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Abstract 
 

Blood samples are frequently collected in human studies of the immune system but poorly 

represent tissue-resident immunity. Understanding the immunopathogenesis of tissue-restricted 

diseases, such as chronic hepatitis B, necessitates direct investigation of local immune responses. 

We developed a workflow that enables frequent, minimally invasive collection of liver fine-

needle aspirates in multi-site international studies and centralized single-cell RNA sequencing 

data generation using the Seq-Well S3 picowell-based technology. All immunological cell types 

were captured, including liver macrophages, and showed distinct compartmentalization and 

transcriptional profiles, providing a systematic assessment of the capabilities and limitations of 

peripheral blood samples when investigating tissue-restricted diseases. The ability to electively 

sample the liver of chronic viral hepatitis patients and generate high-resolution data will enable 

multi-site clinical studies to power fundamental and therapeutic discovery. 
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Understanding the immunopathogenesis of tissue-restricted diseases, and monitoring 

tissue specific effects of treatment, necessitates direct investigation of local immune responses. 

However, the only type of human research material appropriate for this purpose that can be 

collected regularly, and electively, is blood, which often does not mirror tissue-resident 

immunity. Tissue access for research is limited by ethical and practical considerations, creating a 

significant obstacle for exploratory human studies. Even when elective tissue specimens can be 

obtained, clinical sites may lack the personnel and technical infrastructure required to process 

and handle the material onsite for the optimal generation of state-of-the-art scientific data. 

Therefore, procedures that enable elective sampling of tissues and generation of high-resolution 

data at multiple clinical sites would empower both fundamental and therapeutic discoveries. 

 Chronic liver diseases pose a major public health threat with over 800 million people 

worldwide at risk for liver cirrhosis and cancer, including over 290 million chronically infected 

with Hepatitis B virus (HBV)1,2. Chronic hepatitis B (CHB) is a highly heterogeneous disease with 

different phases characterized by variable viral loads and liver inflammation3. Available antiviral 

therapies effectively limit viral replication but rarely lead to self-sustained functional cure4. 

Currently, there are no known peripheral blood biomarkers to monitor the anti-HBV response in 

the liver to predict disease progression or functional cure5. This is a significant knowledge gap 

that could be addressed through elective liver tissue sampling and next generation single-cell 

profiling methods, such as single-cell RNA sequencing (scRNAseq).  

 Liver tissue for research is typically available through surgical resections or percutaneous 

needle biopsies. However, these procedures are strictly dependent on clinical need and thus 

cannot provide the frequent, elective sampling necessary to understand the immune 

mechanisms at play in a dynamic disease like chronic hepatitis B. Fine-needle aspirates (FNA) of 

the liver are collected using a 25 gauge (G; 0.51mm outer diameter) needle, which is significantly 

smaller than needles used for standard liver biopsies (16-18G; 1.65–1.27mm outer diameter) and 

even standard venipuncture (21G; 0.82mm outer diameter). As a result, the FNA technique poses 

minimal risk and discomfort to participants. The improved safety profile of liver FNAs enables 

elective liver sampling for research purposes, including longitudinal clinical studies with less than 

2 weeks between samplings6,7. However, compared to more invasive needle biopsies, liver FNAs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

yield fewer cells (<100,000 cells)8,9 that are best used immediately onsite in assays such as 

scRNAseq to provide the most accurate representation of the liver immune environment. 

However, variations in specimen handling and downstream processing, before and during 

scRNAseq library generation and sequencing, can introduce batch effects that could mask 

important biological variation after integration of multi-site generated data. 

 To capitalize on the sampling opportunities enabled by FNAs and address the obstacles of 

site-specific variability, we developed and optimized a workflow that enables international, 

multi-site collection of liver FNAs and centralized scRNAseq library generation. First, we 

developed metrics to assess FNA quality, followed by comparison of two distinct methods for 

performing scRNAseq on the collected cells, the Seq-Well S3 and 10x Genomics 3’ v2 single cell 

platforms. Both technologies performed similarly in key technical metrics but the cassette-based 

picowell array of the Seq-Well S3 platform did not require advanced technology onsite and 

captured cell populations lost in the 10x Genomics platform, such as granulocytes. To minimize 

the impact of processing at different sites, we further optimized a method to freeze and ship 

loaded arrays, simplifying onsite processing for clinical workflows and facilitating enhanced 

reproducibility through centralized whole transcriptome amplification, library preparation, and 

sequencing.  Finally, we rigorously analyzed matched blood and liver FNA samples collected at 

four international sites and highlighted the impact of the liver microenvironment on T cells and 

our ability to capture liver macrophages with the FNA procedure. This optimized workflow, which 

can be deployed in multi-site international studies, establishes a precedent for other FNA-

accessible tissues to investigate tissue-resident immune responses at the single-cell level without 

the need for sophisticated onsite technical infrastructure.  
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Results 

 

Fine needle aspirates to assess the diversity of intrahepatic immune cells 

 Unlike core biopsies that cut a tissue cylinder, FNA sampling uses simultaneous negative 

pressure and forward motion of the syringe to aspirate cells. This introduces the potential for 

significant blood contamination if the needle engages hepatic blood vessels. Because of the 

collection method, the cellular composition of liver FNAs lies between peripheral whole blood 

and core biopsies10. To ensure consistent sampling of intrahepatic tissue, it is important to 

establish defined procedures that minimize blood contamination and to objectively assess the 

extent of contamination for each sample. 

 To this end, we established a standardized protocol for obtaining FNA material with the 

least possible blood contamination, followed by immediate assessment of sample quality.  The 

protocol prescribes four individual FNA passes, each of which typically displayed a different 

degree of peripheral blood contamination based on visual inspection (Fig 1a). To measure the 

degree of peripheral cells contained within a specimen, one can quantify the presence of naïve T 

cells by flow cytometry, which are typically excluded from solid tissues8. However, flow cytometry 

requires significant time to prepare, a large fraction of the collected sample, and infrastructure 

readily available at different sites within a clinical trial. Therefore, we tested whether an optical 

density (OD) test to measure red blood cell (RBC) contamination would deliver comparable 

results while minimizing sample use and processing time. We compared OD450 measurements 

with conventional immunological profiling using flow cytometry on different FNA passes from 

individual participants (Suppl Fig 1). As the OD450 value increased, the CD4:CD8 ratio inverted.  

CD8 T cells dominated in samples with a low OD450 (typically observed in tissues) to a 

predominance of CD4 T cells in high OD450 samples, as is characteristic for the blood (Fig 1b)6. 

The value of the OD450 measurement was further validated by finding a significant positive 

correlation between OD450 and the frequency of both naïve CD4 and CD8 T cells (Fig 1c,d). 

Furthermore, there was a significant negative correlation between OD450 measurements and 

frequencies of mucosal-associated invariant T (MAIT) cells (Fig 1e), which are known to be 

compartmentalized to the liver11. These data demonstrate that RBC content measured by OD450 
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is a robust indicator of peripheral blood contamination in FNA passes and supports the use of 

this simple, quantitative, sample-sparing test, to select FNA samples with predominantly liver-

derived cells for use in subsequent assays.  

 

Comparing scRNAseq technology platforms for analysis of the cellular and transcriptional 

profile of human liver FNAs 

 Having optimized the approach for collecting and assessing intrahepatic tissue samples 

via FNA, we next sought to identify the best means of comprehensively profiling the FNA samples 

to investigate total cellular diversity. The recent advent of high throughput single-cell RNA 

sequencing technologies enables genome wide transcriptomic profiling of single cells within 

complex cellular mixtures to characterize the molecular profiles and intracellular circuits that 

define them. Both reverse-emulsion droplet and picowell-based high throughput scRNAseq 

platforms have been introduced that are amenable to low input samples. On one hand, the 10x 

Genomics Chromium system, like the Drop-seq and inDrops platform, uses a reverse emulsion 

microfluidic system to co-capture uniquely barcoded oligo-dT beads and cells and performs the 

initial steps of cell lysis and mRNA capture for library generation onsite12-14. On the other hand, 

the picowell based platforms, such as Seq-Well S3  15, and more recently BD Rhapsody16, use 

picowells to isolate individual cells in place of reverse emulsion to perform lysis and mRNA 

capture for library generation. Both the Seq-Well S3 and 10x Genomics platforms have been 

successfully used to analyze peripheral blood, and to some extent, digested tissue17-20. However, 

the degree of cell capture, cell type representation, sequencing depth and quality, and the 

robustness of data generation across multiple sites from primary human liver tissue samples is 

not known.  

 To benchmark the two scRNAseq platforms, four FNA passes were collected from each of 

four volunteers. The highest quality passes were pooled and then analyzed in parallel using Seq-

Well S3 and the 10x Genomics 3’ version 2 (10x v2) platforms. After filtering for low-quality cells 

based on a minimum 300 genes and 500 UMIs per cell, the number of transcripts (p=0.044), 

number of genes captured per cell (p=0.013) and cell capture from 15,000 cell input (p=0.039) 

was significantly higher in liver FNAs using Seq-Well S3 (Suppl Fig 2a-c).  For the peripheral blood, 
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only the number of transcript (p=0.039) showed a significant difference between Seq-Well S3 and 

10x Genomics (Suppl Fig 2d-f). 

 UMAP clustering of the Seq-Well S3 and 10x 3’ v2 datasets readily identified major 

lymphocyte (T cells, B cells, NK cells) and myeloid (monocytes, macrophages, dendritic cells (DC)) 

cell types using lineage-specific markers (Fig 2a-d). Using identical samples loaded onto the Seq-

Well S3 and the 10x 3’ v2 system, we compared cell type frequencies measured by the two 

platforms by calculating the number of each cell type divided by the total cell count of sequenced 

cells passing quality thresholds (Fig 2e). In this head-to-head comparison, 10x v2 captured 

significantly more γδ T cells (p = 0.017) whereas Seq-Well S3 captured significantly more 

granulocytes (p=0.008) and was capable of efficiently capturing both blood and liver neutrophils, 

which were undetectable in the 10x 3’ v2 dataset (Fig 2e). In addition to neutrophils, a cluster of 

regulatory T cells (CD3, CTLA4, IL2RB, FoxP3) was unique to the Seq-Well S3 dataset (p=0.0009), 

when compared to data obtained using the 10x 3’ v2 kit.  Very few high-quality non-immune cells, 

such as hepatocytes, were captured using either method.  This is likely intrinsic to the liver FNA 

collection method since the size of the FNA needle may not effectively mobilize hepatocytes and 

the negative pressure of aspiration could cause physical stress on the fragile cells. 

  

Cryopreservation of Seq-Well S3 arrays for centralized sequencing library generation 

 Based on the representative cell types captured, and that the picowell-based Seq-Well S3 

system required minimal specialized equipment onsite, we selected this approach for further 

evaluation. To enable work with complex clinical samples, we tested a protocol that would allow 

for centralized processing of critical steps. Specifically, we piloted an approach to freeze Seq-Well 

S3 arrays immediately after cell loading and membrane sealing. If successful, this would enable 

loading of freshly isolated cells on picowell arrays and perform all subsequent steps – including 

lysis, hybridization, reverse transcription, exonuclease digestion, whole transcriptome 

amplification, library preparation and sequencing – centrally to minimize onsite processing and 

potential batch effects.  

 To test the feasibility of this approach, we loaded FNA and PBMC samples from six 

participants from 3 different sites onto parallel Seq-Well S3 arrays up to membrane sealing.   One 
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array was processed directly on site up to the overnight reverse transcription step and the other 

one was frozen at -80 oC and shipped on dry ice to the central processing lab. Freezing and 

shipping after cell loading yielded equivalent number of transcripts, genes per cell and total cell 

recovery compared to processing onsite in both the liver FNA (Fig 3a-c) and peripheral blood 

samples (Fig 3d-f). Equally important, fresh and frozen array datasets clustered together 

seamlessly, without data integration, with only a maximum of seven consensus differentially 

expressed genes (consensus = expressed in >50% of comparisons) observed in CD8 T cells 

between fresh and frozen arrays (Fig 3g). Similarly, arrays from individual patients showed similar 

cellular diversity when processed via either protocol (Fig 3h). The ability to perform library 

generation and sequencing at a central processing lab not only increases the robustness of the 

assay, but also enables clinical studies in low resource settings without specialized equipment 

such as thermocyclers 10x Chromium controllers. 

 

Implementing the optimized FNA processing workflow to examine liver-resident immune cell 

diversity 

 To broaden the dataset for a more robust appreciation of the cellular subsets and features 

recovered using the FNA procedure, we used the optimized workflow to characterize liver FNA 

samples from 13 CHB participants with inactive disease and 3 healthy participants. Blood and 

FNA samples from all participants were subjected to scRNAseq with the Seq-Well S3 platform. 

After preprocessing, we recovered a total of 66,446 high-quality cells, which were subclustered 

and analyzed in a lineage-specific manner to provide a comprehensive, comparative map of the 

intrahepatic immune landscape and to test whether transcriptional differences are apparent 

between immune cells from the blood and liver. 

 

Subset enrichment and transcriptional adaption of CD8 T cells in the liver 

 T cells are a major focus of interest in HBV infection given their critical role in viral control 

and liver disease progression. Previous observations indicate that the composition and 

phenotypic profiles of liver T cells is significantly distinct from what is found in the blood21. 

Subclustering data from 16 participants revealed 5 distinct CD8 T cell populations (Fig 4a). The 
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top 10 differentially expressed genes discriminating each cluster are shown in Figure 4b (a full list 

of gene markers is available in Supplementary Table 1). Analysis of all cluster defining markers 

revealed that these are enriched for signatures of prototypic CD8 T cell subpopulations known 

from prior studies of infection and cancer22. Cluster 0 (“GZMB”) was characterized by a strong 

expression of granzymes B (GZMB) and H (GZMH), together with the chemokine receptor CX3CR1 

and other markers typically found in effector T cells22,23.  Cluster 1 (“GZMK”) was dominated by 

expression of GZMK together with the transcription factor EOMES and the chemokine receptors 

CCR5 and CXCR6. This population closely resembles transitional or precursor CD8 T cells 

previously described in liver cancer22. The key feature of cluster 2 (“NR4A2”) is the expression of 

the transcription factor NR4A2 that has been associated with dysfunctional CD8 T cells24. Cluster 

3 (“CCR7+ TCF7+”) expressed the chemokine receptor CCR7 and transcription factor TCF7, 

together with the regulatory protein LEF1 and the adhesion molecule SELL, a combination that is 

characteristic of both naïve and naïve-like, or stem-like, CD8 T cells25. Finally, cluster 4 (“MAIT”) 

co-expressed classical genes associated with MAIT cells such as the NK receptor KLRB1 in addition 

to SLC4A10, DPP4, and IL7R26. Interestingly, the MAIT cell cluster expressed many of the GZMK 

cluster 1 defining genes, in addition to its own characteristic gene expression signature (Fig 4c).  

 When comparing the five clusters of CD8 T cells between the blood and FNAs, some 

clusters were relatively more prevalent in one or the other tissue (Fig 4d). Differences in relative 

T cell frequencies were apparent for MAIT cells (p=0.039), which are known to be significantly 

enriched in the liver11, confirming that the FNA procedure succeeded in capturing liver-associated 

immune cells (Fig. 4e). The GZMK population was also more prevalent in the liver. In contrast, 

the naïve/naïve-like CCR7 TCF7 population was enriched in the blood (p=0.0006), which is 

expected as naïve cells are mostly excluded from non-lymphatic tissues27 (Fig 4e). Deeper 

comparison of transcriptional profiles between blood and liver within clusters revealed profound 

differences in gene expression for the NR4A2 and GZMK CD8 T cell clusters (Fig 4f).  Enrichment 

analysis revealed that these differentially expressed genes represent key cellular pathways 

enriched within liver, including inflammatory response, IL2 and TNF-α signaling in the NR4A2 

population whereas IFN-γ and mTORC1 signaling were enriched in the GZMK population (Fig 4g). 

Overall, despite the potential for blood contamination, liver FNAs captured the liver enriched 
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specific CD8 T cell clusters. The data also demonstrate that tissue residency is associated with 

distinct transcriptional programs in CD8 T cell subpopulations found in both the liver and blood. 

This supports the notion that analysis of CD8 T cells from the site of infection is important to fully 

understand T cell compartmentalization and adaptation.  

In contrast to the CD8 T cells, the composition of the CD4 T cell population was less 

complex, with only 2 distinct clusters (excluding Tregs cluster in Fig 2c). Moreover, further 

analysis revealed only marginal differences with regards to the relative size of clusters or their 

transcriptional landscape (Suppl Fig 3). 

 

Definition of a complex neutrophil compartment in the blood and liver 

 Animal studies suggest that neutrophils are recruited first in the inflammatory cascade 

and express matrix degrading enzymes that facilitate immune cell infiltration into the liver 

parenchyma28,29. There is currently little information on the possible role of neutrophils in HBV 

pathogenesis as they have been understudied in patients because they are lost upon PBMC 

isolation and cryopreservation. Once we realized the picowell-based scRNAseq approach 

efficiently captured neutrophils, we changed our RBC depletion method from density gradient 

isolation to magnetic bead-based depletion to preserve the neutrophil population. As a result, 7 

participants with matched whole blood and FNA were present in the analysis, with the remaining 

9 having only PBMCs isolated by density gradient centrifugation. Subclustering of neutrophils 

yielded six subpopulations (Fig 5a). The loss of neutrophils was apparent in the PBMC samples 

(Fig 5b). Neutrophils shared an overlapping transcriptional profile with monocytes, such as the 

S100A8 and S100A9 transcripts, but were clearly distinguishable from monocytes due to the lack 

of VCAN and CD68 (not shown). Using the top five genes from each cluster, we found that five 

clusters expressed known neutrophil markers such as CXCR2, IL8, and S100A genes30,31. Cluster 

0, IL8(hi) SYAP1- neutrophils, and cluster 4, IL8(hi) SYAP1+ neutrophils expressed the highest level 

of IL8 (CXCL8), which is found in activated neutrophils32. Expression of SYAP1, a described target 

of caspases, distinguished the IL-8+ neutrophils but its role in neutrophil regulation remains 

unknown (Fig 5c). Both cluster 3, (MME) and cluster 5 (MMP8) neutrophils expressed genes 

whose products are stored in secretory granules and aid in the process of neutrophil recruitment 
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to tissues and matrix degradation33,34. However, they expressed different secreted molecules 

such as MME and FCN1 or MMP8 and LCN2 in cluster 3 and 5, respectively (Fig 5c). Cluster 1, IFN-

stim neutrophils, displayed a profile consistent with activation by type I interferon, with 

increased expression of RSAD2, IFIT1, MX1, ISG15 and OAS3. Cluster 2, (SIGLEC10) neutrophils, 

expressed SIGLEC10, which has been described as an inhibitory receptor of other immune cells in 

the context of autoimmunity and tumor escape35-37 (Fig 5c).   

 Comparing the distribution of neutrophils between the blood and liver for those 

participants with whole blood samples did not show significant enrichment of any neutrophil 

cluster in either compartment (Fig 5d). Differential gene expression analysis within neutrophil 

clusters between liver and blood showed significant genes in four out of the six clusters (Fig 5e). 

Enrichment analysis of IL8(hi)SYAP1+ neutrophils revealed significant enrichment of pathways 

associated with type I and II interferons (IFNs) in the blood. Similarly, the pathways that were 

increased in the blood in MMP8 neutrophils were also related to type I and II IFNs, whereas 

pathways elevated in the liver-derived MMP8 neutrophils were enriched in IL6 signaling and 

metabolic processes (Fig 5f). An additional observation was the unique expression of the integrin 

CLEC12A in liver derived neutrophils across multiple clusters (Fig 5e).  While their role in the 

progression of CHB is unclear, the ability to capture neutrophils in the scRNAseq data will allow 

for deeper investigation and a more in-depth understanding of their role. 

 

Liver FNAs capture macrophage diversity in the human liver 

 Macrophages regulate the inflammatory environment in the liver and are associated with 

HBV-mediated liver inflammation and progression of fibrosis38-41. Macrophages exist as a 

heterogeneous population of embryonically-derived Kupffer cells and monocyte-derived 

macrophages that lie on a functional spectrum between activating and suppressive42. They are 

tightly bound to the endothelium, and studies that have characterized human macrophages with 

scRNAseq have used collagenase to digest liver tissue19. It was unclear whether FNAs would allow 

us to capture tightly bound macrophage populations. We noted that macrophage capture using 

the FNA sampling approach was variable among patients. Therefore, caution should be taken 

when comparing frequencies of adherent cells, like macrophages, between time points or 
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between patients. Despite the variability in recovery, we identified a clear macrophage cluster 

within our dataset (Fig 2c).  Subclustering of the macrophage population yielded five distinct 

subpopulations (Fig 6a) that were entirely restricted to the liver (Fig 6b).  The macrophage 

clusters displayed markers previously demonstrated to be shared across macrophage 

populations including complement components (C1QA), FCGR3A (CD16), MARCO, CTSS and 

MSR1 (Fig 6c). However, we identified unique markers capable of distinguishing each population 

(Fig 6d). Cluster 0, TIMD4 macrophages, identified by unique expression of TIMD4, have been 

identified as embryonically-derived, or long-lived, tissue macrophages in animal studies and in 

the human heart and gut43,44. TIMD4 macrophages highly expressed LYVE1, also associated with 

long-lived tissue resident macrophages43,45,46, and CD163, a scavenger receptor associated with 

fibrosis in chronic hepatitis B (Fig 6e)47. Cluster 1, SLC40A1 (ferroportin) macrophages, expressed 

liver macrophage markers that indicate recent monocyte to macrophage differentiation including 

NR1H3 (Liver X receptor alpha, LxRa) and SPIC (Fig 6e)48,49. Cluster 2, C1QA low macrophages, and 

cluster 3, HBB (hemoglobin) macrophages expressed the lowest level of shared macrophage 

markers C1QA and MARCO, and therefore, may represent transient macrophage populations50-

52 (Fig 6c).  Cluster 2, C1QA low macrophages, expressed high levels of monocyte markers VCAN 

and LYZ, suggesting these macrophages are in a transitional state of differentiation (Fig 6e)53. 

Cluster 4, HBB+ macrophages, may represent a transient liver macrophage population 

responsible for clearance of RBCs prior to differentiating to SLC40A1 macrophages, consistent 

with the recently differentiated transcriptional profile of SLC40A1 macrophages54. Cluster 4, CD9 

macrophages, expressed OLR1 and LGALS3 and were the smallest detectable cluster in the 

dataset (Fig 6e). CD9 macrophages represent previously identified scar-associated macrophages 

found in the cirrhotic liver20.  These data confirm that the collection of FNAs allows the capture 

of adherent macrophages and identifies unique macrophage states associated with different 

stages of liver disease. 
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NK cells display a comparable transcriptional profile between the blood and liver 

 NK cells are key players in the innate immune response in viral infections, given their 

ability to inhibit viral replication through cytokines and to recognize and kill virus-infected cells55. 

However, they may also regulate adaptive immune responses both by eliminating virus-specific 

T cells and through antibody-dependent cell cytotoxicity56. NK cells are enriched in the human 

liver57,58, but the distribution of NK subtypes, and their transcriptional profiles, in the blood and 

liver of HBV participants has not yet been comprehensively defined. Our dataset consisted of 

1,340 peripheral blood NK cells and 3,491 liver NK cells. Clustering analysis of these NK cells 

revealed two subclusters (Suppl Fig 4a). Cluster 0 expressed low levels of NCAM1, which encodes 

for CD56 (a well-known lineage marker of NK cells), characteristic of CD56-dim NK cells, which 

have been studied extensively by flow cytometry. Cluster 1 expressed high levels of NCAM1 

representing the CD56-bright NK cells (Suppl Fig 4b). Cluster 0 (“NCAM1-dim, GNLY”) were 

characterized by the cytotoxicity genes GNLY, GZMB, the chemokine receptor CX3CR1 and Fc 

receptors IIIa (CD16). Cluster 1 (“NCAM1-bright EOMES”) displayed high expression of the 

transcription factor EOMES, the surface chemokine receptor genes CXCR6, CCR5, chemokine 

ligand XCL1 and the apoptosis-inducing ligand TNFSF10 (TNF-related apoptosis inducing ligand 

(TRAIL; Suppl Fig 4b,c). These transcriptional profiles are consistent with previously reported 

literature indicating that CD56-dim NK cells display greater cytotoxic activity, while the CD56-

bright NK cell subset efficiently produce TRAIL and cytokines/chemokines56.  

 We then analyzed the distribution of each cluster between the blood and liver (Suppl fig 

4d). Consistent with prior observations59, cluster 1, (“NCAM1-bright EOMES”) was significantly 

enriched in liver FNA compared to the blood while NK cells from Cluster 0 (“NCAM1-dim GNLY”) 

were evenly distributed across the compartments (Suppl Fig 4e). We compared the gene 

expression for each NK cell cluster between the liver and blood but found no differentially 

expressed genes in either cluster between the two compartments. Only mitochondrial or non-

NK related genes were differentially expressed in NCAM-bright EOMES NK cells between the 

blood and liver (Suppl Fig 4f,g). Therefore, FNA sampling confirmed enrichment of NCAM-bright 

EOMES NK cells in the liver but our data indicates that neither NK cell cluster displayed clear 

differential expression of NK-related genes between blood and liver. 
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Similar B cell composition and transcriptional profiles across the blood and liver 

 Although B cells have been given less attention than T cells in studies of the 

immunopathology of HBV, B cells exert some immune control, as demonstrated by HBV 

reactivation after B cell depleting treatment with anti-CD20 antibodies60. Clustering of B cells 

yielded five subpopulations (Suppl Fig 5a). Cluster 0, TCL1A naïve B cells, lacked CD27 expression 

and could be distinguished by their expression of TCL1A, FCER2, IL4R, IGHD, and IGHM. 

Furthermore, among the naïve subset, we further identified a subgroup of TCL6 transitional B 

cells (Cluster 4) by their expression of PCDH9, SOX4, and TCL661-63. Cluster 2, CD69 naïve B cells, 

were defined by elevated expression of the NR4A nuclear receptors (i.e. NR4A1, NR4A2, and 

NR4A3), which have been shown to be rapidly upregulated by B cells upon B cell antigen receptor 

stimulation64, and higher expression of the B cell activation markers CD83 and CD69 (Suppl Fig 

5b,c)65,66. Within the total memory B cells, Cluster 3 represents FCRL5+ atypical memory B cells, 

which were identified by their expression of TBX21 (T-bet), ITGAX (CD11c), and FCRL567,68. FCRL5+ 

atypical memory B cells also overexpressed SIGLEC6, which is considered an exhaustion marker 

for B cells69. The remaining population of memory B cells, cluster 1, were defined as CD27+ 

classical memory B cells based on their expression of CD27, AHNAK, and IGHG1 (Suppl Fig 5b,c)61. 

None of the B cell clusters showed significant enrichment in the blood or liver (Suppl Fig 5d,e) 

nor did they display significant differences in gene expression within clusters between the liver 

and blood (Suppl Fig 5f). 

 

Monocytes display high heterogeneity but not tissue-specific enrichment 

 A defining feature of monocytes is their plasticity, the ability to differentiate into dendritic 

cells or macrophages upon exposure to environmental signals. Consistent with their plasticity, 

we identified a highly diverse monocyte population between the blood and liver, consisting of 10 

monocyte subpopulations (Suppl Fig 6a).  The 6 most differentially expressed genes 

discriminating each cluster are shown in Suppl Fig 6b and demonstrate the transcriptional overlap 

between different monocyte clusters. All monocyte populations expressed CCR2 and LYZ at 

varying levels. Some clusters showed distinct features. Cluster 4, IFN-stimulated monocytes (IFN-
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stim cMono), displayed a profile consistent with activation by type I interferon, with increased 

expression of IFIT1, MX1, IFI44L and OAS3. Cluster 8, Intermediate monocytes (Int-Mono), 

showed elevated MHC-II antigen processing machinery and expression of FCGR3A (CD16)70. 

Cluster 9, Non-classical monocytes (ncMono), were identified by expression of FCGR3A, FCGR3B 

and chemokine receptor genes CXCR1 and CXCR271. Two classical monocyte populations, Cluster 

2 & 3, CCL3L- and CCL3L1+ cMono respectively, displayed a unique transcriptional phenotype 

characterized by high expression of the cytokines TNFa and IL-1β (Suppl Fig 6b).  These data 

confirm the known plasticity of monocytes, particularly in disease settings71. 

 Analysis of the distribution of the monocyte subpopulations did not show significant 

enrichment of any cluster in either blood or liver (Suppl Fig 6c,d). However, two monocyte 

clusters displayed significant differential gene expression between the compartments: cluster 0, 

cMono(1), and cluster 1, cMono(2) (Suppl Fig 6e). Enrichment analysis of cMono(1) and cMono(2) 

showed similar pathways related to a response to cytokine signaling (IL-6, IFN-γ), transcriptional 

programs (myc), and metabolism (mTor). However, cMono(1) pathways were significantly 

expressed in the liver while cMono(2) were significantly expressed in the blood. These data 

suggest that there is no enrichment of monocyte subpopulations in blood or liver, consistent with 

their capacity to patrol the tissues without committing to specific lineages until environmental 

queues require it72. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Discussion 

 

 Advances in technology are shrinking the gap between current analytical capabilities in 

animal models and humans. Single cell transcriptomics now satisfy the need for characterizing 

single cell states comprehensively in human samples and has been used to successfully generate 

single cell tissue maps and characterize disease states. The logical progression of single cell 

transcriptomics is implementation into relevant clinical trials to investigate the therapeutic 

effects of novel treatments in a tissue-specific manner. However, the leap to clinical trials 

presents many practical obstacles around technology infrastructure and variability in data 

generation. To address these obstacles, we developed a workflow that utilizes the minimally 

invasive FNA approach to generate data from intrahepatic immune cells at a centralized site 

without the need for local access to scRNAseq technology platforms.   

 The FNA approach revolutionizes our access to liver tissue, allowing for frequent, 

scheduled tissue sampling to collect the most informative time points in disease progression or 

treatment. The OD450 measurement developed as a quantitative, sample sparing, approach to 

assess peripheral blood contamination reserves >95% of the FNA sample for scientific 

investigation. Some practical aspects alone, like assessing the degree of blood contamination, 

have potential use in current indications for FNAs, such as the cytological evaluation of tumor 

masses and cysts within organs (thyroid, breast, kidney, lymph node)73-78.  The full post-sampling 

workflow could be applied to standard blood samples or to expand the use of FNAs in other 

tissues, such as kidney, where analysis of early inflammation in transplant recipients through 

longitudinal sampling could replace serial biopsies79. 

 Our technology comparison verified that using a picowell approach, such as Seq-Well S3, 

effectively captured immune cells without the need for sophisticated equipment. Cellular 

diversity between the emulsion-based and picowell-based approaches were similar for 

lymphocytes (T cells, NK cells, B cells) and myeloid cells (monocytes, macrophages) but diverged 

significantly in their ability to capture granulocytes. The Seq-Well S3 picowell technology 

effectively captured neutrophils in both the blood and liver whereas neutrophils were absent 

from our microfluidic-based 10x 3’v2 dataset.  Human neutrophil capture is a known issue with 
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the 10x 3’v2 data because of their low RNA and high nuclease content, impairing detection within 

the droplets. Newer versions of the 10x Genomics reagents may improve on neutrophil capture 

but our data suggest that picowell strategies were more effective. As a result, we identified liver-

specific differential transcriptional profiles in neutrophil subtypes involving cytokines and lectins 

known to modulate the adaptive response in other settings, where they were essential for the 

activation of an IFN-γ-dependent tumor resistance pathway through the polarization of 

CD4- CD8- unconventional αβ T cells80. This presents a significant opportunity to investigate the 

role of neutrophils in HBV infection, particularly in liver damage, where the only existing data was 

generated in mouse models that do not support HBV infection28,29,81.  

 An additional benefit of using a picowell-based technology was the ability to load fresh 

cells onto the arrays locally, freeze the loaded arrays and ship them. This allowed us to use a 

central laboratory for whole transcriptome amplification, library generation and sequencing at a 

later time point. We tested the stability of this process on multiple donors by loading and 

processing parallel arrays fresh, onsite, or in the central laboratory. In our multi-site international 

collaboration, we found minimal impact on the technical metrics of transcripts, genes and cell 

capture. We found a maximum of seven differentially expressed genes between matched fresh 

and frozen arrays. These data demonstrate that we did not introduce technical artifacts in the 

freezing process and retained the important biological data, including neutrophil capture. This 

transforms the ability to deploy scRNAseq approaches in clinical studies where tissue is accessible 

through expanding use of FNA sampling but limited on-site technological infrastructure might 

otherwise prevent this approach.   

 Clinically reliable biomarkers in the blood must be the ultimate goal for diseases affecting 

hundreds of millions of people, such as chronic HBV infection. The lack of immunological 

biomarkers for disease progression and functional cure has severely hampered therapeutic 

progress for chronic hepatitis B, which are likely to include immune-based therapies. We 

deployed the optimized workflow within our collaboration to demonstrate the ability to perform 

a comprehensive comparison of the liver and peripheral blood immune system across multiple 

international sites. As hypothesized, we observed tissue compartment specific effects, both in 

terms of cell enrichment and transcriptional profiles within individual clusters. Of all the 
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lymphocyte populations analyzed, CD8 T cells, known mediators of viral clearance and non-

specific liver damage, displayed the most unique transcriptional profiles between the blood and 

liver. In the five distinct CD8 T cell clusters that we identified, GZMK CD8 T cells displayed the 

chemokine receptors CCR5 and CXCR6, which are associated with homing to the liver82. In 

addition, GZMK CD8 T cells were the only cluster of cells positive for the IFN-γ transcript. This 

suggests a potential role in antiviral immunity in the HBV infected liver and/or the potential to 

drive pathogenesis through induction of IFN-γ regulated chemokines CXCL-9 and CXCL-10.   

 In contrast to CD8 T cells, CD4 T cells, B cells and NK cells did not show similarly pervasive 

compartment-specific transcriptional profiles. However, it should be stated that our study was 

not powered to discover all differentially expressed genes. In addition, our analysis used stringent 

thresholds for identifying compartment specific gene expression. Genes specifically expressed in 

the blood or liver were compared while taking the participants into account as covariates. This 

was necessary to avoid bias towards individual participants but resulted in lower statistical power 

to detect differentially expressed genes between blood and liver samples, especially in this 

relatively small cohort. Given the heterogeneity of patients enrolled in our study, we anticipate 

lower inter-patient variability when patients are selected by defined inclusion/exclusion criteria 

and more robust transcriptional changes when comparing longitudinal samples from individual 

patients. 

 Liver macrophages have been characterized in studies from healthy livers19, livers with 

cholestatic liver disease83, and cirrhosis20, all of which required tissue digestion. The FNA 

sampling approach captured macrophages without the need for tissue digestion, minimizing 

processing time outside of the liver to preserve their in vivo transcriptional profiles. However, 

macrophage capture was not systematic and varied between patients using the FNA sampling 

approach. Therefore, calculations such as the frequency of populations would be prone to error, 

but their transcriptional profiles can be highly informative of the inflammatory environment. In 

a heterogeneous disease such as chronic hepatitis B, we expected to find a heterogeneous 

macrophage population, and did so, identifying five different clusters, all of which could be 

identified from previous reports. Some macrophage populations displayed markers of monocyte 

to macrophage differentiation, suggesting datasets such as these could be used to investigate 
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the transition of liver infiltrating monocytes. However, because of variability in collection, 

macrophage-related data should be validated in tissues sections, such as core biopsies, where 

their transcriptional profiles can be validated by spatial transcriptomics and their frequency and 

localization can be assessed by fluorescent microscopy. Given their key role in regulating the 

inflammatory tissue environment, the ability to capture macrophages in FNAs has the potential 

to provide important insight into the immunological status of the liver.  

 We found the greatest diversity of cellular phenotypes within short-lived monocytes and 

neutrophils. Monocytes circulate for approximately a week in the blood, neutrophils even 

shorter84,85. Because of the short-lived nature of monocytes and neutrophils, they are 

dynamically regulated within the tissues and periphery by changing environmental cues. 

Therefore, these cell types may be ideal sentinels for immunomodulatory therapies that induce 

inflammatory or polarizing cytokines. The FNA procedure, properly timed after treatment, could 

be used to interrogate the intrahepatic response to immunomodulation to identify more robust 

biomarkers related to antiviral immunity and immune activation.  

 In addition to assessing the impact of therapeutic interventions in clinical trials, the ability 

to electively sample the liver for scRNAseq analysis will open the opportunity to re-define the 

classical stages of chronic hepatitis B. Historically, chronic hepatitis B has been defined based on 

the viral load, the presence or absence of HBV antigens (HBeAg) and liver damage (ALT)86. While 

such staging has been relevant for the clinical management of chronic HBV patients, it may 

obscure effective use of novel therapies.  The immune system is anticipated to play a key role in 

functional cure for new therapies that reduce HBV antigen production (siRNA, antisense 

oligonucleotides, secretion inhibitors, transcription inhibitors) or that directly target immune 

cells (vaccines, Toll-like receptors agonists, checkpoint inhibitors). In this case, knowing the status 

of HBV antigens in the circulation (clinical biomarkers) does not provide insight into the 

immunological response associated with their change. The workflow we present here opens the 

possibility to provide single-cell resolution of the evolving immunological status of HBV liver 

disease through transitions between the different levels of viral control. This type of comparison, 

across clinical disease phases, allows the identification of immune-related cellular and molecular 
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factors associated with HBV control to define the causal role of these associated factors in disease 

progression and inform the use of new therapeutic interventions.  

 The use of FNAs to electively sample the liver, and other tissues, will continue to increase 

in clinical studies. By combining the FNA sample with scRNAseq, we provide a window into tissue-

specific immune response at the single cell level, allowing significantly greater insight into 

immune function or phenotype than what was achievable by conventional analyses such as flow 

cytometry.  Understanding how to interpret the compartment specific data will be a unique 

challenge for each tissue, disease or treatment because of the specific cell types involved in 

disease progression. Facilitating the use of elective tissue sampling using the well-established 

clinical sampling procedure of FNA with state-of-the-art single cell analysis combines power with 

granularity to answer these challenges. This will create databases across multiple diseases, in 

different genetic ancestries and populations, that will spawn opportunities for systematic 

investigation of human health and disease.  
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Methods 

 

Ethical Statement 

 Peripheral blood and liver FNAs were collected from 35 participants living with chronic 

hepatitis B at Erasmus MC University Medical Center (Rotterdam, The Netherlands), Toronto 

General Hospital (Toronto, Canada) and Massachusetts General Hospital (Boston, USA). Three 

healthy volunteer blood and liver FNAs were collected at the Janssen Clinical Pharmacology Unit 

(Antwerp, Belgium).  All participants provided written informed consent. The study was approved 

by institutional review boards at all sites. 

 

Collection of liver fine needle aspirates 

 Paired liver FNA and blood samples were obtained to compare intrahepatic and 

peripheral immune profiles. To minimize variation between sites, the liver FNA procedure was 

carefully standardized between all participating sites and was performed as follows. The position 

and movement of the liver during respiration was assessed using ultrasound to avoid large blood 

vessels. The puncture site was cleaned using chlorhexidine and the participant was covered in 

sterile dressings, leaving only the puncture site exposed. Upon exhalation, a 25G spinal needle 

(Braun Spinocan) was inserted intercostally into the liver parenchyma. The stylet was carefully 

removed and a 10 ml syringe (BD Bioscience) was attached to the needle. Liver cells were 

aspirated from the parenchyma by pulling back the syringe to create negative pressure, while 

simultaneously advancing the needle approximately 2.5 centimeters into the liver. Finally, the 

needle was retracted from the participant and moved to a sterile table where approximately 500 

µL of cold RPMI 1640 medium without phenol red (Lonza) was aspirated into the syringe. The cell 

suspension was then transferred to a 5 mL tube (Axygen) and placed on ice immediately. This 

procedure was repeated 3 times (total of 4 passes), using fresh needles and syringes for each 

pass. 
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Assessment of peripheral blood contamination in FNA passes 

 After the FNA procedure, 5 µL of each aspirate was lysed with 45 µL of 1x red blood cell 

(RBC) lysis buffer (BD Bioscience) and the optical density (OD) was measured at 450 nm (OD450) 

(OD450) as a proxy for the amount of RBC contamination in the FNA. Site specific OD-value 

thresholds for significant blood contamination were established using OD450 value of FNAs 

without visible blood contamination and whole blood as a reference. As a reference blood 

contamination was also evaluated by the relative frequencies of major T cell populations, 

determined by flow cytometry. Aspirates with the lowest OD value were selected for 

downstream analysis.  

 

Red blood cell depletion of fine needle aspirates and peripheral blood 

 RBCs in the FNA were removed using magnetic bead-based depletion. Briefly, 12.5 µL of 

EasySep RBC Depletion Reagent (STEMCELL Technologies Inc.) was added to each FNA pass and 

incubated for 5 min before placing the sample on the magnet for 5 min (EasySep violet magnet, 

STEMCELL Technologies Inc.). The FNA cell suspension was poured into another 5 mL 

polypropylene tube and the procedure was repeated. The RBC depleted cell suspension was then 

manually counted using trypan blue and a haemocytometer (Neubauer Improved, INCYTO).  

For paired whole blood was diluted to 1000 µL using MACS buffer (PBS, 1% BSA and 6 mM EDTA), 

and RBCs were depleted by addition of 25 µL of EasySep RBC Depletion Reagent.) and incubated 

for 5 min before placing the sample on the magnet for 5 min (EasySep violet magnet, STEMCELL 

Technologies Inc.). The blood cell suspension was poured into another 5 mL polypropylene tube 

and the process was repeated. The RBC depleted cell suspension was then manually counted 

using trypan blue and a haemocytometer (Neubauer Improved, INCYTO). Magnetic bead RBC 

depletion retained granulocytes that are normally lost via density gradient peripheral blood 

mononuclear cell (PBMC) preparation. 

 For PBMCs, approximately 50 mL of blood was collected in 8.5ml acid-citrate-dextrose 

(ACD) tubes by standard venipuncture at the time of FNA collection. PBMCs were isolated by 

standard density gradient centrifugation using Ficoll.  
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Flow cytometric analysis to quantify peripheral immune cell contamination 

 After the OD450 of individual FNA passes were collected and RBCs were depleted, we 

quantified the frequency of naïve CD8 and CD4 T cells and mucosal-associated invariant T cells in 

individual FNA passes. Each FNA pass was stained with a viability dye and the following antibodies 

for 30 min at 4 °C to identify the above-mentioned immune cell populations: CD3, CD4, CD8, 

Valpha7.2, CD161, CCR7 and CD45RA. The frequency of each population was calculated as a 

percent of total T cells in the FNA (CD3+) and plotted against OD450 values. 

 

Cryopreservation of PBMC and FNAs 

 Any remaining FNA cells and PBMCs were cryopreserved in KnockOut serum Replacement 

(KO serum, Gibco) with 10% DMSO.  Briefly, freezing media A (KO serum alone) and freezing 

media B (KO serum with 20% DMSO) were prepared on the day of collection. After centrifuging 

the cells for 5 min at 300g, supernatant was removed and cells were resuspended in freezing 

media A. An equal volume of freezing media B was added drop by drop, with gentle mixing, giving 

a final DMSO concentration of 10%. The samples were aliquoted into 1.5 mL cryovials and 

cryopreserved by cooling to -80 °C in ‘’Mr. Frosty’’ freezing containers and then moved for long-

term storage in -150 °C freezers or liquid nitrogen. 

 

Seq-Well S3 transcriptomic profiling 

 The Seq-Well S3 protocol was performed as detailed previously, with several adjustments 

to improve clinical utility87. After RBC depletion, cells were diluted to a concentration of 75,000 

cells/mL when possible. A suspension of 200 µL was then loaded onto Seq-Well S3 arrays pre-

loaded with mRNA capture beads, by adding them dropwise in a zig-zag pattern. When the 

starting cell suspension was already more dilute, cells were not centrifuged to avoid loss or 

damage. Instead, an appropriate amount of volume was added in the same dropwise fashion to 

achieve the same total cell number. This resulted in a larger volume of cell suspension on top of 

the array, and extra care was taken to make sure that the solution remained on top of the array.  

 Following membrane sealing for 30 min at 37 °C, samples underwent one of two possible 

paths. Fresh samples were directly processed on site through cell lysis, hybridization, bead 
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isolation, and reverse transcription as previously described87. Frozen samples were placed 

horizontally in 50 mL conical tubes and immediately stored at -80 °C. Up to two weeks later, the 

‘frozen’ samples were placed into complete lysis buffer, the top slides were removed, and the 

samples proceeded with hybridization, bead isolation, and reverse transcription as previously 

described. Reverse transcription was performed the same for all samples: 30 minutes at room 

temperature followed by overnight (18 hr) at 52 °C, both with end-over-end rotation (Hula Mixer, 

Thermo fisher). After reverse transcription, samples underwent exonuclease treatment, second 

strand synthesis, whole transcriptome amplification, and Illumina Nextera XT Library 

preparation. Two SPRI bead-based PCR clean-up steps were performed following both the WTA 

and Illumina Nextera XT Library Prep Kits library preparation steps. Each time, first a 0.6x and 

then a 0.8x volume ratio cDNA:SPRI-bead was performed. Sequencing was performed on either 

a NextSeq 500/550 instrument with a High Output Flowcell and a 75-cycle kit (PE 20/50) or a 

NovaSeq 6000 instrument with a S4S4 Flowcell and a 100-cycle kit. Samples were demultiplexed 

according to the Illumina protocols and indices used. Samples were sequenced to an average 

depth of 1M reads per Seq-Well array.  

 

10x genomics transcriptomic profiling 

 Samples were prepared as outlined by 10x Genomics Single Cell 3’ Reagent Kits v2 user 

guide. Briefly, samples were washed two times in PBS (Life Technologies) + 0.04% BSA (Miltenyi) 

and re-suspended in PBS + 0.04% BSA before sample viability was assessed using a 

haemocytometer (Thermo Fisher Scientific). Following counting, the appropriate volume for each 

sample was calculated for a target capture of 2000 or 3000 cells. Samples that were too low in 

cell concentration as defined by the user guide were washed, re-suspended in a reduced volume, 

and counted again using a haemocytometer prior to loading onto the 10x single cell A chip. After 

droplet generation, samples were transferred onto a pre-chilled 96-well plate (Eppendorf), heat 

sealed and incubated overnight in a Veriti 96-well thermocycler (Thermo Fisher). The next day, 

sample cDNA was recovered using Recovery Agent provided by 10x Genomics and subsequently 

cleaned up using a Silane DynaBead (Thermo Fisher Scientific) mix as outlined by the user guide. 

Purified cDNA was amplified for 12 cycles before being cleaned up using SPRIselect beads 
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(Beckman). Samples were diluted 4:1 (elution buffer (Qiagen) : cDNA) and run on a Bioanalyzer 

(Agilent Technologies) to determine the cDNA concentration. cDNA libraries were prepared as 

outlined by the Single Cell 3’ Reagent Kits v2 user guide with modifications to the PCR cycles 

based on the calculated cDNA concentration.  The molarity of each library was calculated based 

on library size as measured with the Bioanalyzer and qPCR amplification data (Sigma). Samples 

were pooled and normalized to 10 nM, then diluted to 2 nM using elution buffer (Qiagen) with 

0.1% Tween20 (Sigma). Each 2 nM pool was denatured using 0.1N NaOH at equal volumes for 5 

minutes at room temperature. Library pools were further diluted to 20 pM using HT-1 (Illumina) 

before being diluted to a final loading concentration of 14 pM. 150 µl from the 14 pM pool was 

loaded into each well of an 8-well strip tube and loaded onto a cBot (Illumina) for cluster 

generation. Samples were sequenced on a HiSeq 2500 with the following run parameters: Read 

1 – 26 cycles, read 2 – 98 cycles, index 1 – 8 cycles.  

 

Single-cell RNAseq data preprocessing 

 Seq-Well S3 libraries were pre-processed using the DropSeq pipeline with the tools v2.3.0 

as previously described87. Briefly, pooled libraries were demultiplexed using bcl2fastq 

v2.20.0.422 with the following settings: mask_short_adapter_reads=15 and 

minimum_trimmed_read_length=35. Read alignment was done using STAR 2.5 and the human 

genome assembly reference GRCh38 (hg38). Aligned cell by gene matrices for each sample were 

merged across all conditions tested and participants. Preprocessing, alignment, and data filtering 

was applied equivalently to all samples. Cells with less than 500 UMIs or less than 300 genes were 

removed from downstream analysis.  

Data was log-normalized with a scaling factor of 10,000. The top 2,000 most variable 

genes as determined by the ‘vst’ method implemented as the FindVariableFeatures function 

were selected and scaled using a linear model implemented as the ScaleData function, both in 

the Seurat (v3.1.5) package with version 4.0.2 of R programming language. After, principal 

component analysis (PCA) was run, the number of significant principal components (PCs) to be 

used for downstream cell clustering was determined using Jackstraw with a p-value cut-off of 

0.05. The best resolution for clustering was determined using an average silhouette scoring 
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across all clusters, testing 40 resolutions between 0.1 and 2 as previously implemented in Ziegler 

et. al88. Marker genes for each cluster were calculated using the FindAllMarkers function (method 

= ‘wilcox’) implemented in Seurat and each cluster was iteratively subclustered further using the 

same approach. Subclustering was stopped when the resulting clusters were not meaningfully 

different. Clusters were annotated as cell type populations based on the expression of genes that 

are known markers of specific cells. Final marker genes for each intermediary and refined cell 

type were determined using FindAllMarkers method = “Wilcox” and can be found in 

Supplementary Table 1.  

 

Differential frequency analysis between blood and FNA 

 For each annotated cell population, cell type frequencies per participant were calculated 

and compared between FNA and blood (whole blood or PBMC, except where noted). Participants 

with ‘0’ cells within a cell population at the main clustering level were excluded from the analysis. 

Cell type frequencies were calculated per participant as the fraction of cells within a cell 

population – e.g., the number of TCL1A+ naive B cells within the whole B cell population. The 

Wilcoxon rank sum test was used to compare the frequency of each cell population across FNA 

and blood samples and p-values were Bonferroni corrected for multiple hypothesis testing. 

 

Differential expression analysis between blood and FNA 

 Differential expression analysis was performed to compare the transcriptomic profiles 

between blood and liver FNA samples within each cell population using the same subset of cells 

as described for the differential frequency analysis. For each group, a minimum of 5 cells was 

required to ensure that the samples size was sufficient for the analysis. Read counts were 

normalized with log2(count+1), and normalized values smaller than ‘1’ were set to ‘0’. The R-

package MAST was used to obtain hurdle P-values which were Bonferroni corrected for multiple 

hypothesis testing. To remove participant-specific bias in the analysis, participant IDs were 

treated as covariates. Cohen’s D effect sizes were calculated with R-package effsize. Significant 

genes were determined by corrected P-values < 0.05 and Cohen’s D cutoff for each cell type were 

calculated as mean + 2 x standard deviations of Cohen’s D for all genes. 
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Gene set enrichment analysis 

 Genes that were differentially expressed between blood and liver FNA, cohen’s D > 0.5 

were assessed for the overrepresentation of gene sets related to biological states or processes. 

For this enrichment test, 50 hallmark gene sets with gene symbols were downloaded from the 

Molecular Signatures Database (MSigDB; http://www.gsea-

msigdb.org/gsea/msigdb/genesets.jsp). P-values were calculated based on permutations using 

R-package fgsea and multiple hypothesis corrected with the Benjamini-Hochberg method.  
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Figure Legends 

 

Figure 1. Quantification of RBC contamination of liver FNAs. (a) Images showing variable RBC 

contents of individual FNA passes. (b) CD4:CD8 ratio in FNA passes from single patient with 

increasing OD450 values. Frequency of (c) naïve CD4 T cells (d) naïve CD8 T cells and (e) MAIT 

cells compared to OD450 values of each FNA pass. Analysis done using Pearson pairwise 

correlation.  

 

Figure 2. 10x 3’v2 vs Seq-Well S3 comparison. UMAPs of all data from (a) Seq-Well (n = 67,947) 

and (b) 10x cell types (n = 25,473). Dot plot of cell type marker genes for (c) Seq-Well and (d) 10x. 

(e) Cell type frequencies compared across matched samples (gray lines) for Seq-Well S3 (red) and 

10x (blue). Samples from FNA, PBMC, and WB are circles, triangles and squares, respectively. 

 

Figure 3. Data comparison of freshly processed vs. frozen arrays. (a) number of transcripts/cell 

(b) number of genes/cell and (c) number of cells captured in liver FNAs from six different patients. 

(d) number of transcripts/cell (e) number of genes/cell and (f) number of cells captured in 

peripheral blood from six different patients. (g) Number of differentially expressed genes in 

matched cell types between freshly processed and frozen arrays. (h) Comparison of cell type 

capture between freshly processed and frozen arrays in matched samples.  

 

Figure 4. CD8 T cell composition in liver vs blood. (a) scRNAseq UMAP for CD8 T cells colored by 

cluster IDs. (b) Dot plot showing top 10 marker genes for each cluster ID. (c) Violin plot showing 

the top 5 marker genes for GZMK+ CD8 and MAIT cells. (d) scRNAseq UMAP colored by cluster 

and split based on tissue of origin, i.e. liver and blood. (e) Comparison of cell frequencies between 

blood and liver within sample (connected through grey lines) for each CD8 cluster. For 

determining significant differences, Wilcox test with Bonferroni correction was used (adjusted p-

value < 0.05). CCR7+ TCF7+ CD8 and MAIT cells are significantly more in blood and liver, 

respectively. Other clusters are equally distributed across both tissues. (f) Volcano plots depicting 

differences in gene expression between NR4A2+ and GZMK+ CD8 T cells. Positive cohen’s D value 
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suggests higher expression in liver. Cohen’s D cutoff calculated as mean + 2 x standard deviation 

of cohen’s D values of all genes. (g) Hallmark genesets enriched by NR4A2+ and GZMK+ CD8 T 

cells. X-axis represents signed log10 of adjusted P-value for the genesets, and positive value 

suggests enrichment in liver.  

 

Figure 5. Neutrophil identification. (a) scRNAseq UMAP for neutrophils colored by cluster 

IDs. (b) UMAP dimensionality reduction of neutrophils by compartment. (c) Dot plot showing top 

5 marker genes for each cluster. (d) Differential frequency of neutrophil clusters between 

compartments. Participants with 0 cells within a cell population were excluded. Blood 

corresponds to whole blood not PBMCs. P-values were Bonferroni corrected for multiple 

hypothesis testing.  (e) Volcano plots depicting differences in gene expression between 

compartments within each cluster. Positive cohen’s D value suggests higher expression in blood.  

(f) Hallmark genesets enriched for clusters with differentially expressed genes between 

compartments. X-axis represents signed log10 of adjusted P-value for the genesets, and positive 

value suggests enrichment in liver.  IFN-stim. Neutrophil, Interferon stimulated Neutrophil. 

 

Figure 6. Macrophage identification in liver FNAs. (a) scRNAseq UMAP for macrophages colored 

by cluster IDs.  (b) UMAP dimensionality reduction of macrophages by compartment. Violin plots 

of (c) macrophage-shared genes and (d) unique cluster-defining genes. (e) Dot plot showing the 

top 9 cluster defining genes. All selected genes have an adjusted P value <0.05. Mac, 

macrophages. 
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Supplemental Figures 

 

Supplemental Figure 1. Flow cytometry gating strategy to identify naïve CD4 T cells, naïve CD8 T 

cells and MAIT cells in liver FNA samples.  

 

Supplemental Figure 2. Seq-Well S3 vs. 10x Genomics quality control metrics.  (a) Number of 

transcripts (b) number of genes and (c) cell captured from liver FNAs by technology. Number of 

transcripts from each cell showed a significant difference, paired Student’s T Test for difference 

of the mean of medians p=0.044. Number of genes from each cell in liver FNAs showed a 

significant difference, paired Student’s T Test for difference of the mean of medians p=0.013. 

Number of cells from liver FNA sample showed a significant difference, paired Student’s T Test 

for difference of the mean p=0.039. (d) Number of transcripts (e) number of genes and (f) cell 

captured from PBMC by technology.  Only the number of genes show significant differences in 

the blood; paired Student’s T Test for difference of the mean of medians p=0.034. Seq-Well colors 

orange, 10x colored in blue. 

 

Supplementary Figure 3. CD4 T cell composition in liver vs blood. (a) scRNAseq UMAP for CD4 T 

cells colored by cluster IDs. (b) scRNAseq UMAP colored by cluster and split based on tissue of 

origin, i.e. liver and blood. (c) Comparison of cell frequencies between blood and liver within 

sample (connected through grey lines) for each CD4 cluster. For determining significant 

differences, Wilcox test with Bonferroni correction was used (adjusted p-value < 0.05). ITGB1+ 

and CCR7+ CD4 are significantly more in FNA and blood, respectively. (d) Dot plot showing top 

10 marker genes for each cluster ID. (e) Violin plot showing the top 5 marker genes for CD4 T cell 

clusters. (f) Volcano plots depicting differences in gene expression CD4 T cells between 

compartments. Positive cohen’s D value suggests higher expression in liver. Cohen’s D cutoff 

calculated as mean + 2 x standard deviation of cohen’s D values of all genes. (H) Hallmark 

genesets enriched by CD4 T cell clusters. X-axis represents signed log10 of adjusted P-value for 

the genesets, and positive value suggests enrichment in liver. 
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Supplementary figure 4. NK cell composition in liver and blood. (a) scRNAseq UMAP for NK cells 

colored by clusters. (b) Violin plot showing relevant marker genes for NK cell clusters. (c) Dot plot 

showing top 10 marker genes for each cluster ID. (d) scRNAseq UMAP colored by cluster and split 

based on tissue of origin, i.e., blood and liver. (e) Comparison of cell frequencies between blood 

and liver within sample (connected through grey lines) for each NK cell cluster. For determining 

significant differences, Wilcoxon rank sum test with Bonferroni correction was used (Padj < 0.05). 

NCAM1-bright EOMES+ NK cells are significantly more present in liver. (f) Volcano plots depicting 

differences in gene expression in NK cells between compartments. Positive Cohen’s D value 

suggests higher expression in blood. Cohen’s D cutoff is calculated as mean + 2 x standard 

deviation of Cohen’s D values of all genes. (g) Hallmark genesets enriched by NK cell clusters. X-

axis represents signed log10 Padj for the genesets and the Positive values indicates enrichment in 

the liver.  

 

Supplementary figure 5. B cell composition in liver and blood. (a) scRNAseq UMAP for B cells 

colored by clusters. (b) Violin plot showing relevant marker genes for B cell clusters. (c) Dot plot 

showing top 10 marker genes for each cluster. (d) scRNAseq UMAP colored by cluster and split 

based on tissue of origin. (e) Comparison of cell frequencies between blood and liver within 

sample (connected through grey lines) for each B cell cluster. For determining significant 

differences, Wilcoxon rank sum test with Bonferroni correction was used (Padj < 0.05). All B cell 

clusters show similar cell frequencies between liver and blood. (f) Volcano plots depicting 

differences in gene expression in B cells between compartments. Positive Cohen’s D value 

suggests higher expression in blood. Cohen’s D cutoff is calculated as mean + 2 x standard 

deviation of Cohen’s D values of all genes. 

 

Supplementary Figure 6.  Monocyte comparison in liver and blood. (a) scRNAseq UMAP for 

monocytes colored by cluster IDs. (b) Dot plot showing top 6 cluster defining genes in each 

cluster. (c) UMAP dimensionality reduction of monocytes by compartment. (d) Frequency of 

monocytes between blood and liver compartments. For determining significant differences, 

Wilcoxon rank sum test with Bonferroni correction was used (Padj < 0.05).  Participants with 0 
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cells within a cell population were excluded.  (e) Volcano plots depicting differences in gene 

expression in monocytes between compartments. Positive Cohen’s D value suggests higher 

expression in blood. Cohen’s D cutoff is calculated as mean + 2 x standard deviation of Cohen’s 

D values of all genes. (f). Hallmark genesets enriched in monocyte clusters. X-axis represents 

signed log10 Padj for the genesets and the Positive values indicates enrichment in the liver. 

Classical monocytes; Int. Mono, intermediate monocytes; ncMono, nonclassical monocytes; IFN-

stim. cMono, Interferon stimulated classical monocytes. 
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Figure 6. Identification and characterization of Macrophages
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