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ABSTRACT13

Breast cancer is a common and highly heterogeneous disease. Understanding the cellular diversity in the mammary gland and
its surrounding micro-environment across different states can provide insight into the cancer development in human breast.
Recently, a large-scale single-cell RNA expression atlas was constructed of the human breast spanning normal, preneoplastic
and tumorigenic states. Single-cell expression profiles of nearly 430,000 cells were obtained from 69 distinct surgical tissue
specimens from 55 patients. This article extends the study by providing downstream processed R data objects, complete
cell annotation and R code to reproduce all the analyses. Details of all the bioinformatic analyses that produced the results
described in the study are provided.

14

Background & Summary15

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in women1. It is a very16

heterogeneous disease at the molecular level2. Different breast cancer subtypes can be characterized on the basis of expression17

profiles of markers such as estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor18

2 (HER2)3. The development of certain cancer subclasses is also known to be associated with mutations such as BRCA14.19

Recently, we and colleagues constructed a large-scale single-cell RNA expression atlas of the human breast spanning normal,20

preneoplastic and tumorigenic states (subsequently referred to as the ScBrAtlas)5. Single-cell expression profiles of nearly21

430,000 cells were obtained from 69 distinct surgical tissue specimens from 55 patients (Figure 1). This article extends the22

ScBrAtlas by providing downstream processed R data objects, complete cell annotation and R code to reproduce all the23

analyses.24

The ScBrAtlas spanned several stages of breast cancer genesis. First, reduction mammoplasties were obtained from women25

with no family history of breast cancer to explore cellular diversity in normal breast epithelia as well as complexity within26

the normal breast ductal micro-environment. Three major epithelial cell populations revealed in literature6: basal, luminal27

progenitor (LP), and mature luminal (ML), were confirmed by the bulk RNA-seq signatures for sorted epithelial populations28

as well as the cell clustering of the integrated single cell transcriptomic data on normal breast epithelia. Similar cell type29

composition within the normal epithelium was observed across multiple healthy donors with different hormonal status (pre-30

and post-menopausal). For the immune and stromal micro-environment of normal breast tissue, integration analysis and the31

pseudo-bulk differential expression analysis identified different cell clusters including fibroblasts, endothelial cells (vascular32

and lymphatic), pericytes, myeloid, and lymphoid cells. Differential abundance analysis revealed that fibroblasts are more33

abundant whereas vascular endothelial cells are less abundant in post-menopausal tissue compared to pre-menopausal tissue5.34

Next, breast tissue from BRCA1 mutation carriers was obtained for investigating cellular changes in precancerous state.35

Overall, the differences of stromal and immune subsets between normal and BRCA1+/– preneoplastic tissue were not significant,36

nor was the proportions of different cell clusters. However, extensive changes in the tissue micro-environment were observed37

between the preneoplastic and the neoplastic states in BRCA1 mutation carriers5.38
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Finally, ER+, HER2+ and triple negative breast cancer (TNBC) tumors were obtained from treatment-naive patients for39

exploring the degree of heterogeneity within the cancer cell compartment and its micro-environment across different tumor40

subtypes. Extensive inter-patient heterogeneity was revealed by single cell integration analyses across all cancer subtypes.41

Within the tumor populations, a discrete cluster of cycling MKI67+ tumor cells were observed for all three major breast cancer42

subtypes. Within the tumor micro-environment, different immune landscapes were observed in different cancer subtypes. Both43

TNBC and HER2 featured a proliferative CD8+ T-cell cluster, whereas ER+ tumors primarily comprised cycling TAMs. In44

addition, matched pairs of ER+ tumors and involved lymph nodes were profiled for examining the relationship between primary45

breast tumors and malignant cells that seed lymph nodes. Clonal selection and expansion were observed in some patients,46

whereas mass migration of cells from the primary tumor to the LN was observed in some other patients5.47

The ScBrAtlas provides a valuable resource for understanding cellular diversity and cancer genesis in human breast. The48

examination and exploration of the single cell data presented in this study required large-scale bioinformatics analyses for49

multiple groupings of the original data. While genewise read counts were previously made publicly available for all 421,76150

individual cells7, downstream results after quality filtering, data integration and cell clustering were not provided.51

In this report we describe the bioinformatics analysis used in the ScBrAtlas in greater detail. We provide a complete52

description of the quality control filters used to select 341,874 cells for downstream analyses. The technical quality of both the53

10X single-cell transcriptomic data sets and the bulk RNA-seq reference data set is assessed to demonstrate the reliability of54

the data. We provide downstream R data objects corresponding to each data integration and cell clustering presented in the55

ScBrAtlas, together with R code to reproduce the data objects. Crucially, the data objects provided here include cell barcodes56

by which each individual cell can be tracked through all the analyses. We also provide detailed information allowing the copy57

number variation analyses to be mapped back to individual samples and cell clustered, thus providing a way to distinguish58

putative malignant cancer cells from normal epithelial cells in the cancer tumors. All the resources and the detailed information59

can be easily accessed and utilized by researchers for further exploration and clinical validation, which may lead to discoveries60

of novel approaches for personalized breast cancer treatment in the future.61

Methods62

Read alignment and count quantification63

Single-cell RNA-seq expression profiles of 69 samples from 55 patients were generated by the 10x Genomics Chromium64

platform and an Illumina NextSeq 500 system (Fig. 1a, Supplementary Table 1). The original Illumina BCL output was65

converted to FASTQ files and then aligned to the human reference genome GRCh38 (cellranger ref v3.0.0) using Cell Ranger66

v3.0.2 (https://support.10xgenomics.com). The outputs for each individual sample contain a count matrix in matrix market67

mtx.gz format, barcode information and feature information both in tab-delimited tsv.gz format (Supplementary Table 1). Any68

cell with at least 500 sequence reads assigned to genes was included in this output. All the downstream bioinformatics analyses69

were performed based on the cellranger outputs.70

Quality control and cell filtering71

Sequence read counts were obtained for a total of 421,761 cells across the 69 samples (Supplementary Table 2). Quality72

control (QC) was performed individually for each scRNA-seq sample. Cells with high proportion of mitochondrial reads were73

considered as of low quality and hence were filtered8. A lower bound of 500 was generally applied to the number of detected74

genes for each cell, although this was reduced to 400 or 300 for a small number of samples with low read coverage. Upper75

bounds of a combination of number of detected genes and library size were also applied to each sample to remove potential76

doublets. The threshold values of these QC metrics for each individual sample are shown in Supplementary Table 2 and are77

also supplied in machine-readable form as part of this data submission9. A total of 341,874 cells remained after quality filtering78

for downstream analysis.79

Single-cell RNA-seq integration analysis80

The samples included breast tissues from normal healthy donors, BRCA1 mutation carriers and patients diagnosed with different81

types of breast cancer (triple negative, ER+ and HER2+). Matching pairs of tumor and lymph node (LN) samples, as well as82

tumor samples from male patients, were also included. The single-cell analysis strategy involved grouping together comparable83

samples, integrating the profiles, then clustering cells into putative cell types. A total of 16 different sample-groups were84

integrated (fig. 1b). Some samples were involved in more than one integration, for example the pre-neoplastic samples with85

BRCA1 mutations were integrated first with the normal samples and later with the BRCA1 triple negative (TN) tumor samples.86

For some sample-groups analyses, subsets of cells were extracted, re-integrated and re-clustered. The total number of cell87

cluster analyses is shown in Table 1.88

Samples were integrated using the Seurat anchor-based integration method10. To perform dimensionality reduction, the89

first 30 principal component were computed and used for the cell clustering and t-distributed stochastic neighbor embedding90

2/10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.30.470523doi: bioRxiv preprint 

https://support.10xgenomics.com
https://doi.org/10.1101/2021.11.30.470523
http://creativecommons.org/licenses/by/4.0/


(t-SNE) visualization11. The default Louvain clustering algorithm12 was used for cell cluster identification. Different resolution91

parameters were used in different cell clustering analyses to ensure repeatability and the best interpretation of the data5.92

We provide here the Seurat data objects containing each of the cluster analyses as R data files (Table 2). The R data objects93

contain cell cluster details for each cell. The R code by which each R object was constructed is also provided (Table 2).94

Differential expression and pathway analysis95

Differential expression analyses were performed to detect marker genes for different cell clusters. In order to account for the96

biological variation between different patients, a pseudo-bulk approach was used in most cases where read counts from all cells97

under the same cluster-sample combination were summed together to form pseudo-bulk samples. The edgeR’s quasi-likelihood98

pipeline was used for pseudo-bulk differential expression analysis, where the baseline differences between patients were99

incorporated into the linear model13. The Seurat’s FindMarkers function was applied where pseudo-bulk samples were not100

satisfactory due to low cell numbers or imbalanced cluster-sample combination. KEGG pathway analyses were performed101

using the kegga function of the limma package14.102

Data visualization103

Ternary plot visualization was performed as previously described15. Ternary plots position cells according to the proportion104

of basal, LP- or ML-positive signature genes expressed by that cell and were generated using the vcd package16. The t-SNE105

visualization for all the integration analyses were generated using the RunTSNE function in Seurat with a random seed of106

2018 for reproducibility. Diffusion plots were generated using the destiny package17. MDS plots were created with edgeR’s107

plotMDS function. Log2-CPM values for each gene across cells were calculated using edgeR’s cpm function with a prior108

count of 1. Heat maps were generated using the pheatmap package. Log2-CPM values were standardized to have mean 0 and109

standard deviation 1 for each gene before producing the heat maps, after which genes and cells were clustered by the Ward’s110

minimum variance method18.111

Bulk RNA-seq data and differential expression analysis112

RNA-seq experiments were performed to obtain signature genes of basal, luminal progenitor (LP), mature luminal (ML) and113

stromal cell populations. Epithelial cells for basal, LP, and ML populations were sorted from eight independent patients and114

stroma from five patients. For one particular patient, samples were collect from both left and right breast for each of the four115

cell populations. For another patient, ML cell population was collected twice. The complete RNA-seq data contains 9 basal, 9116

LP, 10 ML and 6 stroma samples. RNA-seq libraries were prepared using Illumina’s TruSeq protocol and were sequenced on117

an Illumina NextSeq 500.118

Reads were aligned to the hg38 genome using Rsubread v1.5.319. Gene counts were quantified by Entrez Gene IDs using119

featureCounts and Rsubread’s built-in annotation20. Gene symbols were provided by NCBI gene annotation dated 29 September120

2017. Immunoglobulin genes as well as obsolete Entrez Ids were discarded. Genes with count-per-million above 0.3 in at least121

3 samples were kept in the analysis. TMM normalization was performed to account for the compositional biases between122

samples.123

Differential expression analysis was performed using limma-voom21. Patients were treated as random effects and the124

intra-patient correlation was estimated by the duplicateCorrelation function in limma. Pairwise comparisons between the four125

cell populations were performed using TREAT with a fold change threshold of 1.522. An FDR cut-off of 0.05 was applied for126

each comparison. Genes were considered as signature genes for a particular cell type if they were upregulated in that cell type127

in all the pairwise comparisons. The analysis yielded 515, 323, 765, and 1094 signature genes for basal, LP, ML, and stroma,128

respectively. In this submission we provide gene symbols of the signature genes as an R data file and R code to reproduce the129

bulk RNA-seq analysis9, 23
130

Differential abundance analysis131

Differential abundance analyses were performed to examine the differences in cell cluster frequencies between pre-menopause132

and post-menopause groups in normal breast tissue micro-environment. Quasi-multinomial and quasi-binomial generalized133

linear models were used in order to account for the inter-patient variability. The numbers of cells under all the clusters from134

each individual donor were counted and used as the response variable in the model. The glm function of the stats package was135

used to fit the cell numbers against cell clusters, donors, plus a cluster-menopausal interaction term. The quasi-Poisson family136

was used in the glm function.137

A quasi-multinomial F-test was performed to test for differences in cluster frequencies across all the clusters between pre-138

and post-menopausal samples, which yielded a p-value of 0.007. To test for cluster frequency differences for each individual139

cluster, we compared the cell numbers of that cluster with the aggregated cell numbers of all the other clusters across all the140

donors. Quasi-binomial generalized linear models were fitted and quasi-binomial F-tests were performed for each cluster141

separately. The p-values are 0.040 and 0.032 for cluster 1 and cluster 2, respectively, indicating these two clusters have142
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significantly different sizes between pre- and post-menopause conditions after accounting for inter-patient variability. Sizes are143

not significantly different for other clusters. The R code to reproduce the differential abundance analysis is provided in the files144

NormEpi.R and NormTotal.R (Table 2).145

Copy number variation analysis146

Copy number variation (CNV) analysis was performed using inferCNV of the Trinity CTAT Project (https://github.com/147

broadinstitute/inferCNV), which compares gene expression intensity across genomic locations in the tumor or lymph-node148

samples with those in a normal reference sample. The single-cell RNA expression profile of a normal breast total cells sample149

(N-0372-total) was adopted as a reference for all the CNV analyses presented in the ScBrAtlas study. The results of each CNV150

analysis were visualized in a heatmap, which showed the relative expression intensities of the tumor samples with respect151

to the normal reference. For ease of visualization, cells from the same patient within the same cluster were grouped into a152

single column block, and only the blocks containing more than 100 cells were used in the heatmap. All the column blocks153

were assigned an equal width in each of the heatmap. The column block annotation of all the CNV heatmaps in this study is154

available as part of the Figshare deposition, indicating which clusters in which samples were classified as normal or tumor9.155

Data Records156

Cell Ranger genewise read counts for the 69 scRNA-seq profiles, prior to quality filtering, are available as GEO series157

GSE1615297. Quality filtering thresholds, downstream R data objects storing cell cluster identities and associated R code are158

available from Figshare9. Specific files available from Figshare are listed in Table 2.159

The bulk RNA-seq genewise read counts are available as GEO series GSE16189224. The cell-type signature genes generated160

from the bulk RNA-seq and associated R code are available from Figshare9.161

Technical Validation162

Technical quality of the 10X single-cell transcriptomic datasets was assessed by examining the number of mapped reads and163

the number of detected genes (genes with at least one read count mapped to it) for all cells across all the samples (Fig. 2a-b).164

Quality control was performed to remove cells of low quality. Cells with a high proportion of mitochondrial reads or a low165

number of detected genes were removed. For each sample, an upper limit of library size was also used in combination with an166

upper limit of number of detected genes to remove potential multiplets. The proportion of cells retained after filtering is 82.2%167

across all 69 samples, indicating good data quality (Fig. 2c).168

Technical quality of the bulk RNA-seq data was assessed using MDS and BCV plots (Figure 3).169

Usage Notes170

The code provided may be run using the free R programming environment with Bioconductor and Seurat R software packages171

https://www.r-project.org. The RDS files may be read using R’s readRDS() function. The Seurat objects allow readers to use172

and extend the results of the major analyses conducted as part of the ScBrAtlas study. Cell barcodes and Seurat cell clustering173

information are stored in the meta.data component of each Seurat object.174

Code availability175

The R code files provided on Figshare contain complete code and input files for reproducing the analyses of the BrScAtlas176

study9 (Table 2). All the bioinformatics analyses were performed in R 3.6.1 on x86_64-pc-linux-gnu (64-bit) platform, running177

under CentOS Linux 7. The following software packages were used for the analyses: Seurat v3.1.1, limma v3.40.6, edgeR178

v3.26.8, pheatmap v1.0.12, ggplot2 v3.2.1, org.Hs.eg.db v3.8.2 and vcd v1.4-5.179
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Figures & Tables235

Label Tissue Sample Type Cell Family Figure
NormEpi Normal breast epithelial cells EV1C
NormEpiSub Normal breast epithelial cells without stroma 1E
NormTotal Normal breast total cells 2B
NormTotalSub Normal breast non-epithelial 2D
NormTotalFib Normal breast fibroblast cells 3D
NormB1Total Normal and BRCA1 preneoplastic total cells 4B
NormB1TotalSub Normal and BRCA1 preneoplastic non-epithelial 4C
BRCA1Tum BRCA1 preneoplastic and BRCA1 TNBC total cells 4E
BRCA1TumSub BRCA1 preneoplastic and BRCA1 TNBC non-epithelial 5A
TNBC TNBC total cells 6A
HER2 HER2+ breast tumor total cells 6B
ERTotal ER+ breast tumor total cells 6C
ERTotalTum ER+ breast tumor epithelial cells 6E
PairedER Two ER+ breast tumors from patient 0029 total cells 6H
TNBCSub TNBC non-epithelial 7A
HER2Sub HER2+ breast tumor non-epithelial 7B
ERTotalSub ER+ breast tumor non-epithelial 7C
TNBCTum TNBC epithelial cells EV3B (top)
HER2Tum HER2+ breast tumor epithelial cells EV3B (bottom)
TNBCTC TNBC T-cells EV4A (left)
HER2TC HER2+ breast tumor T-cells EV4A (middle)
ERTotalTC ER+ breast tumor T-cells EV4A (right)
Male ER+ breast tumors from male patients total cells EV5A
TumLN ER+ breast tumor & lymph-node pairs from

7 patients
total cells 9A

Table 1. Cell cluster analyses. Each row corresponds to one integration and cell clustering, except for TumLN, where one
clustering was done for each of the 7 patients. Columns indicate the group of samples integrated, the cell subset clustered and
the figure reference in the original ScBrAtlas study5.
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Label Data filename Code filename
NormEpi SeuratObject_NormEpi.rds NormEpi.R
NormEpiSub SeuratObject_NormEpiSub.rds NormEpi.R
NormTotal SeuratObject_NormTotal.rds NormTotal.R
NormTotalSub SeuratObject_NormTotalSub.rds NormTotal.R
NormTotalFib SeuratObject_NormTotalFib.rds NormTotal.R
NormB1Total SeuratObject_NormB1Total.rds NormBRCA1.R
NormB1TotalSub SeuratObject_NormB1TotalSub.rds NormBRCA1.R
BRCA1Tum SeuratObject_BRCA1Tum.rds BRCA1Tum.R
BRCA1TumSub SeuratObject_BRCA1TumSub.rds BRCA1Tum.R
TNBC SeuratObject_TNBC.rds TNBC.R
TNBCSub SeuratObject_TNBCSub.rds TNBC.R
TNBCTC SeuratObject_TNBCTC.rds TNBC.R
TNBCTum SeuratObject_TNBCTum.rds TNBC.R
HER2 SeuratObject_HER2.rds HER2.R
HER2Sub SeuratObject_HER2Sub.rds HER2.R
HER2TC SeuratObject_HER2TC.rds HER2.R
HER2Tum SeuratObject_HER2Tum.rds HER2.R
ERTotal SeuratObject_ERTotal.rds ER.R
ERTotalSub SeuratObject_ERTotalSub.rds ER.R
ERTotalTC SeuratObject_ERTotalTC.rds ER.R
ERtotalTum SeuratObject_ERTotalTum.rds ER.R
Male SeuratObject_Male.rds Male.R
PairedER SeuratObject_PairedER.rds PairedER.R
TumLN SeuratObject_TumLN.rds TumLN.R

Table 2. Files deposited on Figshare9. Data files are in RDS format. Each data file contains one Seurat object except for
TumLN, which contains a list of 7 Seurat objects. Each Seurat data object provides cell cluster identities and associated
information for the corresponding cell cluster analysis. Code files contain the R code used to produce the corresponding Seurat
objects.
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Figure 1. (a) Diagram showing the data processing pipeline from sample collection to downstream bioinformatics analyses.
(b) Schematic overview of the all the integration analyses and the samples involved in each integration analysis. Under each
category, the names of the samples are listed and the total number of samples is shown in the bracket.
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Figure 2. Box plots of (a) the library sizes and (b) the numbers of detected genes for all the cells in each of the 69 samples
before filtering. Boxes are coloured by tumor type. (c) Bar plots of the number of cells in each of the 69 samples. The blue
segments show the number of cells that are kept after the cell filtering while the red segments show the filtered cells. The
proportions of filtered cells are labelled on top of the bars for all 69 samples.
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Figure 3. (a) Bar plots of the numbers of read pairs in the human mammary gland bulk RNA-seq samples. The light grey
segments represent the mapped read pairs whereas the dark grey segments represent the unmapped ones. (b) MDS plot of all
the bulk RNA-seq samples. (c) BCV plot of the bulk RNA-seq data.
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