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In the domain-comparison experiment, we fit the percentage of correct responses 

with a logistic function containing WT, task (memory/perception), and the cross-

product  of WT as items and task to a logistic function: 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =
1

1 + 𝑒𝑒−(𝛽𝛽1 × 𝑊𝑊𝑊𝑊 + 𝛽𝛽2 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3 × 𝑊𝑊𝑊𝑊×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

where β1 reflects the response-tracking precision of WT, β2 reflects the difference in 

accuracy between two tasks, and β3 reflects the difference in WT response-tracking 

precision between tasks (memory/perception). 

In the TMS experiment, we fit the percentage of correct responses to a logistic 

function with WT, TMS condition (TMS-46d/sham), and the cross-product  of WT and 

TMS as terms: 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =
1

1 + 𝑒𝑒−(𝛽𝛽1 × 𝑊𝑊𝑊𝑊 + 𝛽𝛽2 × 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽3 × 𝑊𝑊𝑊𝑊×𝑇𝑇𝑇𝑇𝑇𝑇) 

where β1 reflects the response-tracking precision of WT, β2 reflects the difference in 

accuracy between two tasks, and β3 reflects the difference in WT response-tracking 

precision between TMS conditions (TMS-46d/sham). 

 

Generalized linear models (GLMs) 

We used GLMs to examine how WTs might vary as a function of task difficulty 

levels (see trial-difficulty psychometric curves in Figure 5c-f). We used the “Enter” 

method to include several variables and their cross-products as items in the GLMs: 

𝐸𝐸(𝑌𝑌) = 𝑔𝑔−1(𝑋𝑋𝑋𝑋) 

where the dependent variable Y is WT, β is an unknown parameter to be estimated, and 

g is a Gaussian estimated function. The independent variables X are resolution 
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difference, a binary regressor indicating correctness, a binary regressor indicating TMS 

modulation (TMS-46d/TMS-sham), a binary regressor indicating TMS phase (on-

judgement/on-wagering), and their cross-product items. Domain-generality index (DGI) 

& pairwise correlation assessing metacognitive efficiency similarity of two tasks across 

and within subjects. The DGI quantifies the similarity between scores in each domain4 

as follows: 

𝐷𝐷𝐺𝐺𝐺𝐺 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝑀𝑀𝑝𝑝 − 𝑀𝑀𝑀𝑀� 

where MP is the perceptual H-model meta-d′/d′ and MM is the memory H-model meta-

d′/d′. Lower DGI scores indicate greater similarity in metacognitive efficiency between 

domains (DGI = 0 indicates identical scores). 

In terms of pairwise correlation matrices, we built a matrix in which each entry E 

(task, monkey) represents the meta-efficiency correlation between a particular monkey 

and a particular task over a period of 20 days. For example, (M_Mars, P_Mars) 

represents the correlation between the meta-efficiency of the 20-day memory task and 

the 20-day perception task for Mars (Figure 7f). A single-linkage clustering method78 

was employed to compute the minimum pairwise distance and generate a hierarchical 

cluster. These allowed us to test whether the within-task similarity exceeded the within-

subjects similarity of two domains. 

 

Apparatus 

The training and testing were conducted in an automated test apparatus. The 

subject sat in a Plexiglas monkey chair (29.4 cm × 30.8 cm × 55 cm) fixed in position in 

front of an 18.5-inch capacitive touch-sensitive screen (Guangzhou TouchWo Co., Ltd, 
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China) on which the stimuli could be displayed, and the monkeys were allowed to move 

their hands to press and hold the target. An automated water delivery reward system (5-

RLD-D1, Crist Instrument Co., Inc, U.S.) delivered water through a tube positioned just 

beneath the mouth of the monkeys in response to the correct choices made by the 

subject. Apart from the backdrop lighting from the touch screen, the entire chair was 

placed in a dark experimental cubicle. The stimulus display and data collection were 

controlled by Python programs on a computer with millisecond precision. An infrared 

camera and a video recording system (EZVIZ-C2C, Hangzhou Ezviz Network Co., Ltd, 

China) were used to monitor the subjects., 

 

Material 

Documentary films on wild animals were gathered from YouTube and bilibili, 

including Monkey Kingdom (Disney), Monkey Planet (Episode 1–3; BBC), Monkey 

Thieves (http://natgeotv.com/asia/monkey-thieves), Monkeys: An Amazing Animal 

Family (https://skyvision.sky.com/programme/15753/monkeys--an-amazing-animal-

family), Nature's Misfits (BBC), Planet Earth (Episode 1–11; BBC), Big Cats (Episode 1–

3; BBC), and Snow Monkey (PBS Nature). In total, we collected 36 hours of video. We 

used Video Studio X8 (Core Corporation) to split the film into smaller clips (2 s each), 

and we used the CV2 package in Python to eliminate any blank frames. We chose 800 

2-s clips that did not contain snakes, blank screens, or altered components such as 

typefaces as the video pool. We extracted 1600 still frames (two frames per video: 10th 

and 10th last frames) from these 800 clips. 
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Data availability. Data is available on request. 

 

Code availability. Data is available on GitHub. 
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Tables 

Table 1. Percentiles of each monkey’s meta-scores compared with the simulated 

data. Inferential statistics calculated using a minimum statistics method show that the 

meta-scores of all monkeys are significantly higher than chance level. 
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Table 2. Individual fitting of data from the TMS experiment by logistic regression. 

Logistic regression of response (correct/incorrect) with WT, TMS (TMS-46d/TMS-

sham), and a cross-product item as factors to test whether TMS of BA46d affects the 

ability of WT to track responses. Logistic regression was performed for the on-

judgement and on-wagering phases separately for each monkey. 
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Table 3. Individual fitting of data from the domain-comparison experiment by 

logistic regression. Logistic regression of response (correct/incorrect) with WT, task 

(memory/perception), and a cross-product item as factors to test whether WT tracks 

responses. The results show that the response outcomes were tracked by WT. Logistic 

regression was performed separately for each monkey. 
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Figure legends 

Figure 1. Temporal structure of the TMS experiment. TMS experiment schedule with 

TMS-46d/sham conditions counterbalanced between monkeys (Uranus and Neptune) 

(a). Perceptual judgement task with temporal wagering. Each trial consisted of a starting 

(blue) cue, a delay lasting 1 ~ 6 s, and two simultaneously presented pictures. The 

monkeys needed to choose the picture with lower resolution (or higher resolution, 

counterbalanced across monkeys) by holding their hand on the touchscreen. The 

waiting process was initiated as soon as they laid their hand on the picture. Their 

confidence in the decision was measured by temporal wagering; that is, they could wait 

for a reward if they were confident or opt out to abort the current trial. There were two 

TMS conditions, which differed in the timing of stimulation. In each trial, the monkeys 

received a single TMS pulse either immediately after the onset of the picture stimulus 

(on-judgement phase) or 100 ms after they made their perceptual decision (on-wagering 

phase) (b). The required WT distribution and the actual WT distribution (only catch trials 

and incorrect trials) with WT bin size set to 1 s. The table depicts the classification of 

low-confidence trials (unreached trials) and high-confidence trials (reached trials) (c). 

An illustration of the TMS site, as indicated by the green arrows. Bottom: The green 

area indicates BA46d on a rendering of a macaque brain; the red disc indicates the 

target area (d). 

Figure 2. Task performance and metacognitive capability remained steady across 

days. Plots depict daily accuracy (a & c) and metacognitive efficiency (b & d) across 20 

days for four monkeys performing two tasks. Dots represent individual data points; their 

colours represent individual monkeys. Error bars indicate ± one standard error. 
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Figure 3. TMS during the on-judgement phase disrupts metacognition and the 

response outcome tracking ability of wagered time (WT). The monkeys 

demonstrated an impairment in metacognitive efficiency in the TMS-46d condition 

during the on-judgement phase but not during the on-wagering phase (a). TMS of area 

46d does not affect task accuracy (b). Difference in accuracy between unreached trials 

(low confidence) and reached trials (high confidence) in the on-judgement phase and 

the on-wagering phase (c & d, respectively). The trendlines are fitted to accuracy by 

logistic regression with WT as a factor for the TMS-sham and TMS-46d conditions 

separately. WT reliably tracks response outcomes in the TMS-sham condition but not in 

the TMS-46d condition during the on-judgement phase. WT tracks response outcomes 

in both the TMS-sham and TMS-46d conditions during the TMS on-wagering phase (e & 

f). Distributional differences between correct and incorrect WT. The largest effects were 

observed in the TMS-sham condition, in which the BA46d was not perturbed (g-j). The 

WT bin size was set to 1 s; coloured lines indicate kernel density estimation. Error bars 

indicate ± one standard error; * indicates p < 0.05. ⊗ indicates a significant interaction 

effect (p < 0.05) of WT and TMS (TMS-46d/sham). Shaded areas indicate bootstrap-

estimated 95% confidence intervals for the regression estimates. 

Figure 4. On-judgement TMS alters the correlation between reaction time (RT) and 

wagered time (WT). No correlation was found between RT and WT in the domain-

comparison experiment (a). The Pearson correlation between RT and WT during the 

on-judgement phase was statistically significant for the TMS-46d condition (p < 0.001) 

but not significant for the TMS-sham condition (b). The correlations during the on-

wagering phase were not significant for either TMS condition (c). 
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Figure 5. On-judgement TMS distorts the trial-difficulty psychometric curve. 

Accuracy decreases with task difficulty (resolution difference; higher values indicate 

lower task difficulty). The lines are logistic regression fits for accuracy with resolution 

difference as a factor, calculated separately for the TMS-sham and TMS-46d conditions 

in the on-judgement phase (a) and on-wagering phase (b). WT decreased with task 

difficulty in correct trials and increased with task difficulty in incorrect trials in all control 

conditions (d-f), but this pattern was absent in the on-judgement phase of the TMS-46d 

condition (c). Shaded areas indicate bootstrap-estimated 95% confidence intervals for 

the regression estimates. 

Figure 6. Wagered time reflects monkeys’ task performance (correctness) in both 

memory and perception tasks. Difference in accuracy between unreached trials and 

reached trials in the perception (a) and memory tasks (b). Differences between the WTs 

of correct and incorrect trials for each monkey in the perception (c) and memory tasks 

(d). WT tracks response outcome (correct/incorrect) in both memory and perception 

tasks. The lines are logistic regression fits for accuracy with WT as a factor. The WT bin 

size was set to 1 s; coloured lines indicate kernel density estimation (e). Error bars 

indicate ± one standard error; * indicates p < 0.05. Shaded areas indicate bootstrap-

estimated 95% confidence intervals for the regression estimates. 

Figure 7. Domain-specific metacognition in monkeys. Task performance in terms of 

percentage correct was correlated across perceptual and memory domains (a). In 

contrast, their metacognitive efficiency was not correlated across perceptual and 

memory domains (b). The DGI quantifies the similarity between their metacognitive 

efficiency scores in each domain. Greater DGI scores indicate less metacognitive 
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Figure 6 
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Figure 7 
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