sca�old, such ecological self-organization can naturally result in competition242

and replication at the level of aggregates. Possibly, once natural selection is able to act at the level of such243

emergent aggregates, this opens an avenue towards a more complete transition of individuality.244

Classical theory argues that the relative scales associated with motility, social interactions and competition245

are of crucial importance for the evolution of altruism (see Introduction). The results of the model con�rm246

this: as expected, altruism evolves only if motility is limited and the scale of competition is larger than the247

scale of altruism. The signi�cance of the scales, however, is much more involved than anticipated because they248

largely determine the emerging ecological patterns, which in turn shape the evolutionary dynamics. Indeed,249

the evolutionary dynamics support altruism (Fig. 3d) only if the ecological dynamics support the formation of250

colonies (Fig. 3c). This emphasizes that it is unlikely that the eco-evolutionary behaviors of complex dynamical251

models can be summarized by generic rules of thumb.252

Super�cially, the model is reminiscent of the ecological public-good (EPG) games of Wakano et al [32], which253

also produce intricate spatial patterns, including Turing patterns. But upon closer inspection the two models254

di�er fundamentally in multiple aspects. In the EPG model all interactions are entirely local. Its pattern formation255

depends on a coexistence equilibrium point that has no counterpart in the current model, and parameters are256

chosen such that defectors are not viable without altruists. In addition, a necessary condition for the Turing257

patterns of the EPG model is that defectors are more motile than altruists; this distinction does not exist in our258

model. Importantly, the authors do not report that their colonies replicate, although perhaps such behavior259

could be obtained in a particular parameter regime. To sum up, the mechanisms producing the spatial patterns260

qualitatively di�er between the two models and the EPG model does not display similar multilevel dynamics.261

The concepts of multilevel and group selection and their relation to inclusive �tness theory are the subject of262

a longstanding and �erce debate [44–48]. Here, we do not engage in this debate. Given the remarkable colony263

dynamics in the model, the multilevel perspective is particularly apt and allowed us to test relevant hypotheses.264

But several other theoretical frameworks and �tness-accounting schemes [9], including inclusive �tness theory,265
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could be applied as well, to address di�erent questions. We do note that the model violates multiple assumptions266

that are frequently made in the derivation of inclusive �tness results, since neither population size nor density267

are constant, the bene�ts of altruism are non-linear, interaction strengths are non-binary, competition is local,268

and the scales of altruism and competition di�er. Many standard results therefore do not apply directly.269

In the literature, multiple conceptualizations of multilevel selection exist including MLS 1, MLS 2, and270

Contextual Analysis [35, 49]. As to which of these methods best captures the concept of multilevel selection no271

consensus has yet been reached [13]. Above, we have used the decompositions of MLS 1 and 2 essentially as272

alternative descriptive statistics, each measuring di�erent but well-de�ned properties of the system. For example,273

the colony-level selection term of MLS 2 con�rms that more altruistic colonies have more o�spring, irrespective274

of whether one considers this term a (or even the sole) proper measure of the concept of group selection. Similarly,275

the within-group contribution to selection of MLS 1 is a useful measure to test the hypothesis that selection276

within colonies is negative on average. We could have applied Contextual Analysis too, to con�rm associations277

between individual or contextual properties and �tness [24, 35]. Their conceptual caveats notwithstanding, each278

of these methods provides a di�erent vantage point and potentially new insights. The features of our model279

make it ideally suited to illustrate and test the various approaches of multilevel selection.280

Models of evolution in subdivided populations usually assume that the �tness of individuals depends solely on281

their own traits and those of other group members. Any spatial structure at the sub-colony scale is thus ignored.282

Moreover, it is typically assumed that groups compete equally among each other, ignoring spatial structure283

at scales beyond the size of a group. In applications, these assumption are approximations at best, and they284

certainly do not hold in our model because colonies are not homogeneous and the colony-level dynamics clearly285

result in spatial assortment of colonies (see Fig. 2b and Fig. 3a). This does not invalidate MLS theory, but serves286

to remind us that we cannot expect to perceive a complete picture from a single vantage point. In a forthcoming287

article, we describe an complementary multiscale approach that allows natural selection to be decomposed into288

contributions at each spatial scale [50]. This approach can be used to analyze the importance of structures below289

and beyond the colony level; it is also applicable to models that generate spatial structures such as spirals and290

waves that are relevant to selection but perhaps too ephemeral to be conceptualized as groups. More generally,291

over the years many evolutionary concepts have been formalized mathematically [51], but these results are292

rarely applied to computational and individual-based models. Despite each formalism’s limitations, together they293

provide a valuable toolbox that allows models to be scrutinized quantitatively from multiple perspectives[35, 52].294

We hope that future studies take full advantage of its potential.295

4 Methods296

4.1 Detailed description of the model297

De�nition of the model298

We envision a population or individuals living in a large habitat, which can be one- or two-dimensional. Each299

individual is fully characterized by its spatial coordinates plus the value of a single quantitative trait �, which300

indicates its investment in altruistic behavior. The behavior of the individuals is de�ned by just four stochastic301
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processes: death, motility, reproduction, and heredity with mutation.302

Death strikes each individual at a �xed (Poisson) rate d ; if an individual dies, it disappears from the population.303

The average lifespan of an individual is d−1, which we call the generation time.304

Motility is modeled as unbiased di�usion with di�usion constant kD. It follows that, in a generation time, the305

root-mean-square displacement of an individual in each spatial dimension is �m ≡
√
2kD/d , the scale of motility.306

It can be interpreted as the “typical” distance traveled by an individual during its lifetime. Note that we ignore307

that individuals take up space: nothing prevents multiple individuals from being at the same position at the same308

time.309

Reproduction is asexual. When an individual reproduces, a new individual is placed at the same position310

as the parent. The rate of reproduction of each individual is negatively a�ected by the level of altruism of the311

individual itself and by competition for resources with other individuals; in contrast, it is positively a�ected by312

the altruism of others in its local environment. To implement these e�ects mathematically, we make use of two313

quantities that we will now introduce.314

First, we de�ne the local population density D(y | �rc) at position y as a conventional Kernel Density Estimate:315

D(y | �rc) ≡ ∑
i
Grc(x i − y | �rc). (1)

Here, the summation runs over all individuals i in the population; x i is the position of individual i; and the316

kernel function Grc(y | �rc) is the Gaussian (normal) distribution (univariate or bivariate, depending on the317

dimensionality of the habitat) with standard deviation �rc. By this de�nition, the population density at position318

y is high if many individuals are found within a distance of order �rc from y. The parameter �rc is called the319

scale of competition because, as explained below, it determines the range of competitive interactions.320

Second, the altruism experienced by an individual at position y is measured as321

A(y | �a) ≡ ∑
i
�i Ga(x i − y | �a). (2)

This is again a KDE, except that each individual i is weighted by its level of altruism �i . It is convenient to think322

of A(y | �a) as the availability of some public good that organisms secrete locally in proportion to their level323

of altruism. The summation in Eq. 2 runs over all individuals, and the contribution of each individual to the324

public good at position y decreases with their distance to y according to a Gaussian kernel function Ga. The325

standard deviation �a of the kernel function is referred to as the scale of altruism because it determines the range326

of altruistic interactions.327
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In terms of these de�nitions, the full equation for the reproduction rate gi of individual i reads328

gi = max

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0

factor 1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
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investment in altruism

+
bmaxA(x i | �a)
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“public good”
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⎟
⎟
⎟
⎟
⎟
⎟
⎠
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⎠
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⎤
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⎥
⎥
⎥
⎥
⎦

. (3)

Here, g0 is the basal reproduction rate. In the subsequent factor (labeled “factor 1”), the term −c� implements a329

de�cit in the reproduction rate owing to the individual’s investment in altruism; the parameter c determines the330

price of altruism. The last term in factor 1 implements the advantage obtained from the altruism of others. The331

advantage grows as b0A(x | �a) if A(x | �a) is small but saturates at bmax if A(x | �a) is large. Factor 2 introduces332

resource competition: it decreases linearly with the local population density D(x | �rc) such that reproduction is333

locally inhibited when the density approaches K . (In practice, the population density stabilizes somewhat below334

K , where the average reproductive rate equals the death rate d .) The max[.] function is required because both335

factors 1 and 2 could in rare cases become negative; in that case, gi is set to 0.336

Heredity and mutation are implemented as follows. Upon reproduction, the o�spring usually inherits337

the value � of the parent, but with probability � a mutation occurs. In that case, the �-value of the o�spring338

is determined by adding a random change �� to the value of the parent. The absolute value of |��| is drawn339

from an exponential distribution with mean m, and its sign is positive or negative with equal probability. A340

concern with this procedure, however, is that the resulting trait value � of the o�spring can become negative. In341

simulations with a 2D habitat this was not permitted and in such events the value was instead set to 0. Although342

this is a natural choice, it introduces a mutational bias (see Fig. S1), which complicates some of the analyses343

performed on the 1D version of the model (in particular, Fig. 3d,e). In the simulations of the 1D system � was344

therefore allowed to become negative, but the behavior of the individuals was determined by the “e�ective” value345

�E = max(�, 0) rather than by � itself. In Fig. 3d,e the mean of �E is plotted. In Fig. 3a the colony mean of � is346

plotted, but the distinction is immaterial because in this window of the simulation negative values of � are rare.347

Units and parameter reduction348

We are free to choose convenient units for length, time, and the trait �; thus, three parameters can be eliminated.349

First, we choose the unit of length such that the scale of altruism �a equals 1 by de�nition. The two other350

length scales that exist in the model, �rc and �m, are therefore expressed relative to �a. Second, units of time351

are chosen such that the generation time d−1 is 1. This implies that the death rate d also equals 1 by de�nition.352

Third, the unit of the trait value � is chosen such that the parameter c (see Eq. 3) equals 1. This simpli�es the353

interpretation of �: an individuals with trait value � directly sacri�ces a fraction � of its basal reproductive rate354

to the public good. Note, however, that the summation in Eq. 2 runs over all individuals, so that each individual355

also bene�ts from its own altruism. In the literature, a distinction is sometimes made between soft and hard356
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altruism, depending on whether the direct bene�ts that altruists reaps from their behavior outweigh the direct357

costs [38]. We always choose parameters such that the direct costs far exceed the direct bene�ts, modeling hard358

altruism. The contribution of individual i to the public good A(x i |�a) at its own position x i is given by359

�i Ga(0 | �a) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

�i√
2��a

in the 1D habitat,

�i
2��2a

in the 2D habitat.
(4)

From Eq. 3 and the fact that �a = 1 by de�nition, it then follows that the reproductive advantage due to one’s360

own altruism is bounded by b0�i/
√
2� (in the 1D habitat) or b0�i/(2� ) (in the 2D habitat). This reproductive361

advantage cannot outweigh the de�cit of c�i = �i unless b0 >
√
2� (in the 1D case) or b0 > 2� (in the 2D case);362

we steer clear of this regime by choosing b0 appropriately small.363

4.2 Implementation of the simulations364

Simulation scheme365

In the simulations, continuous space is approximated by a linear grid (in the 1D habitat) or a square grid (in the366

2D habitat) with grid cells of linear size �x . Periodic boundary conditions are imposed. Time is divided into367

computational time steps �t .368

During each computational time step, the state of the system at time t + �t is constructed based on the state369

at time t by the following sequence of steps:370

Step 1. Calculate reproduction rates First, the density D(x |�rc) and the availability of public good A(x |�a)371

at each position x are computed, taking into account the periodic boundary conditions. After this, the372

reproduction rates gi of all individuals can be calculated.373

Step 2. Reproduction and mutation Each individual i in the �eld reproduces with probability gi�t . The374

o�spring is mutated with probability �, as described above.375

Step 3. Death Each individual subsequently dies with probability d�t .376

Step 4. Motility Each individual is displaced in each spatial dimension by a distance drawn at random from a377

discrete approximation of a Gaussian distribution with mean 0 and standard deviation
√
2kD�t .378

Initial conditions379

The steady-state population density of a population of defectors (�i = 0) is approximately (1 − d/g0)K , which can380

be derived by solving gi = d under the assumption of a homogeneous population distribution. Therefore, the381

initial condition was constructed by placing (1 − d/g0)KL (in the 1D habitat) or (1 − d/g0)KL2 (in the 2D habitat)382

defectors at uniformly random positions, where L is the linear size of the habitat.383
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Default parameters384

The default values of biological parameters are listed in Table 1. Here, we also provide the computational385

parameters.386

For simulations of the 2D model, a square habitat of linear size L = 102.4 was used; using �x = 0.1 this387

amounted to ≈ 106 grid cells. Using the default parameter values K = 40 and g0 = 5, the total population size388

was approximately n = (1 − d/g0)KL2 ≈ 3.4 × 105. The simulations were run for T = 8 000 generations, with time389

steps �t = 0.08.390

For simulations of the 1D model, a habitat of size L = 819.2 was used with �x = 1/80, resulting in 65 536391

grid cells. Using the default parameter values K = 100 and g0 = 5, the total population size was approximately392

(1 − d/g0)KL ≈ 6.6 × 104. These simulations were run for T = 160 000 generations, again with time steps �t = 0.08.393

Additional settings were used to calibrate the automated recognition of colonies; see below.394

4.3 Computational procedures395

Calculating cumulative e�ects of selection, drift, and mutational bias396

The mathematical framework used to quantify selection, drift and mutational bias is described in Appendix A.2.397

We applied this calculation to each time step of the simulations, so that the cumulative e�ect of each of the398

evolutionary forces could be tracked (Fig. 2a and S1).399

For the analysis we need to obtain, for each individual i present right before the computational time step,400

the expectation value E(Wi) of the number of o�spring Wi it will have after the time step (also counting the401

individual itself if it survives). To do so, �rst the growth rate gi was calculated and subsequently the reproduction402

and death probabilities Pr = gi�t and Pd = d�t over this time step. From the simulation scheme (see above) the403

expectation value can then be derived:404

E(Wi) = (1 + Pr)(1 − Pd). (5)

This expression is used in the calculations.405

We note that this expectation value is conditioned on the current state of the simulation, in particular the406

population density and availability of public good at the position of the individual. In other words, only the407

e�ects of the inherent randomness of reproduction and death given the state of the local neighborhood are408

accounted as random drift; the fact that the state of the local neighborhood itself is also a�ected by random409

events in the past, such as the stochastic motility and demographics of others, is not. (See also Appendix A.2.)410

Calculating the local population density411

To e�ciently calculate the local population density (Kernel Density Estimate or KDE) D(x |�rc) (Eq. 1), �rst a412

matrix was constructed that speci�es, for each position in the habitat, the number of individuals at that position.413

The KDE at each position, taking into account the periodic boundary conditions, is the circular convolution of414

this occupancy matrix with the periodic summation of the (discretized approximation of the) Gaussian kernel415

Grc(x |�rc). To perform this convolution, we use the Circular Convolution Theorem, which states that the circular416
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convolution of two matrices can be obtained by �rst calculating their Discrete Fourier Transform (DFT) and then417

calculating the inverse DFT of their element-wise product.418

Calculating the availability of public good419

The public good available at each position, A(x |�a), is calculated in a similar way. First a matrix is constructed420

that contains, for each position in the habitat, the sum of the trait values of all individuals present at that position.421

The value of A(x |�a) for each position is now obtained as the convolution of this matrix with the (discretized422

approximation of the) Gaussian kernel Ga(x |�a), again using the Circular Convolution Theorem.423

Calculating the radial distribution function424

The radial distribution function or pair-correlation function g(r) is de�ned as the observed number of pairs of425

individuals separated by a distance r , relative to the expected number under the null model assuming that each426

individual is placed at a random position.427

In the 1D case, the distance r can only take on values k�x , where k is a non-negative integer. Call the428

population size n and the size of the habitat in grid cells X . To calculate the expected number of pairs at distance429

r = k�x , written as E(r), we note that the number of individuals ox at position x is binomially distributed under430

the null model. Its expectation value is E[ox ] = n/X and hence E(r) = ∑X−1
x=0 E[oxo(x+k mod n)] ≈ n2/X . (Here, we431

used that the occupancies of di�erent sites are to good approximation independent.) The observed number of432

pairs of individuals found at a distance r = k�x , called O(r), is precisely given by the auto-correlation of the433

occupancy matrix, which is again e�ciently calculated using the Circular Convolution Theorem. For each value434

r = k�x , the radial distribution function is then obtained as g(r) = O(r)/E(r).435

In the 2D case, the rectangular grid imposes that r can only take on values such that r2 = (a2 + b2)�x2, where436

a and b are integers. In addition, in calculating the expectation under the null model, the frequency F (r) with437

which each distance occurs in the grid has to be taken into account. (E.g., the distance 5�x occurs three times438

more often than the distance 6�x .) Under the same assumptions as made for the 1D case, the expectation is439

E(r) = F (r)n2/X 2. To calculate the observed number of pairs O(r), the auto-correlation matrix of the occupancy440

matrix is used. Then g(r) = O(r)/E(r) is calculated for each admissible value of r . To obtain plot Fig. 2c, the441

distances were subsequently binned.442

Calculating the terms of MLS 1 and MLS 2443

To obtain Fig 4 and S3, we divided the simulation into 2 000 time intervals of Δt = 80 generations and applied444

the analyses of MLS 1 and 2 to each time interval. The mathematical expressions for MLS 1 and 2 are brie�y445

summarized in Appendix A.4. Here follows a description of the computational methods used.446

For concreteness, let us focus on a particular interval (t1, t2]. The �rst step is to calculate the selection447

di�erential S, de�ned as the covariance of � and relative �tness w (Eq. A.2 in Appendix A.1). For the purpose of448

this analysis, the relative �tness wi of an individual i living at time t1 is the number of o�spring it has at time t2449

(the absolute �tness Wi), divided by the population mean W . To �nd these o�spring numbers, each individual at450

time t1 was assigned a unique ID that was subsequently inherited by all o�spring. At time t2, a frequency table451
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of ID values was constructed, which directly provided the �tness of each each individual at time t1. With this452

information, S can be calculated directly.453

The analysis of MLS 1 splits S into two parts (see Eq. A.8 in Appendix A.3). It is su�cient to calculate the454

second term, Samong, after which the �rst follows as Swithin = S − Samong. To calculate Samong �rst the geographical455

borders of all colonies at time t1 were identi�ed; the algorithm used for this is described in the next section. Next,456

each individual at t1 was assigned to a colony. Then for each colony j we calculated its population size nj , its457

mean relative �tness {w | j}w and its mean trait value {� | j}w. At this point, Samong could be calculated from its458

de�nition.459

The analysis of MLS 2 describes the dynamics from the perspective of the colonies (see Eq. A.9). To determine460

the �tness of the colonies present at time t1, we had to count how many o�spring colonies they have at time t2.461

This requires that we de�ned the borders between the colonies at time t2, but also that we traced the ancestor462

colony at t1 for each o�spring colony at t2; the algorithm used is described in the next section. The other463

ingredient of Eq. A.9 is the trait value Φ of the colonies. Because Φj = {� | j}w (see section A.4), these quantities464

were already calculated for MLS 1 and both terms of Eq. A.9 can be evaluated directly.465

Automated recognition and tracking of colonies466

To perform the multilevel selection analysis, the simulation had to automatically recognize colonies and track467

their ancestry. Because existing clustering algorithms are ine�cient for 1D systems and/or di�cult to adjust to468

our needs, we used our own heuristics.469

Where to draw the border between neighboring colonies, and when to conclude that one colony has divided470

into two, is to some degree arbitrary. The results of the analyses, however, do not depend sensitively on such471

details as long as we use reasonable de�nitions and apply them consistently.472

The basic idea is to identify the borders between colonies with local minima of the population density.473

However, local minima can also occur temporarily within colonies due to random �uctuations, and such minima474

should not be confused with true borders between colonies. To solve this, one might exclude local minima if475

the density at their position exceeds a set threshold, so that only “deep” minima are considered. Such a simple476

threshold rule can identify most colonies correctly, but issues arise during the binary �ssion of colonies. During477

this process the depth of the local minimum that separates the two daughter colonies �uctuates, and hence it is478

likely to cross the threshold multiple times. Consequently, the threshold rule tends to record multiple events of479

�ssion and fusion during a single process of colony division. Similarly, when a dwindling colony is about to480

disappear, the threshold rule tends to infer series of deaths and resurrections of the same colony.481

To prevent this, the algorithm that was used in the simulations in fact uses two density thresholds: a low and482

a high one, Tlow and Thigh. When a new local minimum appears, a new border (and hence the birth of a new483

colony) is inferred only when the local density at the minimum drops below Tlow. In contrast, when an existing484

border is about to disappear, this is acknowledged only when the density at the associated local minimum rises485

above Thigh. The result is a hysteresis of sorts: when the density of at new minimum drops below Tlow for the �rst486

time, a colony is born; if afterwards the density at the border temporarily exceeds Tlow, the border is maintained487

unless it also exceeds Thigh.488
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To be precise, when performing the MLS analysis on the interval (t1, t2], the borders of the colonies at time t2489

were constructed as follows:490

1. Calculate a smoothed density. The smoothed density at each position was de�ned as a KDE with bandwidth491

�a/2, taking into account the periodic boundary conditions.492

2. Identify local minima. If the smoothed density at grid point x is written as �x , each x such that �x < �x+1493

and �x < �x−1 marks a local minimum. (Because of the periodic boundary conditions, all indices should be494

read modulo X , the size of the grid.)495

3. Determine tentative borders between colonies. First, local minima were selected with a density �x < Thigh;496

the other minima were discarded. Each of the selected minimal was then associated with a tentative497

border which would later be further scrutinized. To ensure that no individuals can sit exactly at a border498

(causing ambiguity as to which colony it belongs to), borders were positioned between grid points. First, the499

derivative of the density at the position of each minimum was approximated as �′(x) = (�x+1 − �x−1)/(2�x).500

If a minimum was located at grid point x , then a tentative border was placed at x + 1/2 if the derivative501

was negative, and at x − 1/2 if the derivative was positive.502

4. Assign an ancestor to each tentative colony. Given the tentative borders, tentative colonies were also503

implicitly. For each tentative colony at time t2 an ancestor colony at time t1 was determined. To do so,504

we exploited that we have already traced back the ancestry of the individuals in the colonies. We then505

used the expectation that the ancestor colony P of a colony Q contains most, if not all, ancestors of the506

individuals that belong to Q. Based on this, we identi�ed P as the ancestor colony that contains the largest507

fraction of the ancestors of the individuals belonging to Q.508

5. Reject tentative borders that re�ect �uctuations or incomplete divisions. If the colonies on either side of a509

tentative border had the same ancestral colony, this suggested that a colony division might have taken510

place. In this case, we compared the density at the corresponding minimum to the low threshold Tlow;511

if the density was above that threshold, the border was rejected. All other tentative borders were now512

accepted, so that the identi�cation of colonies at t2 and their ancestor at time t1 also became �nal.513

6. Count the number of o�spring of each ancestral colony. Because the ancestors of colonies at time t2 had514

been identi�ed, the number of o�spring—the absolute �tness—of each ancestral colony could be tabulated.515

If an ancestral colony had �tness 0, it must have died between t1 and t2. If an ancestral colony had absolute516

�tness > 1 it must have divided. (In practice, a �tness above 2 did not occur because Δt is too short to517

support multiple consecutive divisions.) If a colony had �tness 1, the ancestral colony most likely survived518

the time interval without reproducing.519

The thresholds Thigh and Tlow are parameters; we found that Thigh = 0.7K and Tlow = 0.2K worked well.520

Estimating the lattice constant of the hexagonal lattice by counting colonies521

The lattice constant of the hexagonal pattern that emerges in the 2D model can be estimated by counting the522

number of colonies in the habitat. A hexagonal lattice is composed of equilateral triangles with side a and area523
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√
3a2/2. The number of triangles is twice the number of nodes � . In a large enough habitat of area L2, the number524

of nodes can then be estimated as � ≈ L2/(
√
3a2). Conversely, after counting the number of nodes, a can be525

estimated as a ≈ L
√
2/(

√
3�). At the end of the simulations of Fig. 2 we �nd approximately 179 colonies, which,526

given L = 102.4, corresponds to a ≈ 8.2. This is consistent with the estimate based on the radial distribution527

function (Fig. 2c).528

Estimating error bars529

In the Results section and Table S1 we provide 95% con�dence intervals for the means of all quantities plotted530

in Figs. 4 and S3. Because data points in these time series are auto-correlated and the distributions of some531

quantities are skewed, the standard methods for calculating con�dence intervals could not be used. Therefore,532

we applied the method described in Ref. [53].533

Brie�y, the idea is to divide the data series into blocks if length l and use the means of these blocks (rather than534

the original data points) to estimate the standard error of the mean (SEM). Starting with l = 2, if l is increased,535

the correlations between block means eventually become negligible and the estimates stabilize around a sensible536

value, which we determined by manual inspection and then rounded o� conservatively. Moreover, because of537

the central limit theorem, the distribution of block means converges to a normal distribution, which justi�es538

the use of t-statistics to estimate con�dence intervals. Although the correct number of degrees of freedom to539

be used is poorly constrained (as it depends on the minimal value of l that is deemed large enough to remove540

correlations), it is in all cases large enough to ensure that the critical t-value for t0.05(2) is near 2. We therefore541

estimated the 95% con�dence interval as the sample mean ± twice the estimated SEM.542

Software543

Simulations were performed with custom software written in Fortran; the code is made available on the follow-544

ing GitHub repository: https://github.com/rutgerhermsen/altruism.git. Statistics were545

performed in R version 3.6.1. Visualization was done in R, using ggplot2, and in Wolfram Mathematica 12.546
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Appendices645

A The Price equation, evolutionary forces, and MLS 1 & 2646

In this article, several mathematical results are applied that have been derived long ago [13, 34, 35]. For ease of647

reference and to facilitate readers who are not intimately familiar with this theory, we here brie�y summarize648

these results. Nothing in this section is new, although our notation di�ers somewhat from other presentations649

to expose the analogies between the multilevel selection analysis presented here and the multiscale analysis650

presented elsewhere [50].651

A.1 The Price equation652

The Price equation provides a general way to formally describe changes in gene frequencies or mean trait values653

in evolving populations due to evolutionary forces such as selection and mutation [34, 36, 51].654

In its simplest form we envision a population of entities that each possess a numerical trait �. At time t1, the655

population size is n, and the population mean of � is �. At a later time t2 = t1 + Δt the mean of � has changed by656

an amount Δ�. Each individual alive at time t2 has a unique ancestor at time t1. (If the individual was already657

born at time t1, we designate its past self as the ancestor.) Conversely, each individual i alive at time t1 has Wi658

o�spring at time t2. (If the individual is itself still alive at time t2, it is counted as one of the o�spring.) Wi is659

called the absolute �tness of i. The relative �tness wi of this individual is de�ned as wi = Wi/W , where W is the660

population mean absolute �tness. The trait value � of the o�spring of i di�ers from the value of individual i661

itself; the average di�erence among i’s o�spring is called Δ�i .662

With these de�nitions, the change in the mean value of � over the time interval Δt can be written as:663

Δ� = S + T , (A.1)

with

S = Cov (�, w) = �w − �w, (A.2)

T = wΔ�. (A.3)

Equation A.1 is called the Price equation. The �rst term, S, is the population covariance between the trait and664

relative �tness. It shows that the mean value of � tends to increase if a high value of � is associated with a665

high �tness. Therefore, S is often considered a measure of the e�ect of natural selection and called the selection666

di�erential. The second term, T , is the average change in trait value between ancestors and their o�spring.667

Therefore T is a measure of transmission bias.668

A.2 Measuring selection, random drift, and mutational bias669

Although the Price equation is frequently and fruitfully used in its standard form, it has its limitations. One clear670

limitation is that it does not acknowledge one of the evolutionary forces that is central to canonical evolutionary671
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theory: random drift.672

The absence of random drift from the standard Price equation is a consequence of the de�nition of �tness673

used in its formulation. Above, the �tness Wi of individual i was de�ned as the actual number of o�spring it674

has after the time interval Δt . This is at odds with the usual parlance, in which �tness refers to an organism’s675

adaptedness to a particular environment. If an organism dies without o�spring, this does not necessarily prove676

that it was poorly adapted to its environment: it might just have been unlucky. The term �tness, then, seems677

to refer more properly to a propensity or expectation than to an actually realized number of o�spring [54, 55].678

Deviations from the expectation due to chance are the source of what is usually called random drift.679

One way to extend the Price equation is therefore to treat that the number of o�spring Wi as a random680

variable and to associate �tness with its expectation value E(Wi) [13, 51]. In that case we can write the actual681

number of o�spring Wi as E(Wi) + �Wi , where �Wi is the deviation from the expectation. If we insert this into682

the standard Price equation (Eq. A.1) we arrive at683

Δ� = Cov (�,E(W )/W )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

selection

+Cov (�, �W /W )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

drift

+ wΔ�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

transmission

. (A.4)

Compared to the standard Price equation, the selection di�erential S is split into two parts: one part that more684

properly captures the e�ects of natural selection, and one term that formalizes random drift.685

A complication with the above formulation is that it is not obvious how the probability distribution of Wi ,686

and hence the expectation E(Wi), should be de�ned. In particular, it is unclear which variables other than the687

trait value � should be taken into account — that is, which information the probability distribution should be688

conditioned on. The more information we incorporate into the expectation, the less uncertainty remains to689

power random drift. Clearly, this di�cult issue is beyond the scope of this work. In the meantime, we take a690

pragmatic stance: Through convenient choices, the above formalism can be used to examine the contributions of691

elected sources of randomness, regardless of whether these choices can be justi�ed based on unique “correct”692

de�nitions of �tness, selection, and random drift.693

A.3 Multilevel selection 1694

Next, we consider a population that is subdivided into N distinct groups. To describe the system from the695

perspective of MLS 1, we start with the Price equation at the level of the individuals, Eq. A.1. The idea of the696

analysis is to split the selection di�erential S into two parts, Swithin and Samong, where the �rst accounts for697

selection taking place within groups, and the second for selection among groups. We saw that S is de�ned as a698

covariance (Eq. A.2); mathematically, the decomposition is a direct application of the Law of Total Covariance. In699

the interest of clarity will nevertheless rederive it from scratch.700

It will be useful to introduce some notation. Let z be a trait or property of individuals. We will denote the701

value of z of individual i in group j as zij , and the size of group j will be written nj . Then the mean of z within702

group j is written as {z | j}w:703

{z | j}w ≡
∑nj
i=1 zij
nj

. (A.5)
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The label “w” stands for “within”. Whenever this does not give rise to confusion we will omit the group index j704

and write {z}w.705

Now, let u be a trait or property of groups. Then we de�ne ⟨u⟩a as the mean of u among groups, where the706

groups are weighted according to their group size nj :707

⟨u⟩a =
∑N
j=1 njuj
n

. (A.6)

The label “a” stands for “among”.708

From the above de�nitions, one can verify that709

⟨{z}w⟩a = z. (A.7)

That is to say, if we know the mean value of z within each group, {z}w, we can recover the population mean z710

by averaging the over all groups, provided we give larger groups a larger weight.711

With the above notation and Eq. A.7 in place, the decomposition of S is obtained quite directly:

S = Cov (�, w) = �w − �w

= ⟨{�w}w⟩a − ⟨{�}w⟩a ⟨{w}w⟩a

= ⟨{�w}w⟩a − ⟨{�}w {w}w⟩a + ⟨{�}w {w}w⟩a − ⟨{�}w⟩a ⟨{w}w⟩a

= ⟨{�w}w − {�}w {w}w⟩a + ⟨{�}w {w}w⟩a − ⟨{�}w⟩a ⟨{w}w⟩a

= ⟨Covw (�, w | j)⟩a + Cova ({�}w , {w}w)
≡ Swithin + Samong. (A.8)

Here we introduced Covw (y, z | j) ≡ {yz}w − {y}w {z}w as the covariance between individual properties y and z712

as measured within group j, and Cova (u, v) = ⟨uv⟩a − ⟨u⟩a ⟨v⟩a as the covariance of group properties u and v713

among groups, where groups are weighted by their group size.714

Eq. A.8 shows that Swithin quanti�es to what extent within groups the trait value � is associated with �tness.715

It can hence be interpreted as the e�ect of selection taking place within groups. On the other hand, Samong716

measures whether groups with a high mean of � tend to have a high mean �tness. It can hence be interpreted as717

the selection component that results from selection among groups.718

A.4 Multilevel selection 2719

We note that the calculations for MLS 1 can be executed for subdivided populations regardless of whether the720

groups themselves can in any meaningful way be said to reproduce or die. In other words, group selection721

according to MLS 1 does not require that the groups can themselves be considered replicators. An alternative722

formalism, called MLS 2, does explicitly require Darwinian dynamics at the level of groups.723

The idea of MLS 2 is that, if the groups themselves are replicators, the Price equation can be applied at the724

level of groups. Now the relevant population is the population of groups, and the Price equation can describe the725
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evolution of any trait Φ that is a property of groups:726

ΔΦ = Cov (Φ, !)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

group-level selection

+ !ΔΦ⏟⏞⏞⏞⏟⏞⏞⏞⏟
group-level transmission

. (A.9)

Importantly, the relative �tness !j in this Price equation now represents the �tness of group j, that is, the727

(relative) number of groups at time t2 that are its o�spring (including the group itself, if it survives until t2).728

If we are interested in the evolution of a particular trait at the individual level � — such as the level of altruism729

— we are free to choose Φ to be the group mean of �; that is, Φj = {� | j}w. The �rst term in Eq. A.9 then measures730

the e�ect of selection at the group level on the mean trait value of groups. The second term quanti�es the e�ect731

of bias in the changes in Φ between ancestral groups and their o�spring; this re�ects the internal evolution of732

groups.733

B Linear stability analysis734

We here provide the details of the linear stability analysis for the 1D habitat that is presented in Fig. 3b,c and735

Fig. S2.736

B.1 Mathematical analysis737

Consider a population of individuals that each have the same level of altruism �. If the carrying capacity is large,738

the dynamics if the density �(x, t) can be approximated by the following mean-�eld equation:739

)2�
)t2

= g0�(1 − c� +
bmax � (Ga ∗ �)

bmax/b0 + � (Ga ∗ �))(1 −
Grc ∗ �
K ) − d� + kD

)2�
)x2

. (B.1)

Here, Ga and Grc are the kernel functions used in Eq. 1 and Eq. 2 to de�ne the availability of public good and740

the local density, respectively. The notation f ∗ ℎ stands for the convolution of functions f and ℎ. Eq. B.1 has741

a homogeneous equilibrium solution �(x, t) = �0 > 0; we ask under what conditions this solution is (linearly)742

unstable to periodic perturbations so that colonies can form spontaneously.743

To �nd out, we �rst identify �0 by equating Eq. B.1 to zero and solving for �(x, t) = �0. Ignoring the trivial744

solution �0 = 0, the equation is quadratic and can be solved straightforwardly. Out of the two solutions, one745

is negative and hence irrelevant. The remaining solution depends on all parameters except for the di�usion746

constant kD.747

We then consider a periodic perturbation748

�(x, t) = �0 + �(t) sin(2�x/�) (B.2)

with a very small (in�nitesimal) amplitude �(0) and ask whether �(t) will grow or decay. To obtain a dynamic749

equation for �(t) we insert Eq. B.2 into Eq. B.1. In doing so, we have to work out the convolutions of the Gaussian750

kernel functions Ga and Grc with the sine wave of Eq. B.2. From the Convolution Theorem it follows that, for751
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any real-valued, normalized, symmetric kernel function f (x) that has a Fourier transform f̂ (!), the convolution752

with a sine wave is again a sine wave, but with a reduced amplitude:753

f ∗ � = �0 + �(t)f̂ (2�/�) sin(2�x/�). (B.3)

In the speci�c case where f (x) is Gaussian with standard deviation � , we get754

f̂ (2�/�) = exp(−2�2�2/�2). (B.4)

The convolutions with Ga and Grc follow directly from Eq. B.3 and Eq. B.4.755

We then expand the resulting equation to �rst order in �(t). Because �0 is the homogeneous solution, the756

zeroth-order term vanishes. The result is a linear equation of the form:757

)�(t)
)t

= E(�)�(t), (B.5)

where the factor E(�) can be written as:758

E(�) = (
g0(b2max/b0) � �0(1 − �0/K )

(bmax/b0 + ��0)2 ) exp [−2(
��a
� )

2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

altruism

−2d (
��m
� )

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
motility

−(
d�0/K
1 − �0/K) exp [−2(

��rc
� )

2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

resource competition

. (B.6)

The solution of Eq. B.5 is exponential, with growth rate or eigenvalue E(�). Hence, if Eq. B.6 is positive for some759

wavelength �, perturbations with this wavelength are predicted to grow exponentially. Because demographic760

noise produces perturbations of any wavelength, this is expected to eventually give rise to periodic density761

�uctuations with a similar wavelength.762

Eq. B.6 provides considerable insight. It consists of three terms, expressing the e�ects of altruism, motility,763

and resource competition. The three length scales in the system —the scale of altruism �a, the scale of motility764

�m, and the scale of competition �rc— each appear in their appropriate term.765

The �rst term, describing the e�ect of altruism, is the only positive one, and it scales with �. This shows that766

altruism is required to obtain a positive eigenvalue for any wavelength �. Indeed, altruism tends to amplify density767

di�erences: because the bene�ts of altruism grow with the number of altruists in the local neighborhood, its768

e�ect is to increases the reproduction rate in regions of high density, which tends to further increase that density.769

However, the equation shows that this positive contribution is exponentially suppressed if the wavelength770

� is small relative to the scale of altruism �a; this is because such short waves average out within the social771

neighborhoods of individuals.772

The second term re�ects the e�ect of motility. Random motion (di�usion) is a homogenizing force and773

therefore quenches density �uctuations, as re�ected in the negative sign of this term. However, because di�usion774

is famously slow on large length scales, only short wavelengths are strongly a�ected: if the wavelength � exceeds775

the scale of motility (the typical distance traveled by an individual in a generation time) the contribution becomes776

small.777

The third term describes the e�ect of resource competition. Resource competition reduces the reproduction778
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rate in areas with a larger density and thus suppresses density di�erences, which explains that its contribution is779

negative. However, if the wavelength is small relative to the scale of competition �rc, the density wave averages780

out within the competitive neighborhood of individuals and the homogenizing e�ect becomes weak.781

Together, this clearly indicates in which regime we ought to expect colonies. Density �uctuations are782

suppressed by di�usion if their wavelength � is smaller than �m, and by resource competition if � is larger than783

�rc. Instabilities are therefore expected only if there is a gap between these two regimes. At the same time, the784

positive contribution of altruism becomes weak if � is smaller than �a. For altruism to be e�ective in the “gap”,785

�a therefore should be chosen smaller than �rc. In summary, instability requires that the di�usion constant is786

small enough, the scale of competition is large enough, and the scale of altruism is smaller than the scale of787

competition. Apart from these rules of thumb, Eq. B.6 can of course be evaluated numerically to make precise788

predictions; see Fig. S2.789

B.2 Validation of predictions790

In Fig. 3b,c and Fig. S2 we test predictions based on the linear stability analysis using simulations. The key791

predictions are (i) the region of parameter space where colonies can form, and (ii) the wavelength of the resulting792

pattern. The following methods were used.793

As illustrated with the red dot and arrow in Fig. S2a, both predictions are found by maximizing E(�). Fig. S2b794

shows a contour plot of the maximal value of E(�) under variation of the scales; Fig. S2c the corresponding795

wavelengths. Both values were obtained by di�erentiating Eq. B.6 and numerical root �nding.796

To test the predictions we performed a large number of simulations using di�erent values for �rc and �m.797

(We used �rc ∈ {1, 1.2, 1.4,… , 5} and �m ∈ {0.0671, 0.100, 0.134,… , 0.671} in all 21 × 19 = 399 combinations.) As a798

simple proxy for the presence of colonies, we measured the variance of the (smoothed) population density (KDE)799

over space. To identify the dominant wavelength in the density pattern, we calculated the Fourier transform of800

the KDE and selected the mode with the largest amplitude.801

The simulations were performed as usual and using default parameters except for the following adjustments:802

1. All individuals were initialized with a trait value � = 0.05.803

2. In these simulations, we were interested in the ecological patterns of a population with �xed �; therefore804

the mutation rate was set to � = 0 to disable evolution.805

3. The simulation was run for T = 2 400 generations. (The colonies establish very rapidly.)806

4. Starting at t = 400 generations, after each time interval of 80 generations the following analysis was807

performed:808

(a) Calculate a KDE using a Gaussian kernel with standard deviation/bandwidth �a/2.809

(b) Calculate the variance of this KDE.810

(c) Calculate the Fourier transform of the KDE and identify the wave number with the largest amplitude.811
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After the simulation, the mean value of the variance was reported. It is this variance that is plotted in Fig812

3c and Fig. S2e. Also, the mean value of the wave number with the largest amplitude was reported; this wave813

number was transformed to a wave length, which was plotted in Fig. S2f.814
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Supplementary Figures815
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Figure S1. Evolutionary forces and snapshots of replicates (2D habitat) Results are shown based on three simulations
that were identical except that the random-number generator was initiated with di�erent random seeds. Fig. 2 presents
results of Replicate 1.
The three �gures on top show the mean level of altruism through time (thick colored line). The rise in mean level of
altruism can be decomposed into three contributions: natural selection, mutational bias, and random drift, using the method
explained in Appendix A.2. Plotted are the cumulative contributions of natural selection (black) transmission (red) and
genetic drift (green). In all cases, the main contribution is selection, which is consistently positive during the �rst stretch
of the simulations. That said, a mutational bias is revealed as well (red lines). This bias arises because, in this simulation,
negative values of � were prohibited (see Methods) and hence mutations with negative e�ect are sometimes truncated,
especially in individuals with a low trait value. (The smoothness of the red line is a result of the law of large numbers.) The
cumulative e�ect of random drift (green line) is minor in all three replicates.
The three �gures at the bottom show snapshots of the population at the end of the simulations. In all three cases a hexagonal
pattern of colonies has emerged.
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Figure S2. Linear stability analysis To help understand the conditions for the formation of colonies, a linear stability
analysis studies whether, in an initially homogeneous population, small periodic density perturbations tend to grow. (See
Methods for the full derivations.) If they do, this leads to the formation of “colonies”. (a) For given model parameters,
each wavelength is associated with an eigenvalue; if the eigenvalue is positive, density waves with this wavelength tend
to grow. The �gure plots the eigenvalue for a range of wavelengths as calculated for the default parameters of the 1D
model (Table 1), additionally assuming all individuals have � = 0.05. Perturbations with small wavelength are quenched by
motility; those with a long wavelength by resource competition. In between, a window exists (gray shading) of wavelengths
that have a positive eigenvalue. This explains the colony formation in the default parameters. The wavelength with the
largest eigenvalue (indicated with the red dot and black arrow) provides a prediction for the wavelength —the distance
between neighboring colonies. (b) The largest eigenvalue is plotted as a function of the spatial scales in the system: the
scale of motility �m and the scale of competition �rc. (Remember that the scale of altruism �a is 1 by de�nition of the unit of
length.) Otherwise, the assumptions are as in panel (a). Colony formation is expected only in the linearly unstable regime,
to the right of the red contour line. (c) For the same conditions used in panel (b), the predicted wavelength is plotted. As a
rule of thumb, it is somewhat smaller than 2�rc. (d) Simulations were performed for the parameters indicated with black
symbols in panels (b), (c), (e), and (f), assuming that all individuals have an immutable level of altruism � = 0.05. Shown are
the resulting radial distribution functions. As expected, the system is near homogeneous at �rc = 1.5 (black circle, in the
linearly stable regime), weak pair correlations are seen for �rc = 3.0 (marginally unstable), and strong correlations emerge
for �rc = 4.5 (far in the unstable regime), indicating colony formation. (e) Simulation were performed for a large number of
combinations of the spatial scales (19 × 21 = 399 in total); here, the variance of the local population density is plotted as a
simple proxy for colony formation. Clearly, colonies form only in the parameter regime predicted in panel (b). (f) For the
simulations of panel (e), the wavelength of the resulting colonies is plotted. (See Methods.). The results agree broadly with
the predictions of panel (c).
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Figure S3. Quanti�cation of multilevel selection (MLS) in replicates (1D habitat). Fig. 4 shows results of the
quanti�cation of MLS in a single simulation run. To demonstrate the reproducibility of these results, this �gure shows
the same analysis for two additional replicates. The simulations for all three replicates were identical except that the
random-number generator was initiated with a di�erent random seed. All replicates show very similar trends. In particular,
the marginal distributions of all quantities are highly consistent. Their statistics are summarized in Table S1.
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Supplementary Tables816

MLS 1 quantity replicate % positive % negative mean 95% CI
change in mean of � 1 49.4 50.6 0.9 × 10−5 ± 2.0 × 10−5

2 49.4 50.6 0.4 × 10−5 ± 1.8 × 10−5
3 48.2 51.8 −9.1 × 10−7 ± 1.7 × 10−5

within-colony component of selection 1 2.4 97.6 −3.8 × 10−4 ± 0.4 × 10−4
2 10.8 89.2 −3.2 × 10−4 ± 0.4 × 10−4
3 2.2 98.8 −4.1 × 10−4 ± 0.4 × 10−4

among-colony component of selection 1 98.7 1.3 ± 4.2 × 10−4 ± 0.4 × 10−4
2 90.1 9.9 3.6 × 10−4 ± 0.5 × 10−4
3 97.9 2.1 4.4 × 10−4 ± 0.4 × 10−4

MLS 2 quantity replicate % positive % negative mean 95% CI
change in mean of Φ 1 47.6 52.4 0.9 × 10−5 ± 2.0 × 10−5

2 47.7 52.3 0.4 × 10−5 ± 1.9 × 10−5
3 45.4 54.6 −0.1 × 10−5 ± 1.8 × 10−5

colony-level transmission 1 2.5 97.5 −4.6 × 10−4 ± 0.5 × 10−4
2 4.2 95.8 −4.8 × 10−4 ± 0.3 × 10−4
3 3.4 96.6 −4.9 × 10−4 ± 0.4 × 10−4

colony-level selection 1 82.6 1.6 4.7 × 10−4 ± 0.4 × 10−4
2 86.3 2.3 4.9 × 10−4 ± 0.4 × 10−4
3 82.8 3.6 4.8 × 10−4 ± 0.5 × 10−4

Table S1. Statistics of the multilevel selection analysis of Figs. 4 and S3. Error bars for the means are given as 95%
con�dence intervals (see Methods).
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Supplementary Movie Captions817

Movie S1. Movie depicting the dynamics of the simulation described in Fig. 2, which is also shown in Fig. S1818

as Replicate 1. Default parameters were used (Table 1). The video plots the positions of all individuals, and the819

level of altruism of each individual is indicated with the same color scale as in Fig. 2 and 3a. The ticks on the820

left-hand vertical axis show the scale of altruism, the ticks on the right-hand vertical axis the scale of competition.821

A high-quality version of this movie is shared here: https://doi.org/10.5281/zenodo.5727313.822

Movie S2. Movie depicting the dynamics of the simulation Replicate 2 described in Fig. S1. Default parameters823

were used (Table 1). In the video, the left-hand panel shows the positions of all individuals, as in 5, using the same824

color scale as in Fig. 2 and 3a. The right-hand panel plots for each position in the habitat the value A, which can825

be interpreted as the amount of public good at that position, as provided by the altruists in the local environment.826

The ticks on the left-hand vertical axis show the scale of altruism, the ticks on the right-hand vertical axis the827

scale of competition. A high-quality version of this movie is shared here: https://doi.org/10.5281/zenodo.5727313.828

829

Movie S3. Movie depicting the dynamics of the simulation Replicate 3 described in Fig. S1. Default parameters830

were used (Table 1). In the video, the left-hand panel shows the positions of all individuals, as in 5, using the same831

color scale as in Fig. 2 and 3a. The right-hand panel plots for each position in the habitat the value A, which can832

be interpreted as the amount of public good at that position, as provided by the altruists in the local environment.833

The ticks on the left-hand vertical axis show the scale of altruism, the ticks on the right-hand vertical axis the834

scale of competition. A high-quality version of this movie is shared here: https://doi.org/10.5281/zenodo.5727313.835

836
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