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1 Abstract13

As detailed data on gene expression become accessible from more species, we have an opportunity to test the14

extent to which our understanding of developmental genetics from model organisms helps predict expression15

patterns across species. Central to this is the question: how much variation in gene expression do we expect16

to observe between species? Here we provide an answer by comparing RNAseq data between twelve species17

of Hawaiian Drosophilidae flies, focusing on gene expression differences between the ovary and other tissues.18

We show that there exists a cohort of ovary-specific genes that is stable across species, and that largely19

corresponds to described expression patterns from laboratory model Drosophila species. However, our results20

also show that, as phylogenetic distance increases, variation between species overwhelms variation between21

tissues. Using ancestral state reconstruction of expression, we describe the distribution of evolutionary22

changes in tissue-biased expression profiles, and use this to identify gains and losses of ovarian expression23

across these twelve species. We then use this distribution to calculate the correlation in expression evolution24

between genes, and demonstrate that genes with known interactions in D. melanogaster are significantly more25

correlated in their evolution than genes with no or unknown interactions. Finally, we use this correlation26

matrix to infer new networks of genes that have similar evolutionary trajectories, and we provide these as a27

dataset of novel testable hypotheses about genetic roles and interactions.28
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2 Introduction29

Data on when and where genes are expressed are now fundamental to the study of development and disease1.30

With continually advancing RNA sequencing technologies, these data have been collected using RNA sequenc-31

ing from a wide variety of cells, treatments and species2,3. Statistical analysis of gene expression across these32

differentials generates insights into how gene expression is connected to phenotypic differences in morphology33

and behavior4. However, when comparing gene expression across species, most studies have been restricted34

to pairwise comparisons, often between one model laboratory species and one other species of interest5. One35

challenge with such pairwise comparisons is that they lack robust information about how much evolutionary36

variation in expression we expect to observe, making it difficult to evaluate the significance of any inter-37

specific difference in variation5,6. Instead, we need phylogenetic comparisons of expression that take into38

account the shared history between species7,8, and that describe significant changes in expression in relation39

to other phenotypic traits of interest.9 In this study we perform a phylogenetic comparison of gene expres-40

sion across the organs of twelve species of Hawaiian Drosophilidae flies with highly divergent ovary and egg41

morphologies. From our results we identify individual genes that have undergone significant evolutionary42

shifts in organ-specific expression, and describe global patterns in transcriptome variation across species that43

can serve as a benchmark for future interspecific comparisons of gene expression.44

Phylogenetic comparisons of developmental traits are particularly valuable for building context around com-45

parisons between well-studied model organisms and their non-model relatives10. Much more has been learned46

about the genetics and development of laboratory model species like D. melanogaster than may ever be pos-47

sible for the vast majority of life11. But the usefulness of model species to understand general principles48

depends in part on the extent to which biology in these species reflects the biology of other taxa, rather49

than species-specific phenomena12. In the case of gene expression, there has been substantial debate about50

the degree to which patterns observed in model organisms may be representative across species13–16. Where51

several studies showed that the expression profiles of organs within a species are more different the pro-52

files of homologous organs across species17–20, other work has questioned this finding13,14. More recently,53

Breschi and colleagues (2016)21 demonstrated that, consistent with an evolutionary model of trait evolu-54

tion, species-level variation in gene expression increases with the time since divergence from the most recent55

common ancestor. In addition, previous work by authors on this manuscript8 showed that, while expression56

patterns across tissues tend to be consistent between species, lineage-specific shifts in expression enrichment57

can be identified by applying phylogenetic comparative methods. With the exception of the work by Munro58

and colleagues (2021)8, these studies have been, to our knowledge, performed almost exclusively in vertebrate59

species17,18,20, and for the most part placental mammals13,14,16, meaning that far less is known about organ60

and species-level expression differences when comparing across the tree of life.61

The detailed atlases of expression data across organs22 and developmental timepoints23 is one of the strengths62

of model systems like D. melanogaster. These public resources make it possible to explore global patterns of63

expression to gain insight into potential gene regulation, interaction, and function23–25. As atlases such as64

these have become increasingly detailed and available from more taxa, a new goal has been to compare these65

expression profiles across species7,26,27. One objective of these cross-species comparisons is to shed light on66

potential regulatory associations between genes7,9. This is especially advantageous for complex processes67

such as ovarian function for which we have a fragmented understanding of gene regulation despite genetic68

and transcriptome studies within single model organisms. Another objective of phylogenetic comparisons69

of expression atlases is to estimate the evolutionary distance between species at which we might expect a70

given gene to demonstrate a divergent pattern of expression6. If this distance is relatively small, then we71

predict atlases to contain large amounts of species-specific patterns. Alternatively, if as described above,72

variation across tissues outweighs variation across the species being compared, we predict atlases to contain73

large cohorts of tissue-specific genes that have been evolutionarily conserved. In this study we test for the74

existence of a core suite of ovary-specific genes across species of Hawaiian Drosophilidae and describe its size75

and composition in relation to the described atlas of expression in D. melanogaster.76

The Drosophila ovary has several features28 that make it a compelling organ in which to test hypotheses77

about expression evolution. Analyses of the FlyAtlas2 dataset29 show that in D. melanogaster, more genes78

demonstrate highest expression enrichment in the ovary than any other adult organ (Fig. S1). Additionally,79
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all described signaling pathways are known to have a role in regulating ovarian development30. The ovary80

performs several critical functions, including maintaining the germ line and manufacturing specialized egg81

cells, yolk, and egg-shell materials31. Genetic screens30,32 and experimental manipulation in D. melanogaster82

have revealed functions of many genes involved in these processes, including yolk-protein genes required83

for oogenesis33 and embryonic patterning genes with localized mRNA like nanos34 and swallow35. Here84

we compare whole-ovary RNA profiles to assess the extent to which these genes and others demonstrate85

consistent patterns of ovary-enrichment over evolutionary timescales in a clade with highly divergent ovary86

and egg morphologies.87

The Hawaiian Drosophilidae clade contains an estimated 1,000 extant species36 that diverged from a common88

ancestor with D. melanogaster between 25 and 40 million years ago37. Extant species have been studied89

in particular for the variation in ovary and egg morphology38,39. Species of Hawaiian Drosophilidae show90

the largest range within the family of egg size, shape, and the number of egg-producing units in the ovary,91

known as ovarioles40–42. Previous studies by our research group and others have shown that these traits are92

likely associated with evolutionary changes in the egg-laying substrate (e.g. rotting bark, flowers, leaves)38,40.93

Furthermore, our previous work demonstrated that at least one developmental process, governing how the94

number of ovarioles is specified in the adult D. melanogaster ovary, is conserved in Hawaiian Drosophila40.95

The diversity of Hawaiian species and their relationship to model species make them a strong candidate96

model clade for evo-devo research36,43. However, their relatively long generation times and species-specific97

breeding requirements make laboratory culture more challenging than classic Drosophila models36. In this98

study we leverage technologies that can be deployed on wild-caught individuals to gather rich developmental99

data to compare across species.100

We compared the expression profiles of twelve species of wild-caught Hawaiian Drosophilidae species across101

three tissues: the adult ovary, head, and the remaining carcass (Fig. 1). First, we characterized the102

differentially expressed genes in the ovary of each species individually. By comparing these to each other,103

and to records of ovary-enriched genes from D. melanogaster, we identified a core suite of ovary genes shared104

across species. We then repeated this analysis for head-enriched genes, and compared the results across105

these parallel analyses to test the extent to which global patterns of expression difference are influenced106

by the identity of the tissues in question. We applied linear modeling to this dataset to test the overall107

contribution of species- and tissue-level differences to expression variation across genes, and describe the108

circumstances under which one is likely to dominate over the other. Finally, we used a phylogenetic analysis109

of expression changes over evolutionary time to identify genes likely to have gained and lost tissue-enriched110

expression. This evolutionary screen of expression changes allowed us to identify networks of genes that111

demonstrate correlated changes in expression evolution. We provide these networks as a searchable dataset112

of novel, testable hypotheses for gene regulation with respect to ovarian function. The results of this study113

demonstrate both the power of Hawaiian Drosophila as a model clade for evo-devo, and the potential of using114

phylogenetic methods to identify evolutionary variation in gene expression underlying phenotypic differences.115
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Figure 1: Phylogeny of species and RNA sampling strategy. A, Twelve species of Hawaiian Drosophil-
idae flies were collected in the wild and processed for RNA sequencing. The twelve reference transcriptomes
assembled from these species were combined with twelve published genomes to generate the phylogeny shown
here (originally published in Church and Extavour, 202144). Three clades within the group are highlighted:
the genus Scaptomyza, nested within the paraphyletic genus Drosophila; the Hawaiian Drosophila, which,
along with Scaptomyza, make up the Hawaiian Drosophilidae; and the well-known picture-wing clade. Adja-
cent to tip labels are four letter species codes used throughout the manuscript. B, The experimental design
used to generate the data in this manuscript. When sufficient specimens were available per species, one
individual was used as a reference and three individuals were dissected into three separate tissues: the head,
ovaries, and all remaining material (carcass). Reference individuals were sequenced to generate paired-end
RNA reads and tissues were sequenced to generate single-end RNA reads. Tissue libraries were then mapped
to the assembled reference to quantify transcript expression. Teal boxes indicate data files. Dashed-line boxes
indicate a repeated step.

3 Methods116

3.1 Field collection117

Specimens used for transcriptome sampling were caught on the Hawaiian islands between May of 2016 and118

May of 2017. Specimens were caught using a combination of net sweeping and fermented banana-mushroom119

baits in various field sites on the Hawaiian islands of Kaua’i and Hawai’i (see Table S1 for locality data).120

Field collections were performed under permits issued by the following: Hawai’i Department of Land and121

Natural Resources, Hawai’i Island Forest Reserves, Kaua’i Island Forest Reserves, Koke’e State Park, and122

Hawai’i Volcanoes National Park. Adult flies were maintained in the field on vials with sugar media and kept123

at cool temperatures. They were transported alive back to Cambridge, MA where they were maintained on124

standard Drosophila media at 18°C. Samples were processed for RNA extraction between 5 and 31 days after125

collecting them live in the field (average 10.8 days, see Table S1). One species, Scaptomyza varia, was caught126

in the field before the adult stage by sampling rotting Clermontia sp. flowers (the oviposition substrate).127

For this species, male and female adult flies emerged in the lab, and were kept together until sampled for128

RNA extraction.129
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3.2 Species identification130

Species were identified using dichotomous keys45–49, when possible. Many keys for Hawaiian Drosophili-131

dae are written focusing on male specific characters (e.g. sexually dimorphic features or male genitalia)47.132

Therefore, for species where females could not be unambiguously identified by morphology, we verified their133

identity using DNA barcoding. When males were caught from the same location, we identified males to134

species using dichotomous keys and matched their barcode sequences to females included in our study. We135

also matched barcodes from collected females to sequences previously uploaded to NCBI50–52.136

The following dichotomous keys were used to identify species: for picture-wing males and females, Magnacca137

and Price (2012)45; for antopocerus males, Hardy (1977)46; for Scaptomyza, Hackman (1959)47; for species138

in the mimica subgroup of MM, O’Grady and colleagues (2003)48; for other miscellaneous species, Hardy139

(1965)49.140

For DNA barcoding, DNA was extracted from one or two legs from male specimens using the Qiagen DNeasy141

blood and tissue extraction kit, or from the DNA of females isolated during RNA extraction (see below). We142

amplified and sequenced the cytochrome oxidase I (COI), II (COII) and 16S rRNA genes using the primers143

and protocols described in Sarikaya and colleagues (2019)40.144

For barcode matching, we aligned sequences using MAFFT, version v7.47553, and assembled gene trees145

using RAxML, version 8.2.954. Definitive matches were considered when sequences for females formed a146

monophyletic clade with reference males or reference sequences from NCBI; see Table S2.147

Female D. primaeva, D. macrothrix, D. sproati, and D. picticornis could be identified unambiguously using148

dichotomous keys. Female D. atroscutellata, D. nanella, D. mimica, D. tanythrix, S. cyrtandrae, S. varipicta,149

and S. varia were identified by matching barcodes to reference sequences from NCBI, reference males, or150

both. For the female haleakalae fly used in this study, no male flies were caught in the same location as these151

individuals, and no other sequences for haleakalae males on NCBI were an exact match with this species.152

Given its similar appearance to Drosophila dives, we are referring to it here as Drosophila cf dives, and we153

await further molecular and taxonomic studies of this group that will resolve its identity.154

3.3 Sampling strategy155

The target number of mature, healthy female flies per species was four, with three intended for dissection156

and species specific expression libraries and one intended as a whole-body reference library (Fig. 1). When157

four such individuals were not available, a reference library was assembled by combining the tissue-specific158

libraries from one of the other individuals. This was the case for the following species: D. sproati, which159

was dissected and had RNA extracted separately from the head, ovaries, and carcass, with RNA combined160

prior to library preparation; and S. varia, S. cyrtandrae and D. cf dives, for which RNA was extracted and161

libraries prepared for separate tissues, and raw reads were combined after sequencing.162

For the other eight species, sufficient individual females were available such that reads for transcriptome163

assembly were sequenced from a separate individual. In these cases one entire female fly was dissected and164

photographed to assess whether vitellogenic eggs were present in the ovary, and all tissues were combined in165

the same tube and used for RNA extraction. Library preparation failed for one individual D. atroscutellata166

fly, as well as two tissue-specific libraries: one head sample from D. mimica, and one head sample from D.167

sproati.168

3.4 Dissection and RNA sequencing169

Female flies were anesthetized in 100% ethanol and were dissected in a phosphate-buffered saline solution.170

The ovary was separated from the abdomen, and the head was separated from the carcass. Photographs171

of each tissue were taken, and tissues were moved to pre-frozen eppendorf tubes, kept in dry ice, and172

immediately transported to a -80°C freezer. Dissections were performed as quickly as possible to prevent173
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RNA degradation. Samples were stored at -80°C for between 90 and 336 days before RNA extraction (average174

281.9 days, see Table S1).175

RNA was extracted from frozen samples using the standard TRIzol protocol (http://tools.thermofisher.176

com/content/sfs/manuals/trizol_reagent.pdf). One mL of TRIzol was added to each frozen sample, which177

were then homogenized using a sterile motorized mortar. The recommended protocol was followed without178

modifications, using 10 µg of glycogen, and resuspending in 20µL RNAse-free water-EDTA-SDS solution.179

DNA for subsequent barcoding was also extracted using the phenol-chloroform phase saved from the RNA180

extraction.181

RNA concentration was checked using a Qubit fluorometer, and integrity was assessed with a Agilent TapeS-182

tation 4200. RNA libraries were prepared following the PrepX polyA mRNA Isolation kit and the PrepX183

RNA-Seq for Illumina Library kit, using the 48 sample protocol on an Apollo 324 liquid handling robot in184

the Harvard University Bauer Core Facilities. Final library concentration and integrity were again assessed185

using the QUbit and TapeStation protocols.186

Samples intended for transcriptome assembly were sequenced on an Illumina HiSeq 2500, using the standard187

version 4 protocol, at 125 base pairs of paired-end reads. Samples intended for tissue-specific expression188

analyses were sequenced on an Illumina NextSeq 500, using a high output flow cell, at 75 base pairs of189

single-end reads. A table of total read counts for each library can be found in Tables S3-S4. To account190

for any possible batch effects across separate rounds of sequencing, each sequencing run was performed with191

one or several overlapping samples. Principle component analysis of these libraries showed variation between192

sequencing runs to be negligible relative to variation between tissue and individual (see Results and Fig.193

S7).194

3.5 Transcriptome assembling and expression mapping195

Transcriptome assembly and expression mapping was performed using the agalma pipeline, version 2.0.055.196

For the twelve reference transcriptomes, reads from separate rounds of sequencing were concatenated and197

inserted into the agalma catalog. Further details of transcriptome assembly and homology assessment are198

included in our previous manuscript44.199

Each tissue-specific expression library was mapped to the corresponding reference transcriptome using the200

‘expression’ pipeline in agalma, which uses the software RSEM to estimate gene and isoform count levels201

from RNAseq data56. The agalma pipeline also includes steps to catalog the species, tissue type, and run202

information, which were exported as a single JavaScript object notation (JSON) file. This file is available in203

the GitHub repository in the directory analysis/data.204

3.6 Phylogenetic analysis205

The phylogenetic methods for inferring homology, orthology, and estimating gene and species trees are the206

same as those described in our previous manuscript44. Genetrees were additionally annotated with the207

software Phyldog57.208

3.7 Annotating transcripts by sequence similarity209

We leveraged the close relationship of these species to species of Drosophila with well-annotated genomes to210

annotate the transcripts considered here. For each transcript in the reference transcriptome, we performed211

four comparisons of sequence similarity using local BLAST: [1] comparing nucleotide transcript sequences to212

nucleotide sequences from D. melanogaster (blastn), [2] comparing translated nucleotide sequences to protein213

sequences of D. melanoagster (blastx), [3] comparing nucleotide sequences to a database of nucleotide se-214

quences from D. melanogaster, D. virilis, and D. grimshawi (blastx), and [4] comparing translated nucleotide215

sequences to a database of protein sequences from the same three species (blastn). For downstream analyses,216
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we prioritized annotations from the second comparison, but we provide all sequence similarity reports in the217

GitHub repository under the directory analysis/BLAST.218

To annotate homolog groups as defined by the homology inference step of agalma, we extracted the name219

and sequence ID from all D. melanogaster sequences in the group.220

3.8 Normalization and differential gene expression221

Transcript count tables were imported into R using the agalmar package, version 0.0.0.9000. Differential gene222

expression analysis was performed using the package DESeq2, version 1.32.0. For these analyses we used only223

one sequencing run per library, thereby excluding duplicate sequencing runs. Analyses of differential gene224

expression were calculated using the default approaches in DESeq2 for estimating size factors, dispersions,225

and calculating log2 fold-change and p-values (Fig. S2A). Both individual and tissue were considered in the226

design formula. Transcripts were considered differentially expressed at a significance threshold of 0.01.227

We identified a cohort of core ovary-specific genes by first identifying a parent gene for each transcript using228

a sequence similarity search against D. melanogaster (Fig. S2A). We then identified parent genes that had229

at least one transcript significantly differentially upregulated in the ovary of more than ten of the twelve230

species. Because multiple transcripts may match to a single parent-gene, core ovary-specific parent genes231

may include transcripts that are also not differentially upregulated in the ovary, as long as at least one232

transcript is for more than ten out of twelve species. This may be the case when transcripts are artificially233

fragmented during reference transcriptome assembly, or when sequence-similar transcripts have biologically234

distinct expression levels.235

3.9 Comparison of expression to D. melanogaster236

We compared our differential gene expression results to a reference database of tissue expression from D.237

melanogaster, known as the FlyAtlas229. We downloaded this reference in July of 2021, from http://motif.238

gla.ac.uk/downloads/FlyAtlas2_21.04.18.sql. This dataset provides data on transcript abundance and tissue239

enrichment, including for female ovaries. Tissue enrichment is calculated using the same methods as in the240

FlyAtlas2 web browser, defined as the fragments per kilobase of transcript per million mapped reads (FPKM)241

for a given tissue divided by that value for the reference tissue (here, female whole body), with a pseudocount242

of two counts added to empty values to avoid division by zero. We considered a FlyAtlas gene to be enriched243

in the ovary, comparable to our data, if the ovary was the maximum enrichment value across all tissues244

excluding the head, brain, and eye tissues, as these were separated in our RNASeq procedure (Fig. S2A).245

We considered a FlyAtlas gene to be head enriched if either the head, brain, or eye were the maximum246

enrichment value, excluding the ovary.247

3.10 Transforming data into comparable measurements of expression across248

species249

Transcript counts are reported in transcripts per million (TPM), but this measurement is known to not250

be directly comparable across species due to differences in reference transcriptome size7,8. Therefore, we251

normalized TPM by species using the procedure described by Munro and colleagues (2021)8, where TPM252

values are multiplied by the number of genes in the reference, and this value is divided by 104 (Fig. S2B).253

TPM10k values were natural-log transformed.254

An additional challenge when working with reference transcriptomes is the presence of fragmented transcripts255

created during the assembly process58. This fragmentation can result in noise in estimating the amount of256

transcript as reads are differentially mapped to these fragments. To reduce the impact of this noise on our257

analysis, we undertook a novel approach where transcripts were grouped according to inferred homology258

as estimated by the agalma pipeline using an all-by-all BLAST approach (Fig. S2B). For each sequenced259

library, we then found the average count value across all transcripts from the same homology group (see260
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Table S5 for statistics on homology group composition). For each species-tissue pair, we then averaged this261

value across all biological replicates, here replicate individuals.262

3.11 Linear modeling263

We performed linear modeling to calculate the relative contribution of tissue- and species-level differences264

to variation in gene expression (Fig. S2B), following the approach of Breschi and colleagues (2016)21. These265

analyses were performed separately on datasets of ovary vs. carcass and head vs. carcass expression. Using266

the ANOVA script provided at https://github.com/abreschi/Rscripts/blob/master/anova.R, we built267

a linear model for each gene that accounts for the contribution of the organ, species, and any residual error.268

We then calculated the relative proportion of each factor divided by the total sum of squares for all factors.269

We identified groups of highly variable genes, using the same metrics defined by Breschi and colleagues270

(2016)21, as any gene for which either tissues or species explains at least 75% of the variance. Species271

variable genes (SVGs) were defined as highly variable genes whose relative variation was two-fold greater272

across species than tissues (vice-versa for tissue variable genes, TVGs).273

We performed these linear model analyses over four nested clades: a clade containing two picture-wing species274

(D. sproati and D. macrothrix); a clade containing the four picture-wing-Nudidrosophila-Ateledrosophila275

species in this study; a clade containing the nine Hawaiian Drosophila species in this study; and a clade of276

all 12 Hawaiian Drosophila and Scaptomyza species in this study. We repeated these analyses excluding the277

species S. varia, which showed the lowest similarity in expression to the other eleven species. To compare278

our analysis to the more typical approach undertaken, we also performed these analyses on all pairwise279

combinations of these twelve species.280

3.12 Reconstructing evolutionary history of differential expression281

We calculated tissue bias as the ratio of counts in TPM10k for each tissue (ovary and head) to the reference282

tissue7, here the carcass (Fig. S3A). We subsequently performed the same transformation steps described283

above, averaging over ratios from the same homology group and across biological replicates, to calculate284

average expression bias per homology group per library. To avoid division by zero, we added a pseudocount285

of 0.01 to each TPM10k value. Ratio values were natural-log transformed so that positive values indicate286

enrichment in the tissue of interest relative to the reference tissue, negative values indicate the opposite, and287

values of zero indicate equivalent expression.288

We reconstructed the evolutionary history of tissue bias for each homology group using the species tree289

published in Church and Extavour, 202144, based on the same reference transcriptome data (Fig. S2C).290

First, we calibrated the tree estimated using IQtree (Fig 1A of that publication) to be ultrametric using the291

R function chronos in the package ape, version 5.5 (using a correlated model and a lambda value of 1). We292

then subset this tree to only include tips for which expression data was available, and annotated this tree to293

be able to identify specific branches and nodes in ancestral state reconstruction analyses.294

Ancestral expression bias values were estimated with the R package Rphylopars, version 0.3.2, using the fast295

ancestral state reconstruction algorithm based on Ho and Ané, 201459 (Fig. S3A). Tips for which expression296

data were not available were dropped from each reconstruction, and ancestral state reconstruction was only297

performed when more than 3 tips had data. Following ancestral state reconstruction, we calculated the298

scaled change as the difference between the value at the ancestral and descendant nodes, divided by the299

length of the branch. Scaled changes were compared between homology groups by identifying equivalent300

branches as those that share the same parent and child node, following the procedure described in Munro301

and colleagues (2021)8. We identified qualitative changes in expression bias as changes that resulted in a302

ratio changing from negative to positive values or vice versa.303
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3.13 Estimating correlated evolution of expression across genes304

For each homology group that had representation across all twelve species, we calculated pairwise Pear-305

son’s correlation coefficients by comparing scaled changes in expression bias across equivalent branches (Fig.306

S3B). For the twelve-species phylogeny, this meant each correlation coefficient was calculated using 22 in-307

dividual data points (branches). This resulted in a correlation matrix of 1,306,449 pairwise comparisons of308

evolutionary correlation.309

We compared this correlation network to data on protein interactions and genetic interactions downloaded310

from http://flybase.org in July, 2021. These data include pairwise observations of genetic enhancement311

and suppression interactions between parent genes in D. melanogaster. These interactions were matched to312

pairwise correlation coefficients by identifying the corresponding homology group for each D. melanogaster313

parent gene ID (more than one parent gene may fall into the same homology group).314

We tested whether correlation coefficients for known genetic interaction partners were higher than in genes315

with unknown interactions using two-sample t-tests. In each test we compared the coefficients for either316

enhancement or suppression interactions to a random sample of 5000 coefficients for which interactions are317

unknown. We repeated these t-tests 100 times using different random samples, and report the maximum318

p-value observed. We also compared the distribution of enhancement and suppression interaction coefficients319

to each other using a single t-test.320

Strong correlations for the visualization of co-evolutionary networks were selected using a threshold correla-321

tion coefficient of 0.825.322

4 Data Availability323

All data, results, and code for this manuscript are available at GitHub, under the repository324

shchurch/hawaiian_drosophilidae_expression_2021, commit 67d8e6f. The code to perform all325

agalma commands was performed in clean anaconda environment, installed following the instructions326

at https://bitbucket.org/caseywdunn/agalma. All R commands were performed with a fresh install327

of R, and the session information including all package versions is available in the GitHub repository328

under the file r_session_info.txt. The code to generate all plots as well as the text of this manuscript329

is available in several R scripts and Rmarkdown files at the same location. The resulting correlation330

matrix can be interactively visualized and queried at the accompanying data visualization for this paper331

(https://github.com/shchurch/hawaiian_fly_dataviz_2021).332

5 Results333

5.1 Differential gene expression reveals a cohort of consistently ovary-specific334

genes335

We observed several patterns in tissue-specific gene expression that are consistent across all twelve species.336

First, in all species the main axis of variation separated ovary RNA libraries from head and carcass (Fig.337

S4). In all species this axis accounted for at least 50% of variation, and in several species greater than 70% of338

variation. To test for possible variation due to different runs on the sequencer, we resequenced several libraries339

and compared them using principle component analysis. We found variation between sequencing runs to be340

negligible compared to variation across tissues and individuals (Fig. S7). Second, in all species we observed341

that there was a larger amount of significantly downregulated transcripts than upregulated in the ovary342

relative to the carcass (Fig. 2A-B, S5). Across species, we observed an average of 27.7% to be significantly343

downregulated and 15.5% of transcripts to be significantly upregulated. In contrast, when comparing the344

head to the carcass, we observed an average of 10% of transcripts to be significantly upregulated and 10.5%345

to be significantly downregulated (Fig. S6). Therefore the ovary shows a larger number of both upregulated346
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and downregulated genes relative to the carcass than the head, indicating the ovary has a particularly distinct347

expression profile. These differences may also reflect variation in the complexity and diversity of functions348

of the tissues being compared.349

We used the results of our differential gene expression analysis within species to test for the existence of a350

suite of genes that show consistent ovary-specific expression across species. We found a cohort of 131 genes,351

grouped according to BLAST sequence similarity to D. melanogaster, for which at least one transcript was352

significantly upregulated in the ovaries of more than ten species (Fig. 2C). Transcripts matching these genes353

made up on average 24.6% of the significantly ovary-upregulated transcripts across species, inidicating that a354

substantial portion of ovary-specific genes have conserved expression patterns over evolutionary time (17.7%,355

excluding the species S. varia that had the most distinct expression profile of all species).356

We then tested the extent to which these core ovary genes correspond to observations in well-studied labo-357

ratory Drosophila models. To accomplish this, we compared expression across Hawaiian species to reported358

tissue-specific expression levels from D. melanogaster29. We found that Hawaiian core ovary-specific genes359

show nearly universal enrichment in the ovary of D. melanogaster as well, as reported in the FlyAtlas2360

dataset29 (Fig. 2D). We likewise observed that genes reported in D. melanogaster to have highest enrich-361

ment in the ovary largely correspond to genes that are significantly upregulated in the ovaries of Hawaiian362

species (Fig. S8).363

The 131 core ovary genes include several well-known members involved in oogenesis and germline stem cell364

renewal such as nanos34, swallow35, and oskar60(Fig. 2E). We found only two genes that were identified as365

Hawaiian core ovary genes that are not reported in the FlyAtlas2 dataset29 to be enriched in the ovary of D.366

melanogaster : the SET domain binding factor sbf, and Rfx, which are reported to be enriched in the heart,367

brain, and other non-reproductive tissues29.368

We used the same approach to identify a core suite of 52 head-specific genes (Fig. S9). There was no369

overlap between the sets of core head genes and core ovary genes. To test whether the correspondence370

between expression observations in Hawaiian flies and D. melanogaster might be due to factors beyond371

tissue identity, we compared head expression values to ovary enrichment data from D. melanogaster, as we372

had done for ovary expression values above. We did not observe a correspondence in either direction between373

expression in the head of Hawaiian species and enrichment in the ovary of D. melanogaster (Fig. S10A).374

In contrast, we did find a correspondence between head-specific expression and genes enriched in the D.375

melanogaster brain, eye, and head (Fig. S10B). Core head genes include Rhodopsin photoreceptor genes and376

genes such as hikaru genki with involvement in synaptic centers61.377
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Figure 2: Identifying a cohort of ovary-specific genes across drosophilid species. A, Volcano plot
for one example species, D. primaeva (Dpri), showing the results of a differential gene expression analysis
comparing the ovary to the carcass. The x-axis shows the log2 fold change of expression across transcripts,
and the y-axis shows the adjusted p-value, log10 transformed. Points that are significantly differentially
expressed are shown in black. B, Jitter plots showing the results of the same analysis across the twelve
species studied here. The x-axis shows the log2 fold change of expression across transcripts, and points are
arranged with random jitter within species on the y-axis. C, The same jitter plots, but now colored according
to whether or not transcripts belong to a cohort of core ovary genes. These are defined as genes, grouped
by BLAST similarity to D. melanogaster transcripts, for which at least one transcript is upregulated in the
ovary of ten or more of the twelve species. D, A comparison of mean expression change across Hawaiian
species to reported ovary-enrichment values from D. melanogaster, as reported in FlyAtlas229. Core ovary
genes are marked in magenta. E, The same plot, now showing only core ovary genes, annotated with the
gene symbol from D. melanogaster.

5.2 Modeling reveals the phylogenetic decay of expression similarity between378

tissues379

Many studies have investigated the question of whether we expect expression to be more similar across the380

same organ in different species, or across different organs within the same species13–20. Recent studies have381

suggested that the answer to this question will depend on the phylogenetic distance separating the species382

being compared21. Here we used a modeling approach to investigate this question with respect to the ovaries383

of Hawaiian drosophilids.384

First, we determined an appropriate unit of comparison across species, based on an assessment of homol-385

ogous features between reference transcriptomes. The agalma pipeline provides a method for determining386
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homologous and orthologous sequences using an all-by-all BLAST approach to determine clusters of recipro-387

cally similar sequences (homology groups). These can then be divided into orthology groups by estimating388

genetrees and identifying maximally inclusive subtrees with no more than one sequence per taxon55. We389

compared the representation of species across homology and orthology groups, and observed that while the390

representation of homology groups increases with the number of species compared, representation of or-391

thology groups decreases (Fig. S11). This is a known obstacle in comparative transcriptomics, attributed392

to many transcripts being artifactually fragmented during reference transcriptome assembly58. To reduce393

the impact of this on our downstream analyses, we averaged TPM values across all transcripts within a394

homology group for each sequenced RNA library. Principle component analysis of this average expression395

dataset showed that the first principle component divides ovary libraries from the rest, while the second com-396

ponent separates samples along an axis that largely corresponds to phylogenetic distance between species397

(Fig. S12). While this averaging approach reduces noise due to variable mapping affinities of fragments of398

the same transcript, it comes at the cost of averaging over potential variation between genuine transcripts399

that fall into the same homology group. Future analyses using improved assemblies for transcriptomes or400

genomes will likely be able to avoid this trade off and compare transcript counts directly.401

With average expression counts for homologous transcripts across species, we tested the degree to which402

variation across this dataset could be attributed to tissue-specific variation (here, ovary vs. carcass), species403

specific variation, or neither (residual variation). Using the linear modeling approach adapted from Breschi404

and colleagues (2016)21, we found the proportion of variance across the dataset attributed to tissue differences405

decreased with phylogenetic distance, while the proportion attributed to species difference increased (Fig.406

3A-C). In addition, we found that, when comparing ovary and carcass tissues, the Hawaiian drosophilid clade407

encompasses the crossover point where variation across species swamps variation across tissues (crossed lines,408

Fig. 3A). When comparing across the two species from the picture-wing group included in this study, an409

average of 45.6% of the variation can be attributed to tissue differences. For the same comparison, 960 genes410

were identified as tissue variable genes, defined as residual variation accounting for <25% and a two-fold411

increase in variation attributed to tissues than to species (Fig. 3B, S13). In contrast, when comparing across412

all twelve Hawaiian drosophilid species studied here, 34.7% of the variation can be attributed to tissue, with413

240 TVGs (Fig. 3B, S13). Across different clades of comparisons, the number of species-variable genes414

(SVGs) remains relatively stable (from 304 to 260, Fig. 3B).415

We then leveraged the results of this linear modeling approach across all twelve species to perform an416

additional screen for genes that are consistently upregulated in ovaries across species. We compared the417

proportion of variation explained by tissue for each homology group to the average log2 fold change from the418

results of our differential gene expression analysis (Fig 3D). This comparison allowed us to identify genes419

that fall above our threshold for TVGs that are also upregulated in the ovary (Fig 3E). This group of genes420

includes many of the same members as the core ovary genes (e.g. nanos and swallow), as well as several new421

candidates (e.g. singed).422

To test the importance of tissue identity, we repeated the same analysis comparing variation across species423

and tissues using the head in place of the ovary. Consistent with what we describe for the ovary and carcass,424

as phylogenetic distance increases the proportion of variation across tissues decreases while variation across425

species increases. In contrast to the above findings, however, for the head and carcass far less of the variation426

in gene expression can be attributed to tissue differences (Fig. S14). For these tissues, the crossover point427

between total proportion of variation occurs roughly at the distance separating the two picture-wing species.428

To verify these results were not driven by the species S. varia, which had the most distinct expression patterns429

of all species, we repeated these analyses excluding this species and recovered largely equivalent results (Fig.430

S15). To compare our findings to those that would be recovered using a more typical pairwise approach,431

we repeated the linear modeling analysis on ovary and carcass data using every pairwise combination of432

the twelve species. We recovered the same trend of decreasing contribution of tissue-level variation with433

increasing phylogenetic distance, and observed that the variance in mean proportion attributed to either434

species- or tissue-level differences increased as well (Fig. S16).435
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Figure 3: Linear modeling shows the proportion of variance explained by differences across
tissues and species. A, The results of a linear modeling approach to calculate expression variation for
each gene, attributed to variation across organs, species, or residual variation, as described in Breschi and
colleagues (2016)21. The average proportion of variation attributed to tissues is higher than that attributed
to species for the two picture-wing species in clade A, while the opposite is true for all twelve species in clade
D. B, The number of genes, defined by homology group, classified as tissue variable genes (TVGs), species
variable genes (SVGs), or neither in each clade comparison. C, The phylogeny of the twelve species studied
here, showing the four clades compared in A-B. Scaled evolutionary distance is calculated as the relative
distance from the most recent common ancestor of Hawaiian drosophilids to extant species. D, Comparing
results of the differential gene expression approach (log2 fold change) on the x-axis to results of the modeling
approach on the y-axis (variation across tissues). Genes are colored according to TVGs and SVGs. The
inset box highlights TVGs that are upregulated in the ovary relative to the carcass. E, The same plot, now
showing only upregulated TVGs, annotated with the gene symbol from the D. melanogaster sequences in
the same homology group.
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5.3 Identifying gains and losses of ovary bias across genes and the phylogeny436

While a substantial fraction of ovary-specific transcripts belong to the cohort of core ovary genes, on average437

75.4% of transcripts are upregulated in the ovaries of one or several species, but not consistently across ten or438

more of the species studied here (Fig 2B-C). This is suggestive of many evolutionary gains and losses of ovary439

biased expression of genes. We characterized the evolution of these gains and losses using an ancestral state440

reconstruction approach. First we quantified expression bias between tissues as the ratio of read counts7,441

then reconstructed the value of this continuous trait for each gene (defined using homology groups) at each442

node of the estimated species tree (Fig. S3). We then calculated the scaled change of expression bias along443

each branch, which allowed us to describe how relative expression values between tissues had changed the444

course of evolutionary time (Fig 4A). Visualizing the distribution of scaled changes by genes shows that445

most scaled changes are small and centered around zero, representing little change in gene expression bias446

between tissues (Fig. 4B-C).447

Using this dataset of scaled changes across genes and branches, we identified branches for which the direction448

of tissue bias had changed (e.g. from higher expression in the ovary biased than the carcass to lower, or vice449

versa). Visualizing this dataset according to branches reveals that the majority of these changes in bias are450

located on the root and terminal branches, rather than internal branches (Fig 4D-E). This is likely because451

internal branches for this rapid radiation tend to be very short; even when scaling evolutionary changes to452

branch length, it is less probable to experience a shift to and from ovary biased on a short branch than a453

long branch. Visualizing the distribution of genes by ancestral and descendant values allows us to identify454

shifts in bias which represent the largest swings in expression values (Fig. 4F, points a-d). Highlighting the455

top two such shifts in both directions, we identify four example genes which acquired or lost ovary-specific456

expression in the phylogeny of Hawaiian Drosophilidae. In the case of FMRFaR and GABA, a few Hawaiian457

species have gained ovary biased expression of these genes, while most species and the ancestral state indicate458

non-ovary bias (Fig. 4Fa-b). In the case of vilya and the unnamed gene CG9109, each shows a pattern where459

one species has lost ovary bias from a biased ancestral state (Fig. 4Fc-d).460

Repeating the same analysis using the head in place of the ovary revealed a set of evolutionary gains and461

losses in head-specific expression (Fig. S17). Identifying the top four changes in head expression shows gains462

and losses of head expression in the genes hiro, stil, Jhe, and, consistent with the ovary, vilya. In the case of463

the latter, these results may be driven by substantial changes in expression of vilya in carcass tissues across464

species, resulting in major differences in both ovary and head-biased expression.465
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Figure 4: Identifying genes that have gained and lost ovary expression across the phylogeny. A,
The phylogeny of the twelve species studied here, highlighting one example branch of the 22 for which we
inferred the scaled evolutionary change in expression bias. B, The distribution of changes, grouped by gene,
for 100 randomly selected genes, defined by homology group. Each point represents one of the 22 branches
from A, with the red point corresponding to the highlighted branch from that panel. C, The distribution,
log10 transformed, of scaled genes across all branches and all genes. Changes on the highlighted branch in
red. D, The phylogeny with all 22 branches numbered. E, The distribution of changes, grouped by branch,
with random jitter on the x-axis within each group. Points colored according to the qualitative change in
bias, either from more expression in ovary than carcass to less (blue), the reverse (red), or no change in
overall bias (gray). F, The distribution of ancestral and descendant values, showing the two quadrants that
represent qualitative changes in bias. Points that represent large swings in expression within those quadrants
are labeled a-d. G, The four genes with large swings from F, showing the expression bias for each transcript
colored according to more expression in the ovary (red) or carcass (blue). Panels annotated with the gene
symbol from the D. melanogaster sequences in the same homology group, with the exception of vilya*, which
was annotated using a direct BLAST search since no D. melanogaster sequence was present in that group.
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5.4 Genes with a strong correlation of expression evolution466

We tested the estimated evolutionary changes in expression bias for evidence of correlated expression evo-467

lution between genes. For every gene represented across all species, we performed a pairwise comparison of468

changes in expression bias, using as data points the scaled change in ovary bias on the 22 branches in the469

phylogenetic tree. This resulted in 1,306,449 pairwise measures of evolutionary correlation between genes.470

Because the number of gene pairs being compared is much larger than the number of values used to esti-471

mate correlation, this method has the potential to produce many spurious correlations7. To test the degree472

to which the correlations observed here reflect known biological interactions between genes, we compared473

these measures to reported protein and genetic interactions between genes, using the database of published474

genetic experiments in D. melanogaster, available at http://flybase.org. We found that the mean correlation475

coefficient for genes that are known to physically interact as proteins was higher than for genes with no or476

unknown interaction (p-value=<0.001, Fig. 5A). This indicates that even with a relatively small number477

of observations, there is sufficient information in the matrix to detect biological signal between gene pairs.478

These results were calculated based on the correlation in expression bias between the ovary and carcass.479

However, following the same procedure using correlations in changes in head-biased expression showed no480

significant difference between the two groups (p-value=0.256, Fig. S18), suggesting the strength of this signal481

may be dependent on the tissues being compared.482

We also found that genes known to interact via genetic enhancement or suppression have a significantly483

higher mean correlation than genes with no or unknown genetic interactions (unknown vs. enhancement484

p-value <0.001,unknown vs. suppression=<0.001, Fig. 5B). Comparing genes with known enhancement and485

suppression interactions to each other showed no significant difference (p-value=0.497). However, for genetic486

interactions, the range of correlation coefficients was higher in the group of no or unknown interactions (Fig.487

5B). This indicates that, while the average correlation of expression evolution might be higher for interaction488

partners, stronger positive and negative correlations exist between pairs of genes which do not interact, or489

for which interactions have not yet been tested.490

As evidence of this, we compared the interaction network for known ovary-specific genes, to test whether the491

network inferred based on strong correlation of expression evolution was consistent with known interaction492

partners from D. melanogaster. We selected as an example the gene yolk-protein gene family, which are493

known to be expressed in the reproductive system, among other tissues62 (Fig. 5C). We found 8 distinct494

homologous gene groups, comprising 14 unique D. melanogaster parent genes, that had a strong evolutionary495

correlation with yolk-protein genes (absolute coefficient greater than 0.825, Fig. 5D). None of these correlated496

genes correspond to those listed on FlyBase63 as having known interactions with yolk-protein genes in D.497

melanogaster (Fig. 5E). We consider the strong evolutionary correlations to be a set of new predictions about498

evolutionary and genetic relationships between genes which can be tested in wild and laboratory model499

species of Drosophila. The dataset of pairwise correlation coefficients can be visualized and interrogated500

at the accompanying data visualization for this manuscript (https://github.com/shchurch/hawaiian_fly_501

dataviz_2021).502
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Figure 5: Estimating pairwise correlation coefficients across genes reveals new networks of cor-
related expression evolution. A-B Comparison of the distribution of Pearson’s correlation coefficients
based on ovary-biased expression evolution between genes. Asterisks indicate a significant t-test comparison.
A, Genes with no or unknown protein-protein interactions compared to those with reported interactions in
FlyBase63 (p-value=<0.001). B, Correlation comparison between genes with no or unknown genetic interac-
tions and those reported to have enhancement or suppression interactions in FlyBase (unknown vs. enhance-
ment p-value=<0.001; unknown vs. suppression=<0.001; enhancement vs. suppression=0.497). C, Each
point represents a scaled change in expression bias, colored by Pearson’s correlation coefficients relative to
one example gene-family, the yolk-protein genes (black points), arranged by phylogenetic branch (numbers
shown in Fig. 4D). Yellow=strong positive correlation, purple=strong negative correlation. D, The network
of strong correlation partners (absolute correlation > 0.825) with the yolk-protein genes, colored by the
direction of correlation. Stronger correlations are shown by brighter colors, and thicker, shorter lines. Nodes
are annotated with the gene symbols from the D. melanogaster sequences from that homology group. E,
The correlation between known protein-protein interaction partners63 with the yolk-protein genes.

6 Discussion503

The results of this study show the importance of placing any comparison of gene expression across species504

in an evolutionary context. When making comparisons that involve model organsism for the study of505

development and disease, this means identifying the crossover point at which variation between species506

begins to swamp variation across the tissues or treatments in question. In such comparisons, the possibility507

that any individual gene may show a divergent pattern of expression from the model organism increases508

substantially. This study provides evidence that confirms we should expect variation in gene expression to509

increase with the phylogenetic distance separating the species being compared. In addition, our results using510

ovary and head expression data show that our expectation should also depend on the identity of the tissues511
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being compared. Our dataset demonstrates that for some tissues, like the fly head, this crossover point may512

be met even when comparing between two relatively closely related species.513

Despite substantial variation across species, we describe here the composition of core suites of ovary- and514

head-expressed genes that have maintained conservation of expression patterns over millions of years of515

evolution. The core ovary genes include some of the most well-studied genes in relation to oogenesis, such516

as nanos and oskar, as well as many genes that have yet to be studied in depth (e.g. unnamed genes such517

as CG3430 ). We provide the full list of core ovary and head genes as a reference against which future518

genetic studies may be informed and compared (Tables S6-S7). Furthermore, the existence of these suites of519

genes suggests that equivalent groups are likely to exist within the many gene expression atlases currently520

being published64,65. New technologies such as single-cell RNA sequencing that use global signatures of gene521

expression to identify cells are ripe for interspecific comparisons that may reveal evolutionary conserved522

gene modules66. Developing robust comparative methods for comparing these atlases across species has523

the potential to reveal ancestral expression patterns in cells and organs, as well as pinpoint important524

evolutionary shifts in expression regulation.525

Our results indicate that genes known to interact, both physically as proteins and through genetic enhance-526

ment and suppression, likely experience more correlated changes in expression than would be expected for527

genes chosen at random. However, we also find the difference in mean correlation between these groups to528

be relatively small, and dependent on the context of the tissue in question. One possible explanation for529

this finding is that interactions between genes with strong correlations of expression evolution have yet to be530

described. We provide an interactive tool to explore highly correlated genes that can inform future genetic531

studies in D. melanogaster and other related species (https://github.com/shchurch/hawaiian_fly_dataviz_532

2021). Another possibility we consider likely is that interactions between genes represent one factor among533

many that dictate the probability of correlated changes in expression. We hypothesize that other features,534

such as shared regulatory architecture, will also influence evolutionary correlation of expression.535

As more studies undertake phylogenetic comparisons of functional genomic data, new factors that influence536

the evolutionary associations between genes are likely to be revealed7. The strength of these phylogenetic537

comparisons will depend in part on comparing across a sufficient number of taxa such that there are multiple538

branches on which to calculate and compare evolutionary changes. However, even as functional genomic539

data become more accessible for more species, the number of features being compared (e.g. thousands540

of genes) will likely continue to outnumber the number of evolutionary observations (e.g. changes along541

branches)7. One encouraging result from this study is that, using our matrix of gene expression changes542

along 22 branches, there is sufficient information to detect the biological signal associated with physical and543

genetic interactions. While this is true, we assume that some fraction of the correlations that we report here544

represent false positives, and that the strength of correlation of these genes would decrease with the addition545

of more taxa to the comparison. For this reason we present the correlation matrix as a set of hypotheses to546

be tested in future studies using additional lines of evidence.547

One outstanding challenge in expression evolution is the quality of the references available against which548

RNA reads can be mapped58. In this study we account for the statistical noise in our data by averaging549

expression values over groups of homologous genes, as identified by sequence similarity to high quality refer-550

ence genomes. This approach has the advantage of accounting for problems associated with fragmentation of551

genes in transcriptome assembly. However, it comes at the cost of averaging over possible biological variation552

in expression between genes from the same gene family. The strong concordance of our results with published553

records from D. melanogaster suggests that the approach we have used here is robust for our dataset. How-554

ever, as the quality and accessibility of genomes from diverse species continue to increase, future studies will555

likely be able to compare directly between orthologous genes without needing to account for fragmentation.556

For those future studies, a phylogenetic comparative approach like the one used here and elsewhere8 can557

serve as an analytical framework to move expression comparisons beyond pairwise comparisons.558

A goal of evolutionary-developmental biology is to identify changes in developmental mechanisms that un-559

derlie phenotypic differences12. Many evo-devo studies approach this by identifying phenotypic variation560

between species and then searching for differences in gene content or expression using one or several emerg-561

ing model organisms in the lab12. To narrow down the field of search, this approach often requires outside562

knowledge of candidate genes, gained from developmental research in related models or other methods of563
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filtering the genome. Furthermore, because these approaches usually lack global measurements of gene ex-564

pression variation across species, identifying an expression difference does not always constitute a smoking565

gun6. For example, observing a difference between candidate gene expression would not be unexpected if we566

frequently observe differences of that magnitude between genes chosen at random. An alternative approach,567

as demonstrated here, is to characterize all the evolutionary changes in expression across the transcriptome,568

and then identify the changes that are significantly associated with traits of interest9. As expression data569

become available from an ever wider array of species, this “evolutionary screen” approach becomes increas-570

ingly possible. One advantage of this approach is that it may reveal associations that would otherwise571

escape detection when comparisons are centered on model organisms; for example, when genes, traits, or572

processes happen to not be present in our laboratory model species10. By leveraging phylogenetic compara-573

tive methods on high-dimensional functional genomic data, the objective of connecting genomic variation to574

developmental mechanisms and phenotypic differences will be accelerated.575
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