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Abstract 

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function 

is not completely known. Previous formal studies indicate inhibition differentiated by local and global 

connectivity in associative memory networks functions to rescale the level of retrieval of excitatory 

assemblies. However, such studies lack biological details such as a distinction between types of neurons 

(excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we 

present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or 

global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory 

assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in 

associative memory structures, including naturalistic and artificial structures. Experimental studies have 

reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form 

sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as 

a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one 

connected to excitatory assemblies locally and the other connected globally – can quadruple the range of 

retrieval across related memories. We identify a possible functional role for local-global inhibitory balance 

to, in the context of choice or preference of relationships, permit and maintain a broader range of memory 

items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of 

memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible 

and behaviourally-useful function of inhibitory diversity in memory. 

 

Introduction 

The mechanisms by which our brains flexibly perform the complex tasks of learning and memory are not 

completely understood. Hebbian learning [Hebb, 1945], the relative increase in synaptic strength between 

neurons as a result of shared, causal activity, seems important. Hebb postulated memories were 

formulated in the brain by assemblies of highly-interconnected neurons [Hebb, 1945]. Evidence for this 

‘neuron assembly’ hypothesis was found in hippocampus, where groups of neurons become 

synchronously activated in response to an animal’s spatial location, indicating a neural correspondence 

to and potential memory of the location [Harris et al., 2003]. These memories are often mutually related 

– in physical or behavioural space for the case of navigation [Tolman, 1948], in reward space for the case 

of rewarded learning tasks [Dusek & Eichenbaum, 1997], in linguistic space for the case of language 

comprehension [Goldstein et al., 2021], and theoretically in any arbitrary semantic space for generalized 

graph-based reasoning (e.g., family trees) [Whittington et al., 2020]. How can the structure of these 

mutual relations be identified dynamically in cortical networks? Inhibitory mechanisms may hold an 
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answer. Here, we computationally explore the possible role of inhibitory circuits in extracting graph-based 

relationships in the space of behaviorally relevant information. 

The majority of experimental and computational work focusing on assemblies as representations of 

memory items has focused on the role of excitatory neurons. However, emerging evidence suggests 

inhibitory neurons play a non-trivial role in cortical networks. Throughout the brain, inhibitory neurons 

have classically been thought to coarsely keep excitation in check with a broad, non-specific blanket of 

inhibition [Brunel, 2000; Amit et al. 1994]. But more recent work has shown inhibitory neurons are tuned 

to specific external stimuli [Okun & Lampl, 2008; Xue et al., 2014], have specific associations with 

behaviour [Dudok et al., 2021], have a large diversity of forms and functions within and across brain areas 

[Gouwens & Sorensen, 2020; Burns & Rajan, 2021], and form inhibitory assemblies [Zhang, 2017], often 

jointly with excitatory subnetworks [Otsuka & Kawaguchi, 2009; Koolschijn et al., 2019]. A hallmark of 

many neuropathologies is inhibitory disfunction [Amieva et al., 2004; Baroncelli et al., 2011]. If specific 

inhibitory disfunction alone sufficient for explaining these pathologies, then we could expect subtle 

inhibitory changes to cause dramatic changes in global function in complex tasks like those involving 

learning and memory. A greater understanding of the neurophysiological mechanisms underlying these 

changes may help us target treatments for such disorders and provide fundamental insight into the 

computational roles of inhibitory neurons in such circuits. 

Previous modelling work in a formal model with binary neurons [Haga & Fukai, 2019] has shown how anti-

Hebbian learning (i.e., involving inhibitory synapses) in an associative memory model was able to extend 

the span of association between mutually-related memory items organised in a simple ring structure, 

compared to a regular Hebbian learning rule (i.e., not involving inhibitory synapses). Later work extended 

this formal model to arbitrary graph structures [Haga & Fukai, 2021]. These results suggest inhibition may 

play a nontrivial role in relational memory systems. However, these models lacked biological features – 

most prominently a lack of distinction between excitatory and inhibitory neuron populations, breaking 

Dale’s Law. The excitatory assemblies were also not nearly as sparse as those seen in biology and the 

neurons took on binary states. Nevertheless, the results indicate global functional changes can result from 

subtle inhibitory changes. This study proposes a realistic connection scheme of distinct excitatory and 

inhibitory neurons to embed sparse cell assemblies which represent memory items mutually linked 

through arbitrary graph structures. Formulated in this way, the model allows us to confirm the previous 

suggestion that a balance between local inhibition and global inhibition on cell assemblies determines the 

scale and extent of memories retrieved in a neural network. We show this for various naturalistic and 

artificial associative memory structures, including as a behaviourally-useful function to maintain a choice 

distribution given a juncture or decision point in physical or memory space. We find a balance between 

local and global inhibition allows control over the range of recall within arbitrary graph structures, as well 

as graph clustering effects which may be useful in navigation and memory tasks. 

 

Materials and Methods 

Model 

In order to embed memories in the network, we generate binary patterns as vectors of length 𝑁𝐸, the 

number of excitatory neurons. Then, the weight 𝑇𝑖𝑗  of connections between any pair of excitatory 

neurons 𝑖 and 𝑗 is defined using these patterns. First, we create 𝑝 random binary patterns (of 0s and 1s) 
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of length 𝑁𝐸 , {𝜉𝑖
𝜇

}
𝑖=1,2,…,𝑁𝐸

𝜇=1,2,…,𝑝
, with probabilities for 0 and 1 as 𝑃𝑟𝑜𝑏[𝜉𝑖

𝜇
= 0] = 1 − 𝑓  and 𝑃𝑟𝑜𝑏[𝜉𝑖

𝜇
=

1] = 𝑓, and where we call 𝑓 the “sparseness” parameter of the memory patterns. Memories are then 

embedded using a modified extended association rule [18, 29] designed to allow association between 

memory items in an arbitrary graph structure where vertices are the memory patterns and edges 

represent an association of two memory patterns. Specifically 

𝑇𝑖𝑗 = ∑ 𝜉𝑖
𝜇

𝜉𝑗
𝜇

+ ∑ ∑ 𝜉𝑖
𝜇

𝜉𝑗
𝑘

𝑘∈𝐾

𝑝

𝜇=1

𝑝

𝜇=1

                   (1) 

where 𝐾 is the set of memory patterns neighbouring pattern 𝜇 in the associative memory structure, 𝑀. 

Two populations of inhibitory neurons are also modelled – one with global connectivity (uniform 

connection probabilities as indicated in Figure 1) of size 𝑁𝐺 and another with local connectivity, which is 

specific to each memory pattern, and has a total size of 𝑁𝐿, but where only 𝑓𝑁𝐿 local inhibitory neurons 

participate in each pattern. Unless stated otherwise, we use 𝑁𝐸 = 4,000, 𝑁𝐺 = 500, 𝑁𝐿 = 500, and 𝑓 =

0.01, meaning that each pattern consists of a joint assembly of 40 excitatory neurons and 10 local 

inhibitory neurons. A general schematic of the model from the perspective of a single memory pattern is 

shown in Figure 1A. 

 

 

Figure 1. (A) General schematic of the model from the perspective of a single memory pattern (Eμ) and its 

connections to its respective local inhibitory population (LI), neighbours (Ek), and the global inhibitory 

population (GI). Connection probabilities are indicated as values of P. To retrieve a pattern, excitation is 

given directly to a single pattern. Gaussian noise is also applied independently to all excitatory neurons. 

Key: Striped/shaded arrows and circles indicate excitatory connections and populations, respectively, and 

unshaded arrows and circles indicate inhibitory connections and populations, respectively. (B) F-I curves 

for the excitatory neurons (𝜙) and inhibitory neurons (𝜓) (from [Amit et al., 1994]). For the excitatory F-I 

curve, values of 𝐼 above 0.15 are mapped to 𝑉 = 0.08, and the inhibitory F-I curve continues linearly with 

the same slope for values of 𝐼 above 0.6. 
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Neurons are modelled as proportions of their maximum firing rates, based on an established method 

[Amit et al., 1994]. At each timestep, currents are calculated for each excitatory neuron 𝐼𝑖
𝐸 , global 

inhibitory neuron 𝐼𝑖
𝐺, and local inhibitory neuron 𝐼𝑖

𝐿 

𝐼𝑖
�̇�

𝜏𝐸 
= −𝐼𝑖

𝐸 +
1

𝑁𝐸⟨𝑓⟩
∑ 𝐽𝑖𝑗

𝐸𝐸
𝑗≠𝑖 𝑉𝑗

𝐸 − (1 − 𝑐)
1

𝑁𝐺𝑃𝐸𝐺
∑ 𝐽𝑖𝑗

𝐺𝐸 𝑉𝑗
𝐺 − 𝑐

1

𝑁𝐿𝑓
∑ 𝐽𝑖𝑗

𝐿𝐸 𝑉𝑗
𝐿 + 𝐻𝑖

𝑒𝑥𝑡 (2) 

𝐼𝑖
�̇�

𝜏𝐼 
= −𝐼𝑖

𝐺 +
1

𝑁𝐸𝑓𝑃𝐺𝐸
∑ 𝐽𝑖𝑗

𝐸𝐺𝑉𝑗
𝐸

𝑖         (3) 

𝐼𝑖
�̇�

𝜏𝐼 
=  −𝐼𝑖

𝐿 +
1

𝑁𝐿𝑓
∑ 𝐽𝑖𝑗

𝐸𝐿𝑉𝑗
𝐸

𝑖          (4) 

and then converted into proportions of their maximum firing rates by 

𝑉𝑖
�̇� = 𝜙(𝐼𝑖

𝐸) + 𝜍𝑖  (5) 

𝑉𝑖
�̇� = 𝜓(𝐼𝑖

𝐺)   (6) 

𝑉𝑖
�̇� = 𝜓(𝐼𝑖

𝐿)   (7) 

where 𝐽𝑖𝑗 is the balanced connection weight between neurons 𝑖 and 𝑗, 𝜏𝐸 = 10𝑚𝑠 and 𝜏𝐼 = 2𝑚𝑠 are the 

time decay constants, 𝑐 ∈ [0,1] is the local-global inhibition balance, ⟨𝑓⟩ is the sum of expected firing 

rates based on the average degree of 𝑀 (e.g., if 𝑀 is a 1D chain,  ⟨𝑓⟩ = 𝑓 ∙ 1.5 = 0.015), and 𝑃𝐸𝐺 = 0.5 

and 𝑃𝐺𝐸 = 0.1 are the connection probabilities from excitatory to global inhibitory neurons and global 

inhibitory to excitatory neurons, respectively. External input to the network is given by 𝐻𝑖
𝑒𝑥𝑡 = 0.2, the 

drive given to excitatory neurons in the pattern we wish to retrieve during the stimulation window, and 

𝜍𝑖 ∈ 𝒩(0, 0.00152) is small Gaussian noise (independently drawn at every step, for every excitatory 

neuron). The F-I curves for the excitatory neurons (𝜙) and inhibitory neurons (𝜓) are shown in Figure 1B 

and are from a previous study [Amit et al., 1994]. The network’s forward dynamics (governed by equations 

2-7) are solved using the Euler method with step sizes of 0.1𝑚𝑠. 

The excitatory-to-excitatory weights are considered balanced by setting 𝐽𝑖𝑗
𝐸𝐸 = 𝑇𝑖𝑗. We then balance the 

inhibitory-to-excitatory and excitatory-to-inhibitory weights based on 𝐽𝑖𝑗
𝐸𝐸. We balance the inhibitory-to-

excitatory (𝐽𝑖𝑗
𝐺𝐸 and 𝐽𝑖𝑗

𝐿𝐸) and inhibitory-to-excitatory (𝐽𝑖𝑗
𝐸𝐺  and 𝐽𝑖𝑗

𝐸𝐿) connections by calculating the sum of 

each excitatory neuron’s pre-synaptic input in 𝐽𝑖𝑗 and calculating the proportion of this sum compared to 

the mean sum of all excitatory neurons. This proportion becomes the connection weight, and obtains a 

mean of 1. In effect, this means excitatory neurons which receive stronger recurrent excitation than the 

mean excitatory neuron receive proportionally stronger local and global inhibition. Theoretically, this can 

be interpreted as a form of homeostatic normalisation for the purpose of excitatory-inhibitory balance. 

Associative memory structures 𝑀 = (𝑃, 𝐴) with |𝑃| = 𝑝 vertices (memory patterns) and edges (memory 

associations), 𝐴, is chosen and the model is instantiated according to the above procedure. We then 

choose a single pattern to receive external input to all of its excitatory neurons during the stimulation 

window, 𝑡 = 0𝑚𝑠 to 𝑡 = 80𝑚𝑠, after which the network is left to settle into an approximate steady-state 

and stopped at 𝑡 = 500𝑚𝑠  for analysis. The main variable of manipulation was the balance between local 

and global inhibition balance, 𝑐, where 𝑐 = 0 means only global inhibition is active, 𝑐 = 1 means only 
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local inhibition is active, and 𝑐 = 0.5  means there is an equal contribution of both global and local 

inhibition in the network. 

Analysis 

To quantify the extension in the range of retrieval given by changes in 𝑐, we tested 𝑀 as a 1D chain with 

𝑝 = 100. We stimulated each pattern and recorded the excitatory firing rates at 𝑡 = 480𝑚𝑠  to 𝑡 =

500𝑚𝑠. Following an established method [Amit et al. 1994], and with 𝑊𝑆 = 20𝑚𝑠 being the number of 

timesteps being averaged, we calculate the mean 𝑉�̅� and variance Δ𝑉𝜇
2̅̅ ̅̅ ̅ of the final firing rates for each 

memory 𝜇 by 

𝑉�̅� =
1

𝑊𝑆
∑ 𝑉𝑖

𝜇𝑁𝐸

𝑖=1     (8) 

Δ𝑉𝜇
2̅̅ ̅̅ ̅ =

1

𝑊𝑆
∑ (𝑉𝑖

𝜇
)2𝑁𝐸

𝑖=1 − 𝑉�̅� .  (9) 

The covariance between two memories 𝜇 and 𝑣 is 

𝐶𝑂𝑉𝜇𝑣 =
1

𝑊𝑆
∑ 𝑉𝑖

𝜇
𝑉𝑖

𝑣𝑁𝐸

𝑖=1 − 𝑉�̅�𝑉�̅� .  (10) 

The correlation between two memories 𝜇 and 𝑣 is 

𝐶𝜇,𝑣 =
𝐶𝑂𝑉𝜇𝑣

√Δ𝑉𝜇
2̅̅ ̅̅ ̅̅   Δ𝑉𝑣

2̅̅ ̅̅ ̅̅
 .    (11) 

We then calculate the mean correlation between two memories at the shortest path distance 𝑑 away 

from each other by 

𝐶𝑑 =
1

𝑝
∑ 𝐶𝜇,𝜇+𝑑𝜇  .    (12) 

Finally, we quantify the range of retrieval 𝒟 using the following algorithm: 

1. Calculate |𝐶𝑑−1 − 𝐶𝑑| for all 𝑑 > 1. 

2. 𝒟 is the first value of 𝑑 for which the next 𝑌 attractors have |𝐶𝑡−1 − 𝐶𝑡| < 𝜀. If no such 𝒟 is found, 

𝒟 =
𝑝

2
. 

We use 𝜀 = 0.05 and 𝑌 = 5. 

We observed how the activity of the excitatory population spread through associative memory structure 

for different values of 𝑐 and across time. We chose to visualise this spread in three classical graphs – 

Zachary's karate club graph [Zachary, 1977], the 𝐾5-3-chain [Schapiro et al. 2013], and the Tutte graph 

[Tutte, 1946] – and one constructed graph representing a multi-room spatial environment which we call 

the multiroom graph. These graphs were chosen for their complexity, relation to or derivation from real-

world analogues, and well-known graph theoretic features. In order to quantify the similarity between 

the activity of the network and graph theoretic properties in the associative memory structures, we 

compared the approximate steady-state activity to the community detection and classification of vertices 

using the label propagation algorithm [Raghavan et al., 2007]. We denote two vertices – e.g., 𝜇 and 𝑣 – 

being members of the same community according to this algorithm with 𝐿𝑃𝐴(𝑣𝜇 , 𝑣𝑣) = 1  and 
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𝐿𝑃𝐴(𝑣𝜇 , 𝑣𝑣) = −1 otherwise. Then, the clustering index for a given trial and its associated associative 

memory structure is given by 

𝑄 =
1

(𝑝2−𝑝)
∑ ∑ 𝐿𝑃𝐴(𝑣𝜇 , 𝑣𝑣)𝜇≠𝑣𝜇 𝐶𝜇,𝑣.   (13) 

The clustering index is a measure of how our model’s activity corresponds to topological features of 𝑀. 

To test how the activities correspond to geometric distance for arbitrary graphs, we define a local area 

around a vertex in 𝑀. This local area is the closed 𝑑-neighborhood of a vertex, i.e., the set of the vertex 

𝑣 and all vertices within distance 𝑑 as measured by their shortest path to 𝑣. For a choice of 𝑑 and 𝑣, we 

construct a local area function 𝐿𝐴(𝜇|𝑣, 𝑑) which assigns vertices in the local area with a value of 1 and 

−1 otherwise. We then calculate the geometric index by 

𝑅 =
1

(𝑝2−𝑝)
∑ ∑ 𝐿𝐴(𝜇|𝑣, 𝑑)𝜇≠𝑣𝜇 𝐶𝜇,𝑣.   (13) 

 

Results 

The general structure of the model is illustrated in Figure 1A. Memories are modelled as strongly-

interconnected assemblies of excitatory neurons. Each memory item’s assembly is also interconnected to 

the assemblies of memory items which it is connected to in the associative memory structure, 𝑀. The 

associative memory structure can take on any form. Inhibition to the network is provided by two equally-

sized populations: (i) a global inhibitory population, which has an excitatory to global inhibitory 

connection probability of 0.1 and global inhibitory to excitatory connection probability of 0.5; and (ii) local 

inhibitory populations (one for each excitatory assembly), which are fully connected to individual 

excitatory assemblies in the associative memory structure. The balance between these two activities was 

governed by the parameter 𝑐: 𝑐 → 0 being strongly global, 𝑐 → 1 being strongly local, and 𝑐 = 0.5 being 

a balance between the two. A single trial is performed by giving a brief positive impulse (80𝑚𝑠) to a single 

excitatory assembly and then letting the network self-regulate its activity thereafter. This is similar to how 

a brief sensory stimulus of a single memory item can (even after the stimulus is removed) have persistent, 

representable activity and this activity can cause the retrieval of related memory items via cognition 

[Miyashita, 1988; MacDonald et al., 2011; Uitvlugt & Healey, 2018]. We mostly analyse the approximate 

steady-state reached after 500𝑚𝑠. 

Extended range of retrieval 

Setting 𝑀 as a 1D chain with 𝑝 = 100 memory patterns, we simulated values of 𝑐 from 0 to 1 in 0.1 steps. 

We found the range of retrieval extended gradually with increases to 𝑐  (Figure 2A). At 𝑐 = 0.7, the 

network showed a dramatic increase in noisy behaviour, however this slowly subsided as we increased 

the size of the network, indicating a finite field effect (Figure 2B). Compared to 𝑐 = 0, which had a range 

of retrieval of around 5, 𝑐 = 0.7 quadrupled this distance to 20 neighbours in distance along the 1D chain 

(Figure 2C). In the range of 𝑐 > 0.7, we tested networks of sizes up to 𝑁𝐸 = 128,000, 𝑁𝐺 = 4,000, 𝑁𝐿 =

4,000 and found that in all cases the network activity was very noisy. Due to computational limitations, 

we did not test larger networks, however we speculate that sufficiently large networks are likely to exhibit 

even greater extensions to the range of retrieval but at smaller network scales are perturbed by noise 

from a finite field effect. 
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Figure 2. (A) Illustration of 𝑀 as a 1D chain. An arrow indicates the initially stimulated memory and the 

shading of vertices indicates the strength of activity in each excitatory assembly (darker is more active). 

(B) Example trials showing the correlation of approximate steady-state activities of excitatory neurons 

with neighbouring memories in a 1D chain associative memory structure. Grey lines are single trials 

(n=100) and black lines are the mean of all trials. Panels show increasing the value of 𝑐 to 0.6 (to a local 

inhibition dominant network configuration) approximately doubles the initial range of retrieval. (C) 

Example trials the same as (B) for 𝑐 = 0.7 with panels showing increasing sizes of networks (starting from 

1x, which is 𝑁𝐸 = 4,000, 𝑁𝐺 = 500, 𝑁𝐿 = 500). This indicates a strong finite field effect which appears 

in the local inhibition dominant state. (C) Scatterplot showing the range of retrieval measure, 𝒟, increases 

with 𝑐. Grey dots are single trials (n=5 per value of 𝑐) and the black line follows the mean of trials. Trials 

for 𝑐 = 0.7 were completed with 𝑁𝐸 = 32,000, 𝑁𝐺 = 1,000, 𝑁𝐿 = 1,000, and for all other values of 𝑐 

the trials were completed with the regular network size (𝑁𝐸 = 4,000, 𝑁𝐺 = 500, 𝑁𝐿 = 500). 

 

 

Spread of excitation in associative memory structures 

In most cases – karate club graph, 𝐾5-3-chain, and multiroom graph – excitation spread across a larger 

range of the associative memory structure when local inhibition was dominant than when global inhibition 

was dominant. The Tutte graph uniquely decreased the spread of excitation when activating its central 
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vertex (indicated by the arrow shown in Figure 3A, third row). As in the 1D chain case, trials with values 

above 𝑐 = 0.7 often had noise, although the largest graph (multiroom) had stable trials with values of up 

to 𝑐 = 0.85. We also observed most graphs change in their excitatory activity most noticeably in the 

region of 𝑐 = 0.5 to 𝑐 = 0.6. We therefore chose to focus on two cases: (i) strong global inhibition (𝑐 =

0.1), and (ii) slightly stronger local inhibition (𝑐 = 0.525) (Figure 3). 

Correlations between the vertices (assemblies) of the underlying neurons (neurons belonging to those 

assemblies, see eq. 11) showed different resolutions of clustering. For example, at 𝑐 = 0.1 in the karate 

club graph, approximately 5 clusters of strongly correlated vertices were present, whereas at 𝑐 = 0.525 

this reduced to approximately 3 (Figure 3B, second row). Although the Tutte and multiroom graphs 

showed a similar trend in consolidation of clusters at 𝑐 = 0.525, the 𝐾5-3-chain showed the breaking 

down of clusters and some strong negative correlations. We can see in Figure 3B (top row) that the graph 

is made up of pseudo-𝐾5 subgraph – groups of 5 vertices completely connected, except for two ‘boundary’ 

vertices, which connect the pseudo-𝐾5 subgraphs together. Within each pseudo-𝐾5 subgraph, the 3 ‘core’ 

vertices (those which are fully connected within the pseudo-𝐾5 subgraph and not the boundary vertices) 

remain strongly correlated with one another while the two ‘boundary’ vertices become almost equally 

correlated with their own pseudo- 𝐾5  subgraph and their neighbouring subgraph and negatively 

correlated with the opposite subgraph. For the well-connected core vertices, 𝑐 = 0.525 also represents 

the level at which the spread of excitation almost covers the entire graph. 
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Figure 3. (A) Example trials in four different associative memory structures at two values of 𝑐. Vertices are 

shaded according to the sum of its neurons’ normalized activity (darker is more active). Arrows indicate 

the vertex which was stimulated at the beginning of the trial. (B) Correlations of approximate steady-state 

activities of excitatory neurons with all other vertices in the same associative memory structures and at 

the same two values of 𝑐  as in panel A. Vertices have been ordered such that those with similar 

correlations to other vertices are adjacent to illustrate the clustering effect that naturally arises from the 

network’s dynamics. 

 

We also observed how excitation spreads across the associative memory structure across time, after 

activation of vertices of interest, in the Tutte and multiroom graphs. For the Tutte graph we chose the 

central vertex, which branches off into three separate ‘rooms’, and for the multiroom graph we chose a 

location within one of the rooms that also led through a ‘doorway’ to a neighbouring room. We chose 

these vertices since they represent points of behavioural interest and ecological importance in animals - 

they are points at which an animal may make significant choice between which room to enter, explore, 

or exploit. In the Tutte graph, for 𝑐 = 0.1, there is initial activation of all three rooms (Figure 3A). This is 

accompanied by a general rise in global inhibition and specific increases in the activity of local inhibitory 

populations connected to the respective active excitatory populations. However, at this early stage, one 

room is slightly more dominant in overall excitation (bottom-right ‘room’ in top-left panel of Figure 3A). 

This dominance appears to translate into gradual and then complete activity dominance compared to the 

other two rooms at the later time-windows. Contrastingly, for 𝑐 = 0.525, the activity of vertices in the 

Tutte graph is initially broader and this breadth of excitation is maintained steadily throughout the 

duration of the trial. We also see that the global and local inhibitory populations for 𝑐 = 0.525 (Figure 3C) 

quickly stabilize in an approximate steady-state. In the case of for 𝑐 = 0.1, the global inhibitory activity 

progresses through three distinct phases of activity (indicated by the arrows in Figure 3B): an initial rise, 

an unstable plateau, and finally a higher, stable plateau. Meanwhile, the local inhibitory activity for 𝑐 =

0.1 reflects the recruitment and release of various memory items before coming to an approximate 

steady-state at a similar time as the global inhibitory activity. 
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Figure 4. (A) Example trials for memory item neuron activities in the Tutte graph during different time-

windows for 𝑐 = 0.1 and 𝑐 = 0.525. The central vertex is activated for the first 80ms of each trial. (B) 

Global and local inhibitory firing rates over time for the Tutte graph trial with 𝑐 = 0.1 shown in (A). Arrows 

illustrate three distinct modes or levels of global inhibition. (C) Same as (B) but for 𝑐 = 0.525. 

 

The multiroom graph showed a similar trend in broadening and maintaining a larger range of retrieval 

with increases in 𝑐. However, possibly due to the size of the network and because the chosen vertex was 

located within one of the rooms (thus biasing towards activation of that room’s other vertices, unlike the 

central vertex in the Tutte graph), observation of the effect required an increase in 𝑐. For illustration of 

the effect, we chose 𝑐 = 0.525 and 𝑐 = 0.7 (Supplementary Figure 1). Interestingly, in the case of 𝑐 =

0.7, initial broadening of the range of retrieval into the neighbouring room (through the doorway adjacent 

to the memory item being stimulated) was slightly reduced and the first memory pattern of the room on 

the opposite doorway became active later in the trial. 

The clustering and geometric indices – 𝑄 and 𝑅 – for each graph, at different values of 𝑐 are given in Table 

1. Since 𝑅 depends upon a choice of distance 𝑑 in the local area, we calculated 𝑅 for all values of 𝑑 (from 

1 up to the diameter) and report the largest value of 𝑅 (and its 𝑑). In general, the larger the value of 𝑄, 

the more agreement between the community structure measured by label propagation and by the 

correlations of vertex activities in the final network states (by our model). High values of 𝑅 indicate the 
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final activity states are similar to geometric distance. We analyse the activity based on all neurons and a 

subset of neurons which reach a firing rate of at least 0.02  of the maximum firing rate during the 

simulation. We call this subset the selective neurons. 

Table 1. Clustering and geometric indices for graphs at different values of 𝑐. 

  Clustering indices (𝑄) Geometric indices (𝑅) 

  All neurons Selective 
neurons 

All neurons Selective neurons 

 Diameter 𝑐
= 0.1 

𝑐
= 0.525 

𝑐
= 0.1 

𝑐
= 0.525 

𝑐
= 0.1 

𝑐
= 0.525 

𝑐
= 0.1 

𝑐
= 0.525 

𝐾5-3-
chain 

4 0.404 0.040 0.643 0.368 0.337 
(d=2) 

0.393 
(d=4) 

0.557 
(d=1) 

0.592 
(d=2) 

Karate 
club graph 

5 0.098 -0.223 0.120 -0.266 0.111 
(d=2) 

0.999 
(d=5) 

0.191 
(d=4) 

0.999 
(d=5) 

Tutte 
graph 

8 0.050 0.270 0.254 0.244 0.259 
(d=4) 

0.389 
(d=4) 

0.300 
(d=3) 

0.464 
(d=3) 

Multiroom 
graph 

18 0.115 0.144 0.095 0.258 0.210 
(d=5) 

0.375 
(d=5) 

0.210 
(d=5) 

0.375 
(d=5) 

 

Clustering indices (𝑄) using only the selective neurons are generally larger than for all neurons, indicating 

these more-active neurons generally contribute positively to clustering. This is especially noticeable when 

the network settles into a state where assemblies take on a wide range of values (e.g., in the 𝐾5-3-chain 

graph for 𝑐 = 0.525). In general, the clustering indices indicate that given the size and topology of 

different graphs, different values of 𝑐 have different propensities for clustering global characteristics. 

Geometric indices (𝑅) were generally greater than the clustering indices, indicating a greater emphasis of 

the geometry rather than the topology in these memory graphs at these values of 𝑐. Nonetheless, some 

topological information is captured and almost all of the geometric indices were of a comparable order as 

the clustering indices. In all cases, as we increased 𝑐, the value of the geometric index 𝑅 strictly increased 

and was maximal for a strictly larger distance 𝑑. So, like in the 1D ring case, rebalancing the activity of 

inhibitory neurons such that local inhibition become more dominant extends the range of excitation. 

 

Discussion 

Previous modelling studies have conflated excitatory and inhibitory neuron identities and learning rules 

[Griniasty et al., 1993; Haga & Fukai, 2019] or ignored inhibitory neurons’ functional participation [Amit 

et al., 1994] in associative memory structure retrieval. This work uniquely disentangles excitatory and 

inhibitory neurons and uses sparse excitatory assemblies to demonstrate the potential functional role of 

global-local inhibitory balance in a more biologically-plausible setting. In the simplistic case of a 1D 

memory chain (like might correspond to discrete memories in a sequence of events through time), shifting 

inhibition to a locally-dominant state quadrupled the range of activation or retrieval. In the case of more 

sophisticated memory structures, globally-dominant inhibition tended to emphasize finer scale partitions 

of the memory structure and consolidated strong local associations. Whereas, locally-dominant inhibition 

tended to capture broader scale partitions and allow excitation to extend across a larger range of the 

memory structure. 
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Stable extension in the range of retrieval appears limited due to increases in noise in strongly local-

inhibition dominant states. This is likely due to a finite field effect and may indicate a necessary minimum 

size of local excitatory-inhibitory assemblies for such states. For example, stability in the case of 𝑐 = 0.7 

for the 1D chain case with sparsity of 𝑓 = 0.01 required a network size four times greater than the case 

of 𝑐 = 0 to maintain stability of retrieval, translating to excitatory assemblies of 160 neurons paired with 

40 local inhibitory neurons. Although assemblies of approximately 300 neurons have been used in optical 

microstimulation experiments in sensory cortex to drive behaviour in mice [Huber et al., 2008], most 

recorded assemblies are on the order of tens of neurons [Harris et al., 2003; Fujisawa et al., 2008]. Among 

other benefits, such sparsity is accompanied by theoretical energy efficiencies [Levy & Baxter, 1996] and 

in associative memory models can lead to fewer spurious memories [Hoffman, 2019]. It therefore seems 

likely that for the described mechanism of local-global inhibition to have a stable functional effect in 

extending the range of retrieval, the presence of both local and global inhibition is required in finite, real-

world networks with sparse assemblies. 

Alternatively, it is possible this mechanism requires a hybrid sparse-dense coding schema, as has long 

been suggested operates in hippocampus [Barnes et al., 1990], cerebellum [Marr, 1969], and more 

recently in sensory areas [Laurent, 2002; Sakata & Harris, 2009]. In such a schema, sparse assemblies 

report their activity to densely-connected assemblies which broadcast information to other sparse 

assemblies. In our model, we could consider the global inhibitory population as a densely-connected 

assembly which broadcasts the overall level of excitation in the network to all local, sparse assemblies. It 

is just not excitatory, as in classic dense-sparse schemas. Through this interpretation, a reduction in the 

relative strength of global inhibition (as in the unstable region of 𝑐 > 0.7) is equivalent to a gradual 

transition in the coding schema from sparse-dense to sparse. Thus, if the described local-global inhibition 

mechanism requires a sparse-dense coding schema, its instability when the coding scheme becomes 

sparse is expected. Associative memory structures which had more sophisticated topologies also showed 

unstable regions at high values of 𝑐, however less so when the graph was sufficiently large (such as in the 

multiroom graph). So, it is also possible this mechanism can be supported when the memory structure is 

adequately structured or large. 

Extension of the range of retrieval was not simply the only apparent function of the inhibitory mechanism 

in sophisticated associative memory structures, the mechanism also permitted multiscale segmentation 

of the associative memory structure. Local-inhibition dominant states typically activated coarser 

topological segments of the graphs whereas global-inhibition dominant states consolidated activity in 

more densely associated clusters, highlighting finer topological features. These results were similar to 

those found in a more abstract model of binary neurons [Haga & Fukai, 2021], except that the current 

model was unable to eliminate the spread of excitation totally (as the more abstract model [Haga & Fukai, 

2021] was capable of). This is because the current model does not include direct potentiation of excitatory 

weights, but rather modulation of local-global inhibitory balance. In this model, where association is 

embedded ubiquitously, in order to sustain highly-specific activity within a narrow range of memory items 

or even a single memory item, it is necessary to create very strong self-excitation within an assembly and 

have stronger overall inhibition with 𝑐 → 0 . This demonstrates a general limitation that in a more 

biologically-realistic setting it may not be possible to fully eliminate or reduce association between items 

embedded in an excitatory memory structure through inhibitory modulation alone. Nevertheless, such 

inhibitory activity may cause dissociation through plasticity and learning mechanisms – as demonstrated 
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in numerous psychological and biological studies [Anderson, 2003; Chiu & Egner, 2015; Schmitz, 2017; 

Anderson & Hulbert, 2021] – which we have not investigated here. 

An intriguing aspect of this inhibitory mechanism is its ability to dramatically affect not just the range of 

retrieval but also which parts of the memory structure become dominant given an initial stimulation. For 

example, it appears in global-inhibition dominant states, global inhibition drives a ‘winner-takes-all’ 

dynamic [Grossberg, 1973] whereby only the globally strongest memories remain active. In local-

inhibition dominant states, this ‘winner-takes-all’ dynamic appears to dissipate and permit a general 

extension of retrieval, or a more egalitarian sharing of the winners. However, this extension can also be 

mediated and a ‘winner-takes-all’ dynamic can appear at the peripheries of the retrieval range, with 

different peripheries competing against each other (for example, see Supplementary Figure 1B). This may 

be considered as a global state transition from ‘winner-takes-all’ to ‘winner-shares-all’ [Fukai & Tanaka, 

1997]. We therefore hypothesize an inhibitory mechanism like we have described may be used to aid in 

the learning or retrieval of graph-based cognitive tasks in cortical networks [Whittington et al., 2020; 

Wang-King et al., 2021].  Cognitive control or exploitation of this mechanism might also occur in concert 

with, for example, gamma oscillations, which are strongly tied to inhibitory activity [Buzsáki & Wang, 

2012]. This may be especially useful when faced with competing behavioural choices and maintaining the 

distribution of these choices is meaningful. 

Making a seemingly subtle change to the network structure by introducing some of the complexities and 

diversities of inhibitory neurons had a profound impact on retrieval. We have shown how this 

phenomenon mainly persists in a sparse, associative memory structure which obeys Dale’s law and 

biologically-plausible connections. We have also shown and discussed some of the potential functional 

roles of this mechanism in graph-based cognitive tasks and discussed how this mechanism may contribute 

to a type of sparse-dense coding schema. 
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Supplementary material 

 

Supplementary Figure 1. (A) Example trials for memory item neuron activities in the multiroom graph 

during different time-windows for two different values global-local inhibitory balances, 𝑐 = 0.525 and 

𝑐 = 0.7. A vertex beside to uppermost ‘doorway’ is activated for the first 80ms of each trial. (B) Global 

and local inhibitory firing rates over time for the multiroom graph trial with 𝑐 = 0.525 shown in (A). (C) 

Same as (B) but for 𝑐 = 0.7. 
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