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Summary  1 

Some theories of human cultural evolution posit that humans have social-specific learning 2 

mechanisms that are adaptive specialisations moulded by natural selection to cope with the 3 

pressures of group living. However, the existence of neurochemical pathways that are specialised for 4 

learning from social information and from individual experience is widely debated. Cognitive 5 

neuroscientific studies present mixed evidence for social-specific learning mechanisms: some studies 6 

find dissociable neural correlates for social and individual learning whereas others find the same 7 

brain areas and, dopamine-mediated, computations involved in both. Here we demonstrate that, 8 

like individual learning, social learning is modulated by the dopamine D2 receptor antagonist 9 

haloperidol when social information is the primary learning source, but not when it comprises a 10 

secondary, additional element. Two groups (total N = 43) completed a decision-making task which 11 

required primary learning, from own experience, and secondary learning from an additional source. 12 

For one group the primary source was social, and secondary was individual; for the other group this 13 

was reversed. Haloperidol affected primary learning irrespective of social/individual nature, with no 14 

effect on learning from the secondary source. Thus, we illustrate that neurochemical mechanisms 15 

underpinning learning can be dissociated along a primary-secondary but not a social-individual axis. 16 

These results resolve conflict in the literature and support an expanding field showing that, rather 17 

than being specialised for particular inputs, neurochemical pathways in the human brain can process 18 

both social and non-social cues and arbitrate between the two depending upon which cue is 19 

primarily relevant for the task at hand.  20 

 21 
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 3 

Introduction 24 

 25 

The complexity and sophistication of human learning is increasingly appreciated. Enduring 26 

theoretical models illustrate that learners utilise “prediction errors” to refine their predictions of 27 

future states (e.g. Rescorla-Wagner and temporal difference models; O’Doherty et al., 2003; 28 

Rescorla & Wagner, 1972; Schultz et al., 1997; Sutton & Barto, 2018). An explosion of studies, 29 

however, illustrates that this simple mechanism lies at the heart of more complex and sophisticated 30 

systems that enable humans (and other species) to learn from, keep track of the utility of, and 31 

integrate information from, multiple learning sources (Behrens et al., 2009; Biele et al., 2009; Li et 32 

al., 2011) meaning that one can learn from many sources of information simultaneously (Daw et al., 33 

2006). Such complexity enables individuals to, for example, rank colleagues according to the utility 34 

of their advice and learn primarily from the top-ranked individual (Kendal et al., 2018; Laland, 2004; 35 

Morgan et al., 2012; Rendell et al., 2011) whilst also tracking the evolving utility of advice from 36 

others (Behrens et al., 2008; Biele et al., 2011). Recent studies have further revealed that learning 37 

need not rely solely on directly experienced associations, since one can also learn via inference 38 

(Bromberg-Martin et al., 2010; Dolan & Dayan, 2013; Jones et al., 2012; Langdon et al., 2018; Moran 39 

et al., 2021; Sadacca et al., 2016; Sharpe & Schoenbaum, 2018). This growing appreciation of the 40 

complexity and sophistication of human learning may help to explain contradictory findings in 41 

various fields. Here we focus on the field of social learning. 42 

 43 

The existence in the human brain of neural and/or neurochemical pathways that are specialised for 44 

learning from social information and from individual experience respectively is the topic of much 45 

debate (Heyes, 2012; Heyes & Pearce, 2015). Indeed, the claim that humans have social-specific 46 

learning mechanisms that are adaptive specialisations moulded by natural selection to cope with the 47 

pressures of group living, lies at the heart of some theories of cultural evolution (Kendal et al., 2018; 48 

Morgan et al., 2012; Templeton et al., 1999). Since cultural evolution is argued to be specific to 49 

humans (Richerson & Boyd, 2005), establishing whether humans do indeed possess social-specific 50 

learning mechanisms has attracted many scholars with its promise of elucidating the key ingredient 51 

that “makes us human”. 52 

 53 

Cognitive neuroscience offers tools that are ideally suited to investigating whether the mechanisms 54 

underpinning social learning (learning from others), do indeed differ from those that govern learning 55 

from one’s individual experience (individual learning). Cognitive neuroscientific studies, however, 56 

present mixed evidence for social-specific learning mechanisms. Some studies find dissociable neural 57 
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 4 

correlates for social and individual learning (Apps et al., 2016; Behrens et al., 2008; Hill et al., 2016; 58 

Zhang & Gläscher, 2020). For example, a study by Behrens and colleagues (2008) reported that 59 

whilst individual learning was associated with activity in dopamine-rich regions such as the striatum 60 

that are classically associated with reinforcement learning, social learning was associated with 61 

activity in a dissociable network that instead included the anterior cingulate cortex gyrus (ACCg) and 62 

temporoparietal junction. Further supporting this dissociation, studies have revealed correlations 63 

between personality traits, such as social dominance (Cook et al., 2014) and dimensions of 64 

psychopathy (Brazil et al., 2013) and social, but not individual, learning; as well as atypical social, but 65 

not individual, prediction error-related signals in the ACCg in autistic individuals (Balsters et al., 66 

2017). Together these studies support the existence of social-specific learning mechanisms. In 67 

contrast, other studies have reported that the same computations, based on the calculation of 68 

prediction error, are involved in both social and individual learning (Diaconescu et al., 2014), and 69 

that social learning is associated with activity in dopamine-rich brain regions typically linked to 70 

individual learning (Biele et al., 2009; Braams et al., 2014; Campbell-Meiklejohn et al., 2010; Delgado 71 

et al., 2005; Diaconescu et al., 2017; Klucharev et al., 2009). Diaconescu and colleagues (2017), for 72 

example, observed that social learning-related prediction errors covaried with naturally occurring 73 

genetic variation that affected the function of the dopamine system. Further supporting this overlap 74 

between social and individual learning, behavioural studies have observed that social and individual 75 

learning are subject to the same contextual influences. For example, Tarantola and colleagues (2017) 76 

observed that prior preferences bias social learning, just as they do individual learning. Such findings 77 

promote the view that ‘domain-general’ learning mechanisms underpin social learning: we learn 78 

from other people in the same way that we learn from any other stimulus in our environment 79 

(Heyes, 2012; Heyes & Pearce, 2015). That is, there are no social-specific learning mechanisms. 80 

 81 

One potential resolution to this conflict in the literature hinges on i) an appreciation of the 82 

complexity and sophistication of human learning systems and ii) a difference in study design 83 

between tasks that have, and have not, found evidence of social-specific mechanisms. In studies, 84 

that have linked social learning with the dopamine-rich circuitry typically associated with individual 85 

learning (and which are therefore consistent with the domain general view), participants have been 86 

encouraged to learn primarily from social information. Indeed, in many cases the social source has 87 

been the sole information source (Campbell-Meiklejohn et al., 2017; Diaconescu et al., 2017; 88 

Klucharev et al., 2009). For example, in the paradigm employed by Diaconescu and colleagues (2014, 89 

2017), participants were required to choose between a blue and green stimulus and were provided 90 

with social advice which was sometimes valid and sometimes misleading; on each trial, participants 91 
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 5 

received information about the time-varying probability of reward associated with the blue and 92 

green stimuli, thus participants did not have to rely on their own individual experience of blue/green 93 

reward associations and could fully dedicate themselves to social learning. That is, participants did 94 

not learn from multiple sources (i.e., social information and individual experience); participants only 95 

engaged in social learning. In contrast, in studies where social learning has been associated with 96 

neural correlates outside of the dopamine-rich regions classically linked to individual learning (and 97 

which are therefore consistent with the domain specific view), social information has typically 98 

comprised a secondary, additional source (Behrens et al., 2008; Cook et al., 2014). Typically, the non-99 

social (individual) information is presented first to participants, represented in a highly salient form, 100 

and is directly related to the feedback information. The social information, in contrast, is presented 101 

second, is typically less salient in form, and is not directly related to the feedback information. For 102 

example, in the Behrens et al. study (2008) (and in our own work employing this paradigm (Cook et 103 

al., 2014, 2019)) participants were required to choose between two, highly salient, blue and green 104 

boxes to accumulate points. The boxes were the first stimuli that participants saw on each trial. 105 

Outcome information came in the form of a blue or green indicator thus primarily informing 106 

participants about whether they had made the correct choice on the current trial (i.e., if the 107 

outcome indicator was blue, then the blue box was correct). In addition, each trial also featured a 108 

thin red frame, which represented social information, surrounding one of the two boxes. The red 109 

frame was the second stimulus that participants saw on each trial and indirectly informed 110 

participants about the veracity of the frame: if the outcome was blue AND the frame surrounded the 111 

blue box, then the frame was correct. In such paradigms, participants must learn from multiple 112 

sources of information with one source taking primary status over the other. Consequently, in 113 

studies that have successfully dissociated social and individual learning the two forms of learning 114 

differ both in terms of social nature (social or non-social) and rank (primary versus secondary status). 115 

Thus, it is unclear which of these two factors accounts for the dissociation. 116 

 117 

The current study tests whether social and individual learning share common neurochemical 118 

mechanisms when they are matched in terms of (primary versus secondary) status. Given its 119 

acclaimed role in learning (Glimcher & Bayer, 2005; Schultz, 2007), we focus specifically on the role 120 

of the neuromodulator dopamine. Drawing upon recent studies illustrating the complexity and 121 

sophistication of human learning (Daw et al., 2005; Gläscher et al., 2011; Moran et al., 2021) we 122 

hypothesise that pharmacological modulation of the human dopamine system will dissociate 123 

learning from two sources of information along a primary versus secondary, but not along a social 124 

versus individual axis. In other words, we hypothesise that social learning relies upon the dopamine-125 
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 6 

rich mechanisms that also underpin individual learning when social information is the primary 126 

source, but not when it comprises a secondary, additional element. Such a finding would offer a 127 

potential resolution to the aforementioned debate concerning the existence of social-specific 128 

learning mechanisms.  129 

 130 

Preliminary support for our hypothesis comes from three lines of work. First, studies have 131 

convincingly argued for flexibility within learning systems. For example, in a study by Daw and 132 

colleagues (2006), participants tracked the utility of four uncorrelated bandits, with particular brain 133 

regions - such as the ventromedial prefrontal cortex - consistently representing the value of the top-134 

ranked bandit, even though the identity of this bandit changed over time. Second, studies are 135 

increasingly illustrating the flexibility of social brain networks (Ereira et al., 2020; Garvert et al., 136 

2015). The medial prefrontal cortex (mPFC), for example, is not - as was once thought - specialised 137 

for representing the self; if the concept of ‘other’ is primarily relevant for the task at hand, then the 138 

mPFC will prioritise representation of other over self (Cook, 2014; Nicolle et al., 2012). Finally, in a 139 

recent study (Cook et al., 2019), we provided preliminary evidence of a catecholaminergic (i.e. 140 

dopaminergic and noradrenergic) dissociation between learning from primary and secondary, but 141 

not social and individual, sources of information. In this work (Cook et al., 2019) we employed a 142 

between-groups design, wherein both groups completed a version of the social learning task 143 

adapted from Behrens and colleagues (2008; described above). For one group the secondary source 144 

was social in nature (social group). For the non-social group, the secondary source comprised a 145 

system of rigged roulette wheels and was thus non-social in nature. We observed that, in 146 

comparison to placebo, the catecholaminergic transporter blocker methylphenidate only affected 147 

learning from the primary source - which, in this paradigm, always comprised participant’s own 148 

individual experience. Methylphenidate did not affect learning from the secondary source, 149 

irrespective of its social or non-social nature. That is, we found positive evidence supporting a 150 

dissociation between primary and secondary learning but no evidence to support a distinction 151 

between learning from social and non-social sources. Nevertheless, since we did not observe an 152 

effect of methylphenidate on learning from the (social or non-social) secondary source of 153 

information this study was unable to provide positive evidence of shared mechanisms for learning 154 

from social and non-social sources. If it is truly the case that domain-general (neurochemical) 155 

mechanisms underpin social learning, it should follow that pharmacological manipulations that 156 

affect individual learning when individual information is the primary source also affect social learning 157 

when social information is the primary source.  158 
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The current (pre-registered) experiment tested this hypothesis by orthogonalizing social versus 159 

individual and primary versus secondary learning. We perturbed learning using the dopamine D2 160 

receptor antagonist haloperidol, in a double-blind, counter-balanced, placebo-controlled design. To 161 

test whether pharmacological manipulation of dopamine dissociates learning along a primary-162 

secondary and/or a social-individual axis, we developed a novel between-groups manipulation 163 

wherein one group of participants learned primarily from social information and could supplement 164 

this learning with their own individual experience, and a second group learned primarily from 165 

individual experience and could supplement this learning with socially learned information. To 166 

foreshadow our results, we demonstrate that haloperidol specifically affects learning from the 167 

primary (not secondary) source of information. Bayesian statistics confirmed that the effects of 168 

haloperidol were comparable between the groups thus, haloperidol affected individual learning 169 

when individual information was the primary source and, to the same extent, social learning when 170 

social information was the primary source. Our data support an expanding field showing that, rather 171 

than being fixedly specialised for particular inputs, neurochemical pathways in the human brain can 172 

process both social and non-social cues and arbitrate between the two depending upon which cue is 173 

primarily relevant for the task at hand (Cook, 2014; Garvert et al., 2015; Nicolle et al., 2012). 174 

 175 

Results  176 

 177 

Participants (n = 43; aged 19-38, mean (standard error) 𝑥̅(𝜎𝑥̅) = 25.950 (0.970); 24 males, 19 178 

females; see Methods) completed an adapted version of the behavioural task originally developed 179 

by Behrens and colleagues (Behrens et al., 2008). Participants were randomly allocated to one of 180 

two groups. Participants in the individual-primary group (n = 21) completed the classic version of 181 

this task (Figure 1A (Behrens et al., 2008)) in which they were required to make a choice between a 182 

blue and green box in order to win points. A red frame (the social information), which represented 183 

the most popular choice made by a group of four participants who had completed the task 184 

previously, surrounded either the blue or green box on each trial and participants could use this to 185 

help guide their choice. The actual probability of reward associated with the blue and green boxes 186 

and the probability that the red frame surrounded the correct box varied according to uncorrelated 187 

pseudo-randomised schedules (Figure S1; Appendix 2). For the individual-primary group, the 188 

individual information (blue and green stimuli) was primary, and the social information (red 189 

stimulus) was secondary on the basis that the blue/green stimuli appeared first on the screen, were 190 

highly salient (large boxes versus a thin frame) and were directly related to the feedback 191 

information. That is, after making their selection, participants saw a small blue or green box which 192 
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 8 

primarily informed them whether a blue or green choice had been rewarded on the current trial. 193 

From this information the participant could, secondarily, infer whether the social information (red 194 

frame) was correct or incorrect.  195 

 196 

Our social-primary group (n = 22; groups matched on age, gender, body mass index (BMI) and verbal 197 

working memory span (Table 1)) completed an adapted version of this task (Figure 1B) wherein the 198 

social information (red stimulus) was primary, and the individual information (blue/green stimuli) 199 

was secondary. Participants first saw two placeholders; one empty and one containing a red box 200 

which indicated the social information. Subsequently, a thin green and a thin blue frame appeared 201 

around each placeholder. Participants were told that the red box represented the group’s choice. 202 

They were then required to choose whether to go with the social group (red box) or not. After 203 

making their choice a tick or cross appeared which primarily informed participants whether going 204 

with the social information was the correct option. From this they could, secondarily, infer whether 205 

the blue or green frame was correct. Consequently, for the social-primary group the social 206 

information was primary on the basis that it appeared first on the screen, was highly salient (a large 207 

red box versus thin green/blue frames) and was directly related to the feedback information.  208 

 209 

Participants in both the individual-primary and social-primary groups performed 120 trials of the 210 

task on each of two separate study days. To perturb learning, on one day participants took 2.5mg of 211 

haloperidol (HAL), previously shown to affect learning (Pessiglione et al., 2006) via multiple routes 212 

including perturbation of phasic dopamine signalling (Schultz, 2007; Schultz et al., 1997) facilitated 213 

by action at mesolimbic D2 receptors (Camps et al., 1989; Grace, 2002; Lidow et al., 1991). On the 214 

other day, they took a placebo (PLA) under double-blind conditions, with the order of the days 215 

counterbalanced. 43 participants took part in at least one study day, 33 participants completed both 216 

study days. 2 participants performed at below chance level accuracy and were excluded from further 217 

analysis. We present an analysis of data from the 31 participants who completed both study days 218 

with above chance accuracy (Table 1) in the main text of this manuscript, which we complement 219 

with a full analysis of all 41 datasets in Appendix 4i. 220 
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 9 

Figure 1. Behavioural task 

 

 

 

 

 

 

 

 

 

 

 

 

 

Social information is the primary source of learning for participants in the social-primary group 221 

Our novel manipulation orthogonalized primary versus secondary and social versus individual 222 

learning. To validate our manipulation, we tested whether participants in both the individual-223 

primary and social-primary group learned in a more optimal fashion from the primary versus 224 

secondary source of information in our placebo condition. For this validation analysis we used a 225 

Bayesian learner model to create two optimal models (1) an optimal primary learner, and (2) an 226 

optimal secondary learner (Methods). Subsequently we regressed both models against participants’ 227 
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Figure 1. Behavioural task. A. Individual-primary group. Participants selected between a blue and a green 

box to gain points. On each trial, the blue and green boxes were presented first. After 1-4 seconds (s), one 

of the boxes was highlighted with a red frame, representing the social information. After 0.5–2s, a question 

mark appeared, indicating that participants were able to make their response. Response was indicated by 

a silver frame surrounding their choice. After a 1-3s interval, participants received feedback in the form of 

a green or blue box in the middle of the screen. B. Social-primary group. Participants selected between 

going with, or against a red box, which represented the social information. On each trial, the red box was 

displayed. After 1-4s, blue and green frames appeared. After 0.5–2s, a question mark appeared, indicating 

that participants were able to make their response. Response was indicated by a silver frame surrounding 

their choice. After a 1-3s interval, participants received feedback in the form of a tick or a cross. This 

feedback informed participants if going with the group was correct or incorrect, from this feedback 

participants could infer whether the blue or green frame was correct. C. Example of pseudo-randomised 

probabilistic schedule. The probability of reward varied according to probabilistic schedules, including 

stable and volatile blocks for both the probability of the blue box/frame being correct (top) and the 

probability of the red (social) box/frame being correct (bottom).  
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choice data, resulting in two βoptimal values capturing the extent to which a participant made choices 228 

according to the optimal primary, and optimal secondary learner models respectively. βoptimal values 229 

were submitted to a repeated-measures ANOVA with factors information source (primary, 230 

secondary) and group (social-primary, individual-primary), revealing main effects of information 231 

source and group. βoptimal values were significantly higher for the primary information (𝑥̅(𝜎𝑥̅) = 0.872 232 

(0.101)), compared with secondary information source (𝑥̅(𝜎𝑥̅) = 0.438 (0.101); t(30) = 2.568, pholm = 233 

0.016). βoptimal values were also significantly higher for the social-primary (𝑥̅(𝜎𝑥̅) = 0.833 (0.078)), 234 

compared with the individual-primary group (𝑥̅(𝜎𝑥̅) = 0.477 (0.078); t(30) = 3.228, pholm = 0.003) 235 

(Figure 2). Crucially, we did not observe a significant interaction between information and group (F 236 

(1,29) = 0.067, p = 0.797), meaning that participants’ choices were more influenced by the primary 237 

information source, regardless of whether it was social or individual in nature. Furthermore, βoptimal 238 

values for primary information did not differ between groups (t(29) = -1.211, p = 0.236). Note that, 239 

βoptimal weights for both information sources were significantly greater than zero (primary: t (30) = 240 

5.534, p < 0.001; secondary: t (30) = 4.789, p < 0.001) thus our optimal models of information use 241 

explained a significant amount of variance in the use of both primary and secondary learning 242 

sources. These data show that, irrespective of social (or individual) nature, participants learned in a 243 

more optimal fashion from the “primary” (relative to secondary) learning source, which was first in 244 

the temporal order of events, highly salient and directly related to the reward feedback.  245 
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Figure 2. Beta weights (β_optimal)  

 

 

 

 

 

 

Haloperidol reduces the rate of learning from primary sources  246 

We hypothesed that both social and individual learning would be modulated by administration of 247 

the dopamine D2 receptor antagonist haloperidol when they were the primary source of learning, 248 

but not when they comprised the secondary source. To test this hypothesis we fitted an adapted 249 

Rescorla-Wagner (RW) learning model (Rescorla & Wagner, 1972) to participants’ choice data, 250 

enabling us to estimate various parameters that index learning from primary and secondary sources 251 

of information, for HAL and PLA conditions, for participants in the social-primary and individual-252 

primary groups. Our adapted RW model provided estimates, for each participant, of 𝛼, β, and ζ. The 253 

learning rate (𝛼) controls the weighting of prediction errors on each trial. A high 𝛼 favours recent 254 

over (outdated) historical outcomes, while a low 𝛼 suggests a more equal weighting of recent and 255 

more distant trials. Since our pseudo-random schedules included stable phases (where the reward 256 

probability associated with a particular option was constant for > 30 trials), and volatile phases 257 

Figure 2. Beta weights (β_optimal) for primary and secondary information. Data points indicate 

estimated 𝛽_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 weights for individual participants (n = 31, placebo data), bold point indicates 

the mean, bold line indicates standard error of the mean (1 SEM), * indicates statistical significance 

(p < 0.05).  
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(where reward probabilities changed every 10-20 trials), 𝛼 was estimated separately for volatile and 258 

stable phases (for both primary and secondary learning) to accord with previous research (Behrens 259 

et al., 2007; Cook et al., 2019; Manning et al., 2017). 𝛽 captures the extent to which learned 260 

probabilities determine choice, with a larger 𝛽 meaning that choices are more deterministic with 261 

regard to the learned probabilities. ζ represents the relative weighting of primary and secondary 262 

sources of information, with higher values indicating a bias towards the over-weighting of secondary 263 

relative to primary (see Methods and Appendix 3 for further details of the model, model fitting and 264 

model comparison). 265 

 266 

To test the hypothesis that haloperidol would affect learning from the primary information source 267 

only, regardless of its social/individual nature, we employed three separate linear mixed effects 268 

models, allowing analysis of the effects of fixed factors information source (primary, secondary), 269 

drug (HAL, PLA), environmental volatility (volatile, stable) and group (social-primary, individual-270 

primary) on our three dependent variables (𝛼, β, ζ) while controlling for inter-individual differences. 271 

Including pseudo-randomisation schedule as a factor in all analyses did not change the pattern of 272 

results. A repeated measures ANOVA (RM-ANOVA) on mixed effects model coefficients revealed no 273 

main/interaction effect(s) on β or ζ values (all p > 0.05). In contrast, for 𝛼 we observed a drug by 274 

information interaction (F (1, 203) = 6.852, p = 0.009, beta estimate (𝜎𝑥̅) = 0.026 (0.010), t = 2.62, 275 

confidence interval [CI] [0.010 – 0.050]) (Figure 3). There were no significant main effects of drug (F 276 

(1, 258) = 0.084, p = 0.772), group (F (1, 39) = 3.692, p = 0.062) or volatility (F (1, 258) = 0.084, p = 277 

0.772) on 𝛼 values, nor any other significant interactions involving drug (all p-values > 0.05, see 278 

Appendix 4v-vi for analysis including schedule, session and working memory). Planned contrasts 279 

showed that, whilst under PLA 𝛼primary (𝑥̅(𝜎𝑥̅) = 0.451 (0.025)) was significantly greater than 𝛼secondary 280 

(𝑥̅(𝜎𝑥̅) = 0.370 (0.025); z(30) = 2.861, p = 0.004), this was not the case under HAL (𝛼primary 𝑥̅(𝜎𝑥̅) = 281 

0.393 (0.025), 𝛼secondary 𝑥̅(𝜎𝑥̅) = 0.417(0.025); z(30) = -0.843, p = 0.400). Furthermore, 𝛼primary was 282 

decreased under HAL relative to PLA (z (30) = -2.050, p = 0.040). Although 𝛼secondary was, in contrast, 283 

numerically increased under HAL (𝑥̅(𝜎𝑥̅) = 0.417 (0.025) relative to PLA (𝑥̅(𝜎𝑥̅) = 0.370 (0.025), this 284 

difference was not significant (z (30) = 1.654, p = 0.098). This drug x information interaction 285 

therefore illustrated that whilst haloperidol significantly reduced 𝛼primary it had no significant effect 286 

on 𝛼secondary. Furthermore, under PLA there was a significant difference between αprimary and αsecondary, 287 

which was nullified by haloperidol administration. Consequently, under placebo participants’ rate of 288 

learning was typically higher for learning from the primary relative to the secondary source, 289 

however, under the D2 receptor antagonist haloperidol the rate of learning from the primary source 290 
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was reduced and thus there was no significant difference in the rate of learning from primary and 291 

secondary sources. 292 

 

Figure 3. Learning rate estimates  

 

 

 

 

 

 

 

Haloperidol reduces the rate of learning from a primary source irrespective of its social or 293 

individual nature 294 

Our primary hypothesis was that haloperidol would modulate the rate of learning from the primary 295 

source irrespective of its social or individual nature. This would be evidenced as an interaction 296 

between drug and (primary versus secondary) information source (see above) in the absence of an 297 

interaction between drug, information source and group (social-primary versus individual-primary). 298 

Crucially, we observed no significant interaction between drug, information source and group (F (1, 299 

234) = 0.029, p = 0.866). To further assess whether drug effects on primary information differed as a 300 

function of group, results were also analysed within a Bayesian framework, using JASP software 301 

Figure 3. Learning rate (𝛼) estimates for learning from primary and secondary information. There was a 

significant interaction between information and drug, with 𝛼 estimates significantly lower under haloperidol 

(orange), relative to placebo (purple), for primary information only. Data points indicate square-root 

transformed 𝛼 estimates for individual participants (n = 31), boxes = standard error of the mean, shaded 

region = standard deviation, HAL = haloperidol, PLA = placebo, * indicates statistical significance (p < 0.05). 
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(JASP Team (2020)). A Bayes exclusion factor (BF excl), representing the relative likelihood that a 302 

model without a drug x information x group interaction effect could best explain the observed data, 303 

was calculated (Dienes, 2014). Values of 3–10 are taken as moderate evidence in favour of the null 304 

hypotheses that there is no drug x information x group interaction (Lee & Wagenmakers, 2013) with 305 

values greater than 10 indicating strong evidence. The BFexcl value was equal to 7.516, providing 306 

moderate evidence in favour of the null hypotheses that there is no drug x information x group 307 

interaction. Consequently, results confirmed our hypothesis: haloperidol perturbed learning from 308 

the primary but not the secondary source, irrespective of social or individual nature. 309 

 310 

Haloperidol brings αprimary estimates within the optimal range 311 

To assess whether the effects of haloperidol on αprimary are harmful or beneficial with respect to 312 

performance we first explored drug effects on accuracy (see Appendix 4ii for a detailed analysis 313 

including randomisation schedule). There was no significant difference in accuracy between 314 

haloperidol (𝑥̅(𝜎𝑥̅) = 0.600 (0.013)), and placebo (𝑥̅(𝜎𝑥̅) = 0.611 (0.010); F (1,29) = 0.904, p = 0.349, 315 

ηp
2 = 0.030) conditions.  316 

 317 

The lack of a significant main effect of drug on accuracy was somewhat surprising given the 318 

significant (interaction) effect on learning rates, i.e., a decrease in αprimary under haloperidol relative 319 

to placebo. To investigate whether haloperidol resulted in learning rates that were less, or 320 

alternatively more, optimal we compared our estimated 𝛼 values with optimal 𝛼 estimates. Since 321 

trial-wise outcomes were identical to those utilised by Cook et al (Cook et al., 2019), optimal values 322 

are also identical and are described here for completeness. An optimal learner model, with the same 323 

architecture and priors as the model employed in the current task, was fit to 100 synthetic datasets, 324 

resulting in average optimal learning rates: 𝛼optimal_primary_stable = 0.16, 𝛼optimal_primary_volatile = 0.21, 325 

𝛼optimal_secondary_stable = 0.17, 𝛼optimal_secondary_volatile = 0.19. Scores representing the difference between 326 

(untransformed) 𝛼 estimates and optimal 𝛼 scores were calculated (𝛼𝑑𝑖𝑓𝑓= 𝛼 −  𝛼optimal). A linear 327 

mixed model analysis on 𝛼𝑑𝑖𝑓𝑓  values with factors group, drug, volatility and information source and 328 

subject as a random factor, was conducted. A RM-ANOVA (factors: drug, information, volatility, 329 

group) on model coefficients revealed an interaction between drug and information source (F (1, 330 

203) = 4.895, p = 0.028) (Figure 4). Separate RM-ANOVAs were conducted for primary and secondary 331 

information. For primary information, a main effect of drug was observed on difference scores (F (1, 332 

29) = 51.740, p < 0.001, ηp
2 = 0.641), with 𝛼𝑑𝑖𝑓𝑓_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

significantly higher under PLA (𝑥̅(𝜎𝑥̅) = 0.238 333 

(0.026)) compared with HAL (𝑥̅(𝜎𝑥̅) = 0.011 (0.026)). For secondary information, 𝛼𝑑𝑖𝑓𝑓_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  did 334 

not differ between treatment conditions (p > 0.05). In sum, learning rates for learning from the 335 
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primary source were higher than optimal under placebo, with 𝛼𝑑𝑖𝑓𝑓_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 
significantly differing 336 

from 0 (one-sample t test; t(30) = 2.377, p = 0.024). Haloperidol reduced learning rates that 337 

corresponded to learning from the primary source, thus bringing them within the optimal range, 338 

with 𝛼𝑑𝑖𝑓𝑓_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 
not significantly differing from 0 under haloperidol (one-sample t test; t(30) = 339 

0.412, p = 0.683). Consequently, under haloperidol relative to placebo, learning rates were more 340 

optimal when learning from primary sources. 341 

 

Figure 4. Learning rate estimates compared with optimal learning rates.  

 

 

 

 

 

 

 

To explore whether α values were in some way related to accuracy scores we used two separate 342 

backwards regression models, for PLA and HAL conditions separately, with αprimary and αsecondary as 343 

predictors and accuracy as the dependent variable (see Appendix 4iii for details of a regression 344 

model with all model parameters). PLA accuracy was predicted by αsecondary though this model only 345 

approached significance (R = 0.121, F (1,29) = 3.981, p = 0.055). Under HAL however, accuracy was 346 

Figure 4. Learning rate estimates minus optimal learning rates. There was a significant interaction 

between information and drug, with αprimary scores significantly higher than optimal estimates under 

placebo but not under haloperidol. Data points indicate 𝛼 −  𝛼optimal values for individual participants (n 

= 31), boxes = standard error of the mean, shaded region = standard deviation, HAL = haloperidol, PLA = 

placebo, * indicates statistical significance (p < 0.05). 
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predicted by a model with αsecondary and αprimary (R = 0.450, F (2,28) = 3.560, p = 0.042), with αprimary a 347 

significant positive predictor of accuracy (𝛽 = 0.404, p = 0.028). Removing αsecondary as a predictor did 348 

not significantly improve the fit of this model (R2change = 0.014, F change (1,29) = 0.495, p = 1.000). 349 

When combined with our optimality analysis, these results suggest that under placebo αprimary was 350 

outside of the optimal range of α values and thus accuracy was primarily driven by αsecondary. 351 

However, haloperidol reduced αprimary, bringing it within the optimal range. Thus, under haloperidol 352 

accuracy was driven by both αprimary and αsecondary.  353 

 354 

In sum, relative to placebo, the dopamine D2 receptor antagonist haloperidol significantly decreased 355 

learning rates relating to learning from primary, but not secondary sources of information, likely via 356 

mediation of phasic dopaminergic signalling (see Appendix 4iv). Interestingly, learning rates for 357 

learning from the primary source were higher than optimal under placebo and haloperidol brought 358 

them within the optimal range. Consequently, both primary and secondary learning contributed to 359 

accuracy under haloperidol but not under placebo. Importantly, the effects of haloperidol did not 360 

vary as a function of group allocation which dictated whether the primary source was of social or 361 

individual nature. A Bayesian analysis confirmed that we had moderate evidence to support the 362 

conclusion that there was no interaction between drug, learning source and group. These data, thus, 363 

illustrate a dissociation along the primary-secondary but not social-individual axis.  364 

 365 

Discussion  366 

 367 

The current study tested the hypothesis that social and individual learning share common 368 

neurochemical mechanisms when they are matched in terms of (primary versus secondary) status. 369 

Specifically, we predicted that haloperidol would perturb learning from the primary but not the 370 

secondary source, irrespective of social or individual nature. Supporting our hypothesis, we observed 371 

an interaction between drug and information source (social versus individual) such that under 372 

haloperidol (compared to placebo) participants exhibited reduced learning rates with respect to 373 

learning from the primary, but not the secondary, source of information. Crucially, we did not 374 

observe an interaction between drug, information source and group (social-primary versus 375 

individual-primary). Bayesian statistics revealed that, given the observed data, a model that excludes 376 

this interaction is 7.5 times more likely than models which include the interaction. 377 

 378 

An important question concerns whether the lack of a dopaminergic dissociation between social and 379 

individual learning could be explained by participants not fully appreciating the social nature of the 380 
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red shape (the social information source). In opposition to this, we argue that since our participants 381 

could not commence the task until reaching 100% accuracy in a pre-task quiz, which questioned 382 

participants about the social nature of the red shape, we can be confident that all participants knew 383 

that the red shape indicated information from previous participants. Participants also completed a 384 

post-task questionnaire (Appendix 5), which required them to reflect upon the extent to which their 385 

decisions were influenced by the social (red shape) and individual (blue/green shapes) information. 386 

The individual-primary and social-primary groups did not differ in their beliefs about the extent to 387 

which they were influenced by these two sources of information. Furthermore, in our previous work, 388 

using the same social manipulation, we demonstrated that the personality trait social dominance 389 

significantly predicts social, but not individual, learning (Cook et al., 2014). Thus, illustrating that 390 

participants treat the social information differently from the non-social information in this type of 391 

paradigm. Finally, based on previous studies, we argue that even with a more overtly social 392 

manipulation it is highly likely that social learning would still be perturbed by dopaminergic 393 

modulation when social information is the primary source. Indeed, in a study by Diaconescu et 394 

al.(2017) social information was represented by a video of a person indicating one of the two 395 

options. Even with this overtly social stimulus, Diaconescu et al. still observed that social learning 396 

covaried with genetic polymorphisms that affect the functioning of the dopamine system. 397 

 398 

Our results comprise an important contribution to the debate concerning the existence of social-399 

specific learning mechanisms. We find that, like individual learning, social learning is modulated by a 400 

dopaminergic manipulation when it is the primary source of information. This result marries well 401 

with previous studies that have linked social learning with dopamine-rich mechanisms when the 402 

social source has been the primary (or in many cases the sole) information source (Campbell-403 

Meiklejohn et al., 2017; Diaconescu et al., 2017; Klucharev et al., 2009). Our results are also 404 

consistent with studies that have associated social learning with different neural correlates, outside 405 

of the dopamine-rich regions classically linked to individual learning, when it is a secondary source of 406 

information (Behrens et al., 2008; Hill et al., 2016; Zhang & Gläscher, 2020). Our data suggest that 407 

social and individual learning share common dopaminergic mechanisms when they are the primary 408 

learning source and that previous dissociations between these two learning types may be more 409 

appropriately thought of as dissociations between learning from a primary and secondary source. 410 

Extant studies (e.g. Cook et al., 2019) were not able to illustrate the importance of the primary 411 

versus secondary distinction because they did not fully orthogonalize primary versus secondary and 412 

social versus individual learning.  413 

 414 
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Though our results suggest shared neurochemical mechanisms for social and individual learning 415 

when they are matched in status, it is, nevertheless, essential to highlight that it does not follow that 416 

there are no dimensions along which social learning may be dissociated from individual learning. For 417 

instance, it is possible that although social and individual learning are affected by dopaminergic 418 

modulation - when they are the primary source - there are differences in the location of neural 419 

activity that could be revealed by neuroimaging. For instance, although social and individual learning 420 

are both associated with activity within the striatum (Burke et al., 2010; Cooper et al., 2012), social-421 

specific activation patterns have been observed in other brain regions, including the temporoparietal 422 

junction (Behrens et al., 2008; Lindström et al., 2018) and the gyrus of the anterior cingulate cortex 423 

(Behrens et al., 2008; Hill et al., 2016; Zhang & Gläscher, 2020). Such a location-based dissociation 424 

requires further empirical investigation as well as further consideration of the possible functional 425 

significance of such location-based differences, if they are indeed present when primary versus 426 

secondary status is accounted for. Additionally, since we did not observe significant effects of 427 

haloperidol on learning from social or individual sources when they were secondary in status, it 428 

remains a logical possibility that social and individual learning can be neurochemically dissociated 429 

when they are the secondary source of information - though it is admittedly difficult to conceive of a 430 

parsimonious explanation for the existence of two neurochemical mechanisms for social and 431 

individual learning from secondary sources. Finally, it is possible that social and individual learning 432 

share common dopaminergic mechanisms when they are the primary source, but differentially 433 

recruit other neurochemical systems. For instance, some have argued that social learning may 434 

heavily rely upon serotonergic mechanisms (Crişan et al., 2009; Frey & McCabe, 2020; Roberts et al., 435 

2020). The abovementioned avenues should be further explored however, in the interim, it must be 436 

concluded that since existing studies have not controlled for primary versus secondary status, we do 437 

not currently have convincing evidence that social and individual learning can be dissociated in the 438 

human brain. 439 

 440 

Notably, our results reveal a clear dissociation between learning from primary and secondary 441 

sources. The effects of haloperidol on learning from the primary source are consistent with previous 442 

work. Non-human animal studies, have shown that phasic signalling of dopaminergic neurons in the 443 

mesolimbic pathway encodes reward prediction error signals (Schultz, 2007; Schultz et al., 1997). 444 

Since haloperidol has high affinity for D2 receptors (Grace, 2002), which are densely distributed in 445 

the mesolimbic pathway (Camps et al., 1989; Lidow et al., 1991), dopamine antagonists including 446 

haloperidol can affect phasic dopamine signals (Frank and O’Reilly, 2006) - either via binding at 447 

postsynaptic D2 receptors (which blocks the effects of phasic dopamine bursts), or via pre-synaptic 448 
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autoreceptors (which has downstream effects on the release and reuptake of dopamine and thus 449 

modulates bursting itself) (Benoit-Marand et al., 2001; Ford, 2014; Schmitz et al., 2003). Indeed a 450 

number of studies have shown that haloperidol can attenuate prediction error-related signals 451 

(Diederen et al., 2017; Haarsma et al., 2018; Menon et al., 2007; Pessiglione et al., 2006). In line with 452 

this, we observed that learning rates were lower under haloperidol. However, in our paradigm 453 

learning rates for learning from the primary source were higher than optimal under placebo, thus 454 

haloperidol had the beneficial effect of bringing learning rates closer to optimal. In sum, our results 455 

are in accordance with previous work demonstrating the importance of phasic dopamine D2-related 456 

signalling in learning from primary sources. 457 

 458 

Perhaps the most novel contribution of our work is that we here illustrate that, whilst dopaminergic 459 

modulation affects learning from the primary source, it does not significantly affect learning from 460 

the secondary source. Previous studies have illustrated that humans can learn - ostensibly 461 

simultaneously - from multiple sources of information and tend to organise this information in a 462 

hierarchical fashion such that the source which is currently of highest value has the greatest 463 

influence on a learner’s behaviour (Daw et al., 2006). Here we extend this work by showing that the 464 

primary source, at the top of the hierarchy, is more heavily influenced by modulation of the 465 

dopamine system, thus suggesting a graded involvement of the dopamine system according to a 466 

source’s status in the “learning hierarchy”. Extant studies (Daw et al., 2006) suggest that such 467 

learning hierarchies are flexible and can be rapidly remodelled according to a source’s current value. 468 

The success of our orthogonalization of social versus individual and primary versus secondary 469 

learning depended on a within-subjects design, wherein the status (primary or secondary) of the 470 

learning source varied only between participants. Although our study was therefore not optimised 471 

for studying the rapid remodelling of learning hierarchies, our results pave the way for future studies 472 

to investigate whether the impact of dopaminergic modulation of learning from a particular source 473 

quickly changes according to the source’s current status in the learning hierarchy.  474 

 475 

In sum, in previous paradigms that dissociate social and individual learning, the social information 476 

comprised a secondary or additional information source, differing from individual information both 477 

in terms of its social nature (social/individual) and status (secondary/primary). We here provide 478 

evidence that dissociable effects of dopaminergic manipulation on different learning types are 479 

better explained by primary versus secondary status, than by social versus individual nature. 480 

Specifically, we showed that, relative to placebo, haloperidol reduced learning rates relating to 481 

learning from the primary, but not secondary, source of information irrespective of social versus 482 
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individual nature. Results illustrate that social and individual learning share a common dependence 483 

on dopaminergic mechanisms when they are the primary learning source.  484 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470554
http://creativecommons.org/licenses/by/4.0/


 21 

Table I 485 

Participant information 486 

Note: SD refers to standard deviation, VWM refers to verbal working memory span, BMI refers to 487 

body mass index. Age, gender, BMI and VWM did not significantly differ between the groups.   488 

 
Individual-primary 

group 
 

(n = 15) 
 

Mean (SD) 

Social-primary 
group 

 
(n = 16) 

 
Mean (SD) 

 
 
 

t (1,29) 

 
 
 

X2 (1, N = 31) 

 
 
 

p 

      
Gender 
(n males: n 
females) 
 

7:8 8:8  
 

0.034 0.853 
 

Age  25.600 (5.448) 25.625 (4.745) 0.014  0.989 
  

  
   

VWM  80.333 (6.016) 76.354 (7.823) 1.580  0.125    
   

BMI 24.016 (2.807) 22.625 (2.606) 1.431   0.114 
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Materials and Methods 489 

 490 

Subjects 491 

Subjects (n = 43, aged 19 to 42 years, mean (SD) = 26 (6.3); 19 female) were recruited from the 492 

University of Birmingham and surrounding areas in Birmingham city, via posters, email lists and 493 

social media. Four participants dropped out of the study after completing the first day. A further five 494 

participants could not complete the second test day, due to university-wide closures and a 495 

restriction of data collection. In total, 43 participants completed one session, with 33 participants 496 

completing both test days. However, Bayes exclusion factors were reported for interactions of 497 

interest, to avoid the possibility of type 2 error. The study was in line with the local ethical guidelines 498 

approved by the local ethics committee (ERN_18_1588) and in accordance with the Helsinki 499 

Declaration of 1975. 500 

 501 

General procedure 502 

The study protocol was pre-registered (see Open Science Framework (OSF) https://osf.io/drmjb for 503 

study design and a priori sample size calculations). All participants attended a preliminary health 504 

screening session with a qualified clinician, followed by two test sessions with an interval of one to a 505 

maximum of four weeks between testing session. The health screening session, lasting 506 

approximately one hour, started with informed consent, followed by a medical screening. 507 

Participants were excluded from further participation if they met any of the exclusion criteria. 508 

Participants then completed a battery of validated questionnaire measures (see Appendix 1 for 509 

inclusion/exclusion criteria, questionnaire measures, medical symptoms, and mood ratings). Both 510 

test days (1-4 weeks post health screening) followed the same procedure, starting with informed 511 

consent, followed by a medical screening. Participants were then administered capsules (by a 512 

member of staff not involved in data collection) containing either 2.5 mg haloperidol (HAL) or 513 

placebo (PLA), in a double-blind, placebo-controlled, cross-over design. Participants were told to 514 

abstain from alcohol and recreational drugs in the 24 hours prior to testing and from eating in the 515 

two hours prior to capsule intake. 516 

 517 

1.5 hours after capsule intake, participants commenced a battery of behavioural tasks, including a 518 

probabilistic learning paradigm (Go-NoGo learning (Frank & O’Reilly, 2006)) and a measure of verbal 519 

working memory (Sternberg, 1969). The social learning task was started approximately 3 hours post-520 

capsule administration, within the peak of HAL blood plasma concentration. HAL dosage and 521 

administration times were in line with similar studies which demonstrated both behavioural and 522 
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psychological effects of haloperidol (Bestmann et al., 2014; Frank & O’Reilly, 2006). Both test days 523 

lasted approximately 5.5 hours in total, with participants starting at the same time of day for both 524 

sessions. Blood pressure, mood and medical symptoms were monitored throughout each day: 525 

before capsule intake, three times during the task battery and after finishing the task battery. On 526 

completion of the second session, participants reported on which day they thought they had taken 527 

the active drug or placebo. Participants received monetary compensation on completion of both 528 

testing sessions, at a rate of £10 per hour, with the opportunity to add an additional £5 based on 529 

their performance during the learning task.  530 

 531 

Behavioural task  532 

Participants completed a modified version of a social learning task (Cook et al., 2014), first 533 

developed by Behrens and colleagues (Behrens et al., 2008). The task was programmed using 534 

MATLAB R2017b (The MathWorks, Natick, MA). Participants were randomly allocated to one of two 535 

groups. For both groups, participants completed 120 trials on both test days. The task lasted 536 

approximately 35 minutes, including instructions. Before the main task, participants completed a 537 

step-by-step on-screen practice task (10 trials) in which they learnt to choose between the two 538 

options to obtain a reward and learned that the “advice” represented by the frame(s) could help in 539 

making the correct choice in some phases. In our previous work with the individual-primary 540 

condition alone, we demonstrated that social dominance significantly predicts social, but not 541 

individual, learning (Cook et al., 2014). Thus, showing that participants maintain a conceptual 542 

distinction between the social and individual learning sources. In the current study we investigated 543 

whether participants, maintained this conceptual distinction by requiring participants to complete a 544 

short quiz (3 questions), testing their knowledge, after the practice task. Participants were required 545 

to repeat the practice round until they achieved 100% correct score in the quiz, meaning that all 546 

participants understood the structure of the task, and that the red shape represented social 547 

information. Furthermore, after the experiment, participants completed a feedback questionnaire 548 

(Appendix 5). Answers confirmed that participants understood the difference between, and paid 549 

attention to both, individual and social sources of information. Participants were informed as to 550 

whether they had earned a £5 bonus after the second session. Due to ethical considerations, all 551 

participants received the bonus. 552 

 553 

Individual-primary group 554 

On each trial participants were required to choose between a blue or green box to gain points. 555 

Participants could also use an additional, secondary, source of information - a red frame surrounding 556 
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either the blue or green box – to help make their decision. Participants were informed (see Appendix 557 

5 for instruction scripts) that the frame represented the most popular choice made by a group of 558 

participants who had previously completed the task. They were also informed that the task followed 559 

‘phases’ wherein sometimes the blue, but at other times the green choice, was more likely to result 560 

in reward and sometimes the social information predominantly indicated the correct box, but at 561 

other times it predominantly surrounded the incorrect box (Fig.1A). After making their choice 562 

participants received outcome information in the form of a blue or green indicator. The indicator 563 

primarily informed participants about whether the blue or green box had been rewarded on the 564 

current trial. Whether the social information surrounded the correct or incorrect box could, 565 

secondarily, be inferred from the indicator. For example, if the red frame indicated that the social 566 

group had chosen the blue shape, and the blue shape was shown to be correct, participants could 567 

infer that the social information had therefore been correct on that trial. Both the probability of 568 

reward associated with the blue/green stimuli and the utility of the social information, varied 569 

according to separate probabilistic schedules, with participants randomly assigned to one of four 570 

groups (Appendix 2). For both individual and social information, the probabilistic schedules featured 571 

stable phases, where the probability of reward was constant, and volatile phases, in which the 572 

probability switched every 10-20 trials. This feature of the task design was included to capture 573 

potential effects of dopaminergic modulation on adaptation to environmental volatility (Cook et al., 574 

2019). Participants were informed that correct choices would be rewarded, and thus to aim to 575 

accumulate points to obtain a reward at the end of the experiment. Although probabilistic schedules 576 

for Day 2 were the same as Day 1, there was variation in the trial-by-trial outcomes and advice. In 577 

addition, to prevent participants from transferring learned stimulus-reward associations from Day 1 578 

to Day 2, different coloured stimuli were employed on the second session: participants viewed 579 

blue/green squares with advice represented as a red frame on Day 1 and yellow/purple squares with 580 

advice represented as a blue frame on Day 2.  581 

 582 

Social-primary group 583 

For the social-primary group the social information source was the primary source of learning. On 584 

each trial participants were presented with two grey placeholders. One placeholder was filled with a 585 

red box, indicating the group’s choice. Blue/green frames then appeared around the placeholders. 586 

As in the individual-primary group, participants were informed that the task followed ‘phases’ 587 

wherein sometimes going with, but at other times going against, the group’s choice was more likely 588 

to result in reward and sometimes the blue frame predominantly indicated the correct box, whereas 589 

at other times the green frame predominantly indicated the correct box. After making their choice 590 
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participants received outcome information in the form of a tick/cross indicator. The indicator 591 

primarily informed participants about whether the social group had been rewarded (and thus going 592 

with them would have resulted in points scoring but going against them would not) on the current 593 

trial. Whether the blue(green) frame surrounded the correct or incorrect option could, secondarily, 594 

be inferred from the indicator. As in the individual-primary task, both the probability of reward 595 

associated with the blue/green stimuli and the utility of the social information varied according to 596 

probabilistic schedules (Appendix 2). All other aspects of the task structure were the same as 597 

previously described in the individual-primary task group.  598 

  599 

Data analysis 600 

All analyses were conducted using MATLAB R2017b (The MathWorks, Natick, MA) and Bayesian 601 

analyses using JASP (JASP Team (2020). JASP (Version 0.14) [Computer software]). Linear mixed 602 

models were fitted to data using RStudio (RStudio Team (2020). RStudio: Integrated Development 603 

for R. RStudio, PBC, Boston, MA). In the instance of data not meeting assumptions of normality (as 604 

assessed by Kolmogorov–Smirnov testing), data were square-root-transformed. Learning rate 𝛼 605 

values were square-root transformed. We used the standard p < .05 criteria for determining if 606 

significant effects were observed, with a Holm correction applied for unplanned multiple 607 

comparisons, to control for type I family-wise errors. In addition, effect sizes and beta weights for 608 

linear mixed model analysis are reported.  609 

 610 

Data pre-processing 611 

Datasets were excluded based on the following: accuracy < 50% under placebo, chose the same side 612 

(left/right) or colour on > 80% trials, incomplete datasets (less than 120 trials completed). Two 613 

subjects were excluded, resulted in a final sample of n = 31, with behavioural data for both testing 614 

days, and n = 41, with data for one day only (see Appendix 4i for analysis).  615 

 616 

Computational modelling framework  617 

Participant responses were modelled using an adapted Rescorla-Wagner learning model (Rescorla & 618 

Wagner, 1972). The model relies on the assumption that updates to choice behaviour are based on 619 

prediction errors, i.e., the difference between an expected and the actual outcome. Participants 620 

were assumed to update their beliefs about outcomes based on sensory feedback (perceptual 621 

model), and to use this feedback to make decisions about the next action (response model). Model 622 

fitting was performed using scripts adapted from the TAPAS toolbox (Diaconescu et al., 2014) 623 

(scripts available at OSF link https://tinyurl.com/b3c7d2zb). A systematic comparison of eight 624 
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separate models (Appendix 3 for full details regarding model fitting and model comparison) showed 625 

that the exceedance probability of this particular model was ~1. This demonstrates (relative) 626 

evidence in favour of the conclusion that, the current model, with separate learning rates for 627 

primary and secondary information, and volatile and stable phases, provided the best fit to 628 

participant choice data and that the data likely originated from the same model for both HAL and 629 

PLA treatment conditions (Supplemental Fig 2). Further model validation, including simulation of 630 

data and parameter recovery, provided further support for the choice of computational model 631 

(Appendix 3). 632 

 633 

Perceptual model  634 

The Rescorla-Wagner predictors used in our learning models consisted of a modified version of a 635 

simple learning model, with one free parameter, the learning rate 𝛼, varying between 0 and 1.  636 

 637 

𝑉(𝑖+1)  
=  𝑉𝑖 + 𝛼(𝑟𝑖 − 𝑉𝑖) 638 

 639 

According to this model the predicted value (𝑉𝑖) is updated on each trial based on the prediction 640 

error (PE), or the difference between the actual and the expected reward (𝑟𝑖 − 𝑉𝑖), weighted by the 641 

learning rate 𝛼. 𝛼 thus captures the extent to which the PE updates the estimated value on the next 642 

trial. In line with previous work (Cook et al., 2019), we used an extended version of this learning 643 

model, with separate 𝛼 values for volatile and stable environmental phases. In a stable environment, 644 

learning rate will optimally be low, and reward outcomes over many trials will be taken into account. 645 

In a volatile environment, however, an increased learning rate is optimal, as more recent trials are 646 

used to update choice behaviour (Behrens et al., 2007). Furthermore, we simultaneously ran two 647 

Rescorla-Wagner predictors in order to estimate parameters relating to learning from primary and 648 

secondary information sources. Consequently, our model generated the predicted value of going 649 

with the primary source (going with the blue frame for the individual-primary group, going with the 650 

group for the social-primary group; V_primary(i+1)) and the predicted value of the secondary 651 

information (going with the group recommendation for the individual-primary group, going with the 652 

blue frame for the social-primary group; V_secondary(i+1)) and provided four 𝛼 estimates: 𝛼primary_stable, 653 

𝛼primary_volatile, 𝛼secondary_stable, 𝛼secondary_volatile.  654 

 655 

Response model 656 

Our response model assumed that participants integrated learning from both primary and secondary 657 

sources. The action selector predicts the probability that the primary information (blue choice/ 658 
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group choice) will be rewarded on a given trial and was based on the softmax function (TAPAS 659 

toolbox), adapted by Diaconescu and colleagues (Diaconescu et al., 2014). This response model is 660 

adapted from that used by Cook and colleagues (Cook et al., 2019) and reproduced here with 661 

permission. The value of primary and secondary information was combined using the following:  662 

 663 

𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) =  𝜁(𝑉_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑎𝑑𝑣𝑖𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(i+1)) + (1 − 𝜁)(𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(i+1)) 664 

 665 

wherein ζ is a parameter that varies between individuals, and which controls the weighting of 666 

secondary relative to primary sources of information. V_secondary_advice_weighted(i+1) comprises the advice 667 

provided by the secondary information (the red and blue frames, for individual-primary and social-668 

primary groups respectively) weighted by the probability of advice accuracy (V_secondary(i+1)) in the 669 

context of making a choice to go with the primary information (the blue and red box for the 670 

individual-primary and social-primary groups respectively). That is:  671 

 672 

V_secondary_advice_weighted(i+1) = |advice −  𝑉_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1)| 673 

 674 

where advice from the red frame equals 0 for blue and 1 for green, and advice from the blue frame 675 

equals 0 for going with the red box and 1 for going against the red box. For example, for a 676 

participant in the social-primary group, if the blue frame advised them to go with the red box (the 677 

group choice) and the probability of advice accuracy was estimated at 80% (V_secondary(i+1) = 0.80), the 678 

probability that the choice to go with the group will be rewarded, inferred from secondary learning, 679 

would be 0.8 (V_secondary_advice_weighted(i+1) = |0−0.8|= 0.8). The probability that this integrated belief 680 

would determine participant choice was described by a unit square sigmoid function, describing how 681 

learned belief values are translated into choices.  682 

 683 

𝑃(𝑦(𝑖+1) = 1 ||𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)) =  
𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)

𝛽

𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1)
𝛽+ (1−𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1))𝛽

 684 

 685 

Here, responses are coded as y(i+1) =1 when selecting the primary option (going with the blue and red 686 

box for the individual-primary and social-primary groups respectively), and y(i+1) =0 when selecting 687 

the alternative (going with the green box and going against the red box for the individual-primary 688 

and social-primary groups respectively). The participant-specific free parameter β, the inverse of the 689 

decision temperature, describes the extent to which estimated value of choices determines actual 690 

participant choice: as β decreases, decision noise increases and decisions become more stochastic; 691 

as β increases, decisions become more deterministic towards the higher value option.   692 
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Significance tests for estimated model parameters  693 

Parameters were fitted separately for each participant’s choice data. Learning rate (𝛼) was 694 

estimated for each participant, for primary and secondary learning, for volatile and stable phases, on 695 

both test days, resulting in 8 estimated learning rates per participant. β values were also estimated 696 

for each participant on both treatment days, resulting in two β values per participant. Effects-coded 697 

mixed model linear analyses were carried out, to allow for inclusion of subject as a random factor 698 

thus ensuring that between-participant variation in 𝛼 could be controlled for. Fixed factors were 699 

drug (HAL, PLA), information type (primary, secondary), volatility (volatile, stable) and group 700 

(individual primary, social-primary), with the inclusion of random intercepts for participant: ~ group 701 

x information x drug x volatility + 1| subject. 702 

 703 

Repeated-measures analysis of variance (RM-ANOVA) for linear mixed effects models was carried 704 

out using the Satterthwaite approximation for degrees of freedom, and the model was fit using 705 

maximum likelihood estimation, with a model including random intercepts, but not random slopes, 706 

providing the best fit to the data. All analyses were repeated with and without the inclusion of age, 707 

BMI and baseline working memory as covariates, with the pattern of results unchanged. Where 708 

appropriate, data were transformed to meet assumptions of normality for parametric testing.  709 

 710 

Bayesian statistical testing 711 

Bayesian statistical testing was implemented as a supplement to null hypothesis significance tests, to 712 

investigate if null results represent a true lack of a difference between the groups (Dienes, 2014), 713 

using JASP software, based on the R package “BayesFactor” (Rouder et al., 2012). The JASP 714 

framework for repeated measures ANOVA was used (Van Den Bergh et al., 2020), whereby exclusion 715 

Bayes factors were obtained for predictors of interest. The exclusion Bayes factor (BFexcl) for a given 716 

predictor or interaction quantifies the change in odds from the prior probability that the predictor is 717 

included in the regression model, to the probability of exclusion in the model after seeing the data 718 

(BFexcl). Bayes factors were computed by comparing all models with a predictor against all models 719 

without that predictor, i.e., comparing models that contain the effect of interest to equivalent 720 

models stripped of the effect. For example, an exclusion Bayes factor for an effect of 3 for a given 721 

predictor i can be interpreted as stating that, models which exclude the predictor i, are 3 times more 722 

likely to describe the observed data than models which include the predictor. In short, the exclusion 723 

Bayes factor is interpreted as the evidence given the observed data for excluding a certain predictor 724 

in the model and can be used as evidence to support null results. For all Bayesian analyses, the Bayes 725 

factor quantifies the relative evidence for one theory or model over another. We followed the 726 
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classification scheme used in JASP (Lee & Wagenmakers, 2013) to classify the strength of evidence 727 

given by the Bayes factors, with BFexcl between one and three considered as weak evidence, between 728 

three and ten as moderate evidence and greater than ten as strong evidence for the alternative 729 

hypothesis respectively.  730 
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Appendix 1 1 
 2 

Inclusion criteria  3 

Participant is willing and able to give informed consent for participation in the study. 4 

Aged between 18 and 45. 5 

BMI in the range of 18.5 – 29.5 6 

Resting blood pressure in the range of 90/60 (low) to 140/90 (high) 7 

Electrocardiogram QT (heart rate corrected) interval < .42 8 

 9 

Exclusion criteria 10 

Participation in another drug study in the 3 weeks previous. 11 

Personal or first-degree family history of cardiovascular disease, specifically hypotension, 12 

arrhythmias or valvular disease, stroke 13 

Neurological abnormalities or traumas, kidney disease or liver disease 14 

Inherited blood conditions 15 

Psychiatric or psychological conditions (including depression and anxiety disorders) 16 

Known learning disability 17 

Anybody found to have an elongated Q-T interval following single lead ECG examination 18 

Low heart rate  19 

Low or high blood pressure  20 

Any regular medication - excluding the oral contraceptive pill 21 

Recent recreational drugs use or alcohol and drug dependency  22 

Known allergy to any medication 23 

Current pregnancy or breastfeeding 24 

Previous participant in a drug study  25 

Lack of sleep in last 24 hours.  26 

Lack of food or drink in last 12 hours  27 

Primary sensory impairment (e.g., uncorrected visual or hearing impairment) 28 

Lactose intolerant  29 

Insufficient English to be able to consent to take part in the study 30 

 31 

 32 
 33 

Baseline cognitive measures and mood ratings 34 

 35 

Approximately one week prior to drug/placebo administration, participants completed a battery of 36 

self-report questionnaire measures: Autism Spectrum quotient (AQ)1, Toronto Alexithymia Scale 37 

(TAS 20)2, Behavioural Inhibition/Activation Scale (BIS-BAS)3, the Depression Anxiety and Stress Scale 38 

(DASS 21)4, Interpersonal Reactivity Index (IRI)5, Beck's Depression Inventory (BDI)6 and Body 39 

Perception Questionnaire (BPQ)7. Self-report questionnaire scores are summarised in Supplemental 40 

Table 1. The individual-primary group did not differ significantly on any measure from the social-41 
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 2 

primary group. The group that received HAL on day 1 did not differ significantly on any of the 42 

baseline measures from the group that received PLA on day 1 (p < 0.05). Mood and fatigue were 43 

monitored three times per day during each test day, i) before capsule intake, ii) two hours post-44 

capsule intake upon start task battery, and iii) upon completion of the task battery. The mood 45 

ratings consisted of the Positive and Negative Affect Scale (PANAS) 8. A self-report scale was used to 46 

monitor fatigue. 24% of participants reported that they did not know on which day they had taken 47 

an active drug. Out of the remaining participants, 84% of participants correctly reported that they 48 

thought they had received an active drug. No adverse side effects were reported. Blood pressure, 49 

heart rate and blood oxygenation levels were monitored five times over the course of the testing 50 

days; before drug/placebo administration, and then at one, two and three and a half hour intervals 51 

thereafter. Measures were taken for a final time immediately before the end of the testing day.  52 

 53 

Supplemental Table 1. Self-report questionnaire scores for the individual-primary and social-primary 54 
groups (n = 33) 55 
 56 
 57 

Self-report 
questionnaires 

 Individual-
primary group 

Social-primary 
group 

t (31) p-value 

AQ  9.412 (4.556) 6.500 (4.179) 1.910 0.065 
TAS-20  39.529 (6.947) 40.313 (7.981) -0.301 0.765 

BIS-BAS  50.647 (6.855) 51.125 (5.536) -0.219 0.828 
DASS-Stress  3.176 (4.231) 3.875 (2.306) -0.583 0.723 

DASS-Anxiety  1.353 (2.178) 1.938 (2.516) -0.715 0.564 
DASS-Depression  1.706 (1.863) 2.313 (3.005) -0.702 0.480 

IRI  66.235(15.114) 66.375(10.645) -0.031 0.976 
BDI  3.176 (3.746) 3.438 (2.732) -0.227 0.822 

BPQ  52.176(29.473) 46.688(18.650) 0.635 0.221 

Note: Mean (standard deviation) scores are reported. Significance level for the between-group 58 
differences are reported. Autism Spectrum quotient (AQ)1, Toronto Alexithymia Scale (TAS 20)2, 59 
Behavioural Inhibition/Activation Scale (BIS-BAS)3, the Depression Anxiety and Stress Scale (DASS 60 
21)4, Interpersonal Reactivity Index (IRI)5, Beck's Depression Inventory (BDI)6 and Body Perception 61 
Questionnaire (BPQ)7.  62 

 63 

Drug effects on mood and tiredness 64 

Positive and negative affect (PANAS) scores were submitted to separate RM-ANOVAs, with within-65 

subjects (WS) factors time (baseline/start testing/end testing) and drug (HAL/PLA). For both positive 66 

and negative scores, a main effect of time was observed. Both positive (F (2,62) = 8.286, p < 0.001, 67 

ηp
2 = 0.211), and negative scores decreased over time (F (2,62) = 6.020, p = 0.004, ηp

2 = 0.163). A drug 68 

by time interaction was observed for positive scores (F (2,62) = 7.353, p = 0.001, ηp
2 = 0.192), with 69 
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 3 

simple effects analysis demonstrating that positive scores decreased over time under haloperidol (p 70 

< 0.001), but not placebo (p = 0.994). A main effect of drug was observed on negative scores (F 71 

(1,31) = 4.749, p = 0.037, ηp
2 = 0.133), with higher negative affect scores under haloperidol (𝑥̅ (𝜎𝑥̅) = 72 

10.771 (0.557) compared with placebo (𝑥̅ (𝜎𝑥̅) = 9.491(0.557)).  73 

Self-reported fatigue ratings (Likert scale: 1-10, with higher scores referring to higher levels of 74 

fatigue) were submitted to a RM-ANOVA, with WS factors time (T1-T5) and drug (HAL/PLA). A main 75 

effect of time was observed, with fatigue rising across time (F (4,88) = 6.652, p < 0.001, ηp
2 = 0.232). 76 

No main or interaction effect(s) involving drug were observed.  77 

 78 

Appendix 2  79 
 80 

Randomisation groups  81 

 82 
For both the social-primary and individual-primary group, the probability of reward associated with 83 

the blue/green stimuli (individual information) and the red stimuli (social information) were 84 

governed by different pseudo-randomisation schedules, adapted from Behrens et al 9. Schedules 85 

were counterbalanced between participants to ensure that learning could not be explained in terms 86 

of differences in learning between schedules with increased/decreased, or early/late occurring, 87 

volatility. The individual-primary group (schedules 1,3) were sub-divided into two groups, such that 88 

half started with predominantly correct social information, and half with predominantly incorrect 89 

social information, with the same true for the social-primary group (schedules 2,4). The primary 90 

information source was always less volatile overall compared to the secondary information source, 91 

irrespective of whether it was social or individual. To give an example, the randomisation schedule 92 

for group 1 was the same as that employed by Behrens et al 9. During the first 60 trials, the individual 93 

reward history was stable, with a 75% probability of blue being correct. During the next 60 trials, the 94 

reward history was volatile, switching between 80% green correct and 80% blue correct every 20 95 

trials. Meanwhile, during the first 30 trials, social information was stable, with 75% of choices being 96 

correct. During the next 40 trials, the social information was volatile, switching between 80% 97 

incorrect and 80% correct every 10 trials. During the final 50 trials, social information was once again 98 

stable, with 85% of choices being incorrect. Randomisation schedules for groups 2, 3, and 4 were 99 

inverted and counterbalanced versions of schedule 1 (Suppl. Fig. 1).  100 

  101 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470554
http://creativecommons.org/licenses/by/4.0/


 4 

 102 

Supplemental Figure 1. 103 

 104 

 105 

  106 

Suppl. Figure 1. Randomisation schedules. The probability of reward varied according to probabilistic schedules, 
including stable and volatile blocks for both the probability of blue being correct and the probability of the social 
information indicating the correct answer. Probability schedules were counterbalanced between participants. Solid 
blue lines show the probability of blue being the correct choice, dashed red lines show the probability of the social 
information being correct. Schedules 1-4 are displayed here.  

Prob. blue is correct 
Prob. red shape is correct 

Prob. blue is correct 
Prob. red shape is correct 

Prob. blue is correct 
Prob. red shape is correct 

Prob. blue is correct 
Prob. red shape is correct 
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Appendix 3  107 
 108 

Model fitting  109 

 110 

Optimisation of free parameter values was performed as per Cook and colleagues 10, using a quasi-111 

Newton optimisation algorithm specified in TAPAS toolbox - quasinewton_optim_config.m. The 112 

function maximised the log-joint posterior density over all parameters given the data and the 113 

generative model. α values were estimated in logit space (see tapas_logit.m), i.e., a logistic sigmoid 114 

transformation of native space (tapas_logit(x) = ln(x/(1-x)); x = 1/(1+exp(-tapas_logit(x)))). An 115 

uninformative prior, allowing for individual differences in learning rate was used for α: tapas_logit 116 

(0.2, 1), with a variance of 1. Initial values were set at logit (0.5, 1), with a variance of 1. Initial values 117 

were allowed to vary, to allow for inter-individual differences in prior preferences for the extent to 118 

which individual would conform to the group choice. The prior for β was set to log (48), with a 119 

variance of 1, and the prior for ζ was set at 0 with a variance of 102 (logit space), i.e., an equal 120 

weighting for information derived from primary and secondary learning (0.5). Prior choices were 121 

based on previous work 10. Maximum-a-posteriori (MAP) estimates for all model parameters were 122 

calculated using the HGF toolbox version 3 (https://osf.io/398w4/files/). All code used is adapted 123 

from the open-source software package TAPAS (available 124 

at http://www.translationalneuromodeling.org/tapas). 125 

 126 

Model comparison 127 

 128 

We based our choice of perceptual model on previous work by Cook and others 10, wherein a 129 

systematic comparison of three alternative models was conducted, to determine which best 130 

explained observed choice behaviour. Here we repeated Cook et al.’s model comparison and added 131 

four further extensions of the classic model, thus we compared eight alternative models in total. A 132 

formal model comparison was carried out using Bayesian model selection using the VBA toolbox 11.  133 

 134 

Data were initially analysed with eight models. All models were variations of the classic Rescorla-135 

Wagner model. Group level Bayesian model selection (BMS) was used to evaluate which model 136 

provided the (relative) best fit to the observed data. The VBA toolbox 
12, specifically random-effects 137 

BMS (using the VBA_groupBMC_btwConds.m function), was utilised. Random effects group BMS 138 

computes an approximation of the model evidence relative to the other models, i.e., the probability 139 

of the data y given a model m, p(y|m), with log model evidence here approximated with F values. 140 

The posterior probability that a model has generated the observed data, relative to other models is 141 
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estimated, and the exceedance probability, or the likelihood that a given model is more likely than 142 

other included models in the set, is estimated. Analysis across both conditions allows us to test the 143 

hypothesis that the same model produced observed data under both haloperidol and placebo 144 

conditions.  145 

 146 
 147 
Model 1 was a classic Rescorla-Wagner model:  148 

 149 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼𝜀𝑖  

 150 

with 𝜀𝑖 = 𝑟𝑖 − 𝑉𝑖, the difference between the actual and the expected reward or prediction error 151 

(PE). 152 

 153 

Model 2 was an extension of Model 1, with separate learning rates (𝛼) for learning from primary 154 

value and secondary value learning sources:  155 

 156 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉_𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝜀𝑖  

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝜀𝑖  

 157 

 158 

Model 3 had a single learning rate 𝛼 for primary/secondary learning, but separate learning rates for 159 

volatile and stable blocks:  160 

 161 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝜀𝑖 +  𝛼_𝑠𝑡𝑎𝑏𝑙𝑒 𝜀𝑖 

 162 

Model 4 had four separate learning rates 𝛼 for volatile and stable and primary and secondary 163 

learning:  164 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝜀𝑖 +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 𝜀𝑖  
 

 165 

As an exploratory measure, we further extended Models 1-4 to include separate learning rates 166 

corresponding to learning from rewarded trials and unrewarded trials separately, i.e., learning from 167 

wins and losses.  168 

 169 

 170 
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Model 5:  171 

𝑉(𝑖+1) = 𝑉𝑖 +  𝛼_𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖 +  𝛼_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖   

 172 

 173 

Model 6:  174 

𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖 +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖  
 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖) + 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑  𝜀𝑖  
 

Model 7:  175 

 

𝑉(𝑖+1) = 𝑉𝑖 + 𝛼_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑𝜀𝑖 +  𝛼_𝑠𝑡𝑎𝑏𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖 +  + 𝛼_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖  

+  𝛼_𝑠𝑡𝑎𝑏𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖 

  176 

Model 8:  177 

 178 

 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖+1) = 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖) +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑𝜀𝑖 +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖 +179 

 + 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖  +  𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖  
 180 

 181 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖+1) = 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖)𝑉(𝑖+1) +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑𝜀𝑖 +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖

+  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖  +  𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑠𝑡𝑎𝑏𝑙𝑒_𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑 𝜀𝑖 

 182 

 183 

We ran a between-groups model comparison, to ensure that the same model could explain the 184 

observed data under both placebo and haloperidol. When comparing all models, Model 4 performed 185 

best, with an exceedance probability approaching 1. The exceedance probability that the same 186 

model (Model 4) had produced data under both conditions was equal to 1. For condition 1 (placebo), 187 

the posterior probabilities that the observed data had produced the model was equal to 10.329 for 188 

Model 3 and 12.998 for Model 4, with the probability that the data was produced by the winning 189 

model p(H1|y) = 0.762. For group 2 (haloperidol), Model 4 had a posterior probability of 15.417 190 

(p(H1|y) = 0.998). For the between-groups assessment, the posterior probability p(H1|y) = 0.999 191 

and the protected exceedance probability (ϕ) was equal to 0.999. 192 

 193 

 194 

 195 

 196 
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Supplemental Figure 2 197 

 198 

 199 

 200 

 201 

 202 

Model Validation  203 

To demonstrate that the chosen model (model 4) accurately described participant behaviour, we 204 

simulated response data for each participant, using estimated model parameter values 205 

(tapas_simModel.m). Accuracy did not significantly differ between actual and simulated accuracy for 206 

PLA (t = -0.866, p = 0.394) or HAL conditions (t = -0.280, p = 0.781) (Suppl. Fig. 3A). Simulated and 207 

calculated accuracy were significantly correlated for each participant, under both placebo (r = 0.487, 208 

p = 0.005) and haloperidol conditions (r = 0.712, p <.001) (Suppl. Fig. 3B).  209 

 210 

 211 

Suppl. Figure 2. Model comparison. Results from random-effects Bayesian model selection. Exceedance Probability 
and posterior model probability for models 1-8. p(y|m) = posterior model probability, ϕ = exceedance probability, 
HAL = blue, PLA = red. 
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Supplemental Figure 3 212 

A 213 

B  214 

 215 
 216 

Suppl. Fig. 3. A. Model simulations (left) and participant response data (right). Mean accuracy is displayed 
separately for volatile and stable environmental phases, under HAL (purple) and PLA (green). Boxes = standard 
error of the mean, shaded region = standard deviation, individual datapoints are displayed. HAL = haloperidol, PLA 
= placebo. 
B. Participant data (left) juxtaposed against model simulations (right) Running average, across 5 trials of blue 
choices for probabilistic randomisation schedules 1 to 4. Shaded region = standard error of the mean. 
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To ensure that parameter estimates could be recovered, model parameters were estimated from 217 

simulated data for each participant, separately for HAL and PLA conditions. All recovered parameters 218 

correlated significantly with estimated parameters under both treatment conditions (all p < 0.001).  219 

 220 
 221 
 222 

Appendix 4  223 
 224 

Extended statistical analyses 225 

 226 

i. Learning rate analysis (n = 41) 227 
A RM-ANOVA, with (square-root transformed) learning rate (α) as the DV and predictors information 228 

source, volatility, drug and group was carried out on estimates from the mixed model analysis which 229 

included all participants who completed at least one study day (N = 41). A significant main effect of 230 

information was observed (F (1,234) = 3.944, p = 0.048, beta estimate (𝜎𝑥̅) = 0.019 (0.010), t = 1.986, 231 

CI [0 - 0.04]), with higher mean values for αprimary (estimate (SE) = 0.429 (0.018)) compared with 232 

αsecondary (estimate (SE)= 0.391 (0.018)).  233 

 234 

A significant volatility by information interaction (F (1, 234) = 4.676, p = 0.032, beta estimate (SE) = 235 

0.021 (0.010), t = -2.162, CI [0 - 0.04]) was observed. Post hoc comparisons revealed that, under 236 

stable phases, αprimary values (estimate (SE)= 0.461 (0.023)) were significantly greater than αsecondary 237 

(estimate (SE) = 0.381 (0.023), z = 2.933, pholm = 0.007), with no difference between α in volatile 238 

environmental phases (z = -0.125, pholm = 0.901). No main effect of group was observed, however, 239 

there was a significant information by group interaction (F (1, 234) = 32.471, p < 0.001, beta 240 

estimate (SE) = 0.05 (0.010), t = 5.700, CI [0.04-0.07]). Post hoc comparisons revealed that, for the 241 

individual-primary group, αprimary (estimate (SE) = 0.455 (0.026)) was significantly greater than 242 

αsecondary (estimate (SE) = 0.307 (0.026), z = 5.351, pholm < 0.001). For the social-primary group, 243 

however, αsecondary (estimate (SE) = 0.475 (0.025)) was significantly greater than αprimary (estimate (SE) 244 

= 0.404 (0.025), z = 2.667, pholm = 0.015). 245 

 246 

A significant volatility by group interaction was observed (F (1,234) = 4.168, p = 0.042, beta estimate 247 

(SE) = 0.020 (0.010), t = 2.042, CI [0 - 0.04]). For the individual-primary group, αvolatile (estimate (SE) = 248 

0.351 (0.026)) showed a non-significant trend towards being lower than αstable (estimate (SE) = 0.411 249 

(0.026), z = -2.192, pholm < 0.057). For the social-primary group, however, αvolatile (estimate (SE) = 250 

0.449 (0.025)) and αstable (estimate (SE) = 0.431 (0.025)) did not significantly differ (z = 0.672, pholm = 251 

0.502). 252 
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 253 

Most importantly, as with the analysis reported in the main text, a significant drug by information 254 

interaction was observed (F (1,234) = 3.727, p = 0.054, beta estimate (SE) = 0.01 (0.1), t = 1.69, CI 255 

[0.00 – 0.04]. Post hoc comparisons demonstrated that, under PLA there was a significant difference 256 

between αprimary (estimate (SE) = 0.451 (0.023) and αsecondary (estimate (SE)= 0.375 (0.023), z = 2.727, 257 

pholm = 0.026, uncorrected p = 0.006). This difference was nullified under HAL (αprimary estimate (SE) = 258 

0.408 (0.023) and αsecondary (estimate (SE)= 0.407 (0.023)) (z = 0.040, pholm = 0.968, uncorrected p = 259 

0.968).  260 

 261 

There was no significant group x information source x drug interaction (F (1,234) = 0.029, p = 0.866, 262 

beta estimate (SE) = -0.002 (0.010), t = -0.169, CI [-0.02 - 0.02]). 263 

 264 

ii. Accuracy  265 
An analysis of accuracy was conducted in participants who had completed both study days (n=31), to 266 

explore whether there was any systematic variation as a function of randomization schedule, and 267 

across drug and placebo conditions and volatile and stable phases. A RM-ANOVA, with within-268 

subjects factors drug (HAL, PLA) and volatility (stable, volatile), and between-subjects factor group 269 

(social-primary, individual-primary) and randomisation schedule (1-4), demonstrated no difference 270 

in accuracy between haloperidol (𝑥̅(𝜎𝑥̅) = 0.601(0.011)), and placebo (𝑥̅(𝜎𝑥̅) = 0.614 (0.011); F (1,27) 271 

= 1.161, p = 0.291, ηp
2 = 0.041). However, a significant main effect of schedule was observed (F 272 

(3,27) = 3.004, p = 0.048, ηp
2 = 0.250), with the lowest accuracy observed for schedule 1 (𝑥̅(𝜎𝑥̅) = 273 

0.558 (0.019). Although accuracy for schedule 1 was lower than for schedule 2 (𝑥̅(𝜎𝑥̅) = 0.619 274 

(0.018), t (27) = -2.358, pholm = 0.129), schedule 3 (𝑥̅(𝜎𝑥̅) = 0.614 (0.018), t(27) = (-2.162), pholm = 275 

0.159) and schedule 4 (𝑥̅(𝜎𝑥̅) = 0.637 (0.020), t(27) = -2.748, pholm = 0.063); these differences were 276 

no longer significant after correction for multiple comparisons. Mean accuracy for schedules 2-4 did 277 

not significantly differ from each other (all p-values = 1.000). In addition, there was a significant 278 

interaction effect between schedule and volatility (F (3,27) = 7.527, p < 0.001, ηp2 =0.455). For all 279 

schedules except for schedule 3, there was no significant difference in accuracy between volatile and 280 

stable phases (all p>0.05). However, for schedule 3, accuracy was significantly higher for volatile 281 

(𝑥̅(𝜎𝑥̅) = 0.675 (0.022) over stable phases (𝑥̅(𝜎𝑥̅) = 0.533 (0.022), t (27) = (3.656), pholm = 0.027). 282 

Accuracy was significantly higher for the social-primary group (𝑥̅(𝜎𝑥̅) = 0.629 (0.013), compared with 283 

the individual-primary group (𝑥̅(𝜎𝑥̅) = 0.586 (0.013), F (1,29) = 5.196, p = 0.030, ηp
2 = 0.152) and no 284 

other main effects or interactions were observed (all p>0.05). 285 
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iii. Relationship between accuracy scores and parameters from model-based analyses 286 

A backwards regression with PLA accuracy as the dependent variable, and αprimary and αsecondary 287 

(collapsed across volatile and stable phases), initial values 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖)  and 𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖), β and ζ as 288 

predictors, was carried out. PLA accuracy was marginally significantly predicted by a model 289 

with αsecondary as a single predictor (R = 0.347, F (1,29) = 3.981, p = 0.055). Under haloperidol, a 290 

backward regression with HAL accuracy as the dependent variable, and αprimary, αsecondary, 𝑉𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑖), 291 

𝑉𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑖), β and ζ as predictors, revealed that HAL accuracy was significantly predicted by the full 292 

model. Within the model, αprimary was the only significant predictor (Suppl. Table 2). Removing 293 

predictors did not significantly improve the fit of the model (R2change < 0.001, F change (1,25) = -294 

0.064, p = 1.000). 295 

 296 

Supplemental Table 2 297 

 298 
Coefficients from regression model with HAL accuracy as the dependent variable. 299 
 300 

 β β (SEM) 
 

standardised 
β 
 

t p 

constant 0.431 0.089  4.840 <0.001 

αprimary 0.195 0.077 0.431 2.532 0.018* 

αsecondary 0.076 0.119 0.127 0.642 0.527 

𝑽𝒑𝒓𝒊𝒎𝒂𝒓𝒚(𝒊) 0.121 0.090 0.230 1.342 0.192 

𝑽𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚(𝒊) 0.033 0.131 0.050 0.249 0.806 

β 0.002 0.001 0.329 1.698 0.102 

ζ  0.045 0.043 0.189 1.066 0.297 

Note: * indicates statistical significance  301 

 302 

iv. Go, No-go control task 303 
To further investigate the neurochemical mechanisms underlying the observed decrease in 𝛼primary 304 

under haloperidol, we measured performance on a probabilistic Go, No-go control task, adapted 305 

from Frank and colleagues13 and presented using MATLAB R2017b. Participants were presented with 306 

4 different stimuli, each with a probabilistic value of reward (80%, 60%, 40%, 20%) and instructed to 307 

accumulate as many points as possible and to avoid losing points, achieved by selecting or 308 

withholding a response to the given stimuli. For example, if selected, stimuli A would result in 309 

gaining a point on 80% of trials and losing a point on 20% of trials. Participants were informed that 310 

points would be rewarded with monetary compensation; however, due to ethical considerations, all 311 
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participants were awarded £5 at the end, regardless of task performance. Participants first 312 

completed 4 blocks of a practice stage, where single stimuli were presented (40 trials/block, with 313 

each stimulus presented 10 times per block). Reward feedback was provided, allowing learning of 314 

the probabilistic value of each stimulus. This was followed by 6 testing blocks (40 trials/block) 315 

displaying either single stimuli (training stimuli) or novel pairs of stimuli on each trial, whereby 316 

participants were required to respond based on the combined probabilistic value of the pairs. 317 

Testing blocks contained positive pairs with a high associated probabilistic reward value, equal pairs 318 

(equally probable reward value), and negative pairs, with a high probabilistic value for punishment. 319 

Participants could respond via a ‘Go’ (space bar press) or ‘No-Go’ (withhold response) response. 320 

Feedback was not provided during testing blocks. In all trials, a fixation cross was presented for 250-321 

750ms, followed by stimuli presentation for 1000ms and a response period for 250ms. Task 322 

performance was calculated as the difference in ‘Go’ response for stimuli (novel pairs and single 323 

stimuli) with a high probability of reward under HAL and PLA conditions, for each participant 324 

separately.  325 

 326 

Previous research (using a similar low, acute dose of haloperidol) resulted in enhancement of 327 

learning from positive reinforcement, indexed by an increase in learning from positive feedback 13, 328 

suggested to be mediated via pre-synaptic antagonistic effects on phasic dopamine (DA) signalling. 329 

As an exploratory measure, participants were stratified into two subgroups based on performance 330 

during this task; those with a higher change in ‘Go’ performance for high reward trials under 331 

haloperidol, and those with a lower change in ‘Go’ performance under haloperidol, relative to 332 

placebo. For the participants who demonstrated increased ‘Go’ performance under haloperidol (n = 333 

12), a significant drug by information effect was observed on the main behavioural task (F (1,10) = 334 

4.773, p = 0.054, ηp
2 = 0.323). However, this effect was not observed in participants with reduced 335 

‘Go’ performance under haloperidol (n = 19; F (1,17) = 2.001, p = 0.175, ηp
2 = 0.105). Thus, suggesting 336 

that the observed effect of haloperidol on learning rate for primary information was driven by a 337 

subgroup of participants who exhibited increased ‘Go’ performance under haloperidol (relative to 338 

placebo). Given that such effects on Go performance have been linked to pre-synaptic antagonistic 339 

effects on phasic DA signalling 13 these results suggest that the effects we observed on 𝛼primary are 340 

likely mediated by effects of haloperidol on phasic DA signalling.  341 

 342 

While an increase in Go performance suggests effects of haloperidol on phasic dopamine release, 343 

the effects of haloperidol can also result in a reduction in tonic dopamine signalling14. These tonic 344 

effects are commonly indexed by a slowing of response 15,16. Indeed, haloperidol had a significant 345 
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effect on (log) reaction time (RT), with higher reaction times observed under haloperidol (𝑥̅ (𝜎𝑥̅) = 346 

1.580 (0.147) seconds(s)) when compared with placebo (𝑥̅ (𝜎𝑥̅) = 1.242 (0.150), p = 0.002, η2 = 347 

0.292). We therefore investigated whether there was a relationship between ∆𝑅𝑇 and ∆𝛼 under 348 

haloperidol. A median split (∆𝑅𝑇) resulted in two subgroups of participants. Separate RM-ANOVAs, 349 

with (square root) learning rate estimates (𝛼) as the dependent variable, and information, volatility 350 

and task group as the predictor variables were carried out for each subgroup. For the subgroup of 351 

participants who showed the greatest increase in RT (slowing of response) under haloperidol (n=15), 352 

the drug by information interaction no longer reached significance (F (1,13) = 0.106, p = 0.750, ηp
2 = 353 

0.008). The opposite pattern of results was observed for the subgroup of participants (n =16) with a 354 

∆𝑅𝑇 below the median change (a reduced slowing of response under haloperidol): here a significant 355 

drug by information interaction effect was observed (F (1,14) = 10.846, p = 0.005, ηp
2 = 0.437). 356 

Results show that, for the subgroup of participants who showed the greatest slowing of response 357 

(∆𝑅𝑇), haloperidol did not significantly affect learning rates. Given that response slowing has been 358 

linked to tonic dopamine this pattern of results further reinforces the idea that our observed effects 359 

on 𝛼primary are likely mediated by effects of haloperidol on phasic, not tonic, DA. 360 

 361 

 362 

v. Effect of randomisation schedule and drug day on model parameters  363 
Randomisation schedule (1-4) and drug day (i.e., haloperidol administered on testing day 1 or 2) 364 

were included as predictor variables in all analyses (with both n = 31 and n = 41 samples), with no 365 

main/interaction effect(s) observed (all F< 1, all p > 0.05). Additionally, testing session was used to 366 

check for the presence of practice effects. Testing session (session 1 or 2) was included as a predictor 367 

variable in all analysis, with no main/interaction effect(s) observed (all F< 1, all p > 0.05).  368 

 369 

 370 

vi. Effects of baseline verbal working memory (VWM) on model parameters  371 
As there is evidence to suggest that effects of dopamine manipulation are dependent on baseline DA 372 

synthesis, with working memory capacity shown to predict dopamine synthesis in healthy adults17, 373 

participants completed a visual working memory (VWM) task, adapted from the Sternberg VWM 374 

Task (Sternberg, 1969), and programmed using MATLAB R2017b. Participants were first presented 375 

with instructions followed by practice trials. Upon completion of the practice trials, participants 376 

completed 60 experimental trials across 5 blocks. On each trial, a fixation cross was displayed in the 377 

centre of screen (fixation duration varied randomly between 500-1000 ms). Then participants were 378 

presented with a list of letters, (varying between 5 – 9 consonants in length, with letters randomly 379 

selected from the alphabet on each trial) for 1000 ms, followed by a blue fixation cross for 3000 ms. 380 
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Following this, a single test letter was displayed (for a maximum of 4000 ms), requiring participants 381 

to determine whether the letter was taken from the previously displayed list. For 50% of trials, the 382 

letter had been present on the previous list and on 50% of trials, it had not. Participants responded 383 

by pressing 1-3 on the keyboard (1 – Yes, 2 - No, 3 – Unsure). The total task duration was 384 

approximately 10 minutes. Responses (accuracy) and response time (time from test letter displayed 385 

until participant response) were recorded for each trial. We then stratified participants into high and 386 

low verbal working memory (VWM) groups, based on mean baseline (under placebo) accuracy 387 

scores. VWM (high/low) was included as a predictor in a mixed model analysis (n = 31). A Type III 388 

RM-ANOVA conducted on model estimates revealed a significant interaction between VWM and 389 

information type (F(1,189) = 5.932, p = 0.016, beta estimate (SE) = 0.026 (0.010), t = 2.436, CI [0.00 – 390 

0.05]) with planned contrasts revealing that, for low VWM participants, 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  values (𝑥̅(𝜎𝑥̅) = 391 

0.364 (0.031) were significantly lower than 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦  values (𝑥̅(𝜎𝑥̅) = 0.447 (0.031); z(30) = 2.820, 392 

pholm = 0.010). There was no significant difference between 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝛼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦for high VWM 393 

participants (z(30) = -0.641, pholm = 0.522). No other main or interaction effects of VWM on 𝛼 values 394 

were observed (all F < 0.01, all p > 0.05). Additionally, the pattern of results was unchanged from the 395 

previous analysis excluding VWM, with the drug by information interaction effect remaining 396 

significant (F (1,189) = 3.967, p = 0.048, beta estimate (SE) = 0.021 (0.010), t = 1.992, CI [0.00 – 397 

0.04]). Finally, while including baseline VWM as continuous predictor variable in a RM-ANOVA, no 398 

main or interaction effect(s) of VWM on 𝛼 values were observed. Additionally, neither gender, age 399 

nor BMI interacted with any outcome variables (all F < 0.01, all p > 0.05). Results suggest that the 400 

observed decrease in 𝛼𝑝𝑟𝑖𝑚𝑎𝑟𝑦  under haloperidol is not related to variation in working memory 401 

capacity.  402 

 403 

 404 
 405 
 406 
 407 
  408 
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 409 

Appendix 5 410 
 411 

Instruction scripts 412 

i. Individual-primary group 413 
 414 
Welcome. You have a choice: either choose the blue shape or the green shape. One shape is correct 415 
- guessing which one it is will give you points. To help you to choose, one of the shapes is filled with 416 
red. This indicates the most popular choice selected by a group of 4 people who previously played 417 
this task. When the question mark appears, try picking a shape by pressing the left or right keyboard 418 
buttons. [Participant responds] 419 
 420 
Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if the 421 
group of previous players were correct or incorrect. 422 
Here they think the blue shape (filled with red) will be correct. Try picking a shape now. [Participant 423 
responds] 424 
 425 
Blue is correct! This means that this time the others got it right.  426 
Things happen in phases in this game. The game could be in a phase where the blue shape is more 427 
likely to be correct. Have another go. [Participant responds] 428 
 429 
And blue again! It certainly looks as though you are in a blue phase but make sure you pay attention 430 
to what the right answers are because the phase that you are in can change at any time. Here's a tip 431 
- ignore which side of the screen the shapes are on - it's the colour that is important! [Participant 432 
responds] 433 
 434 
The others got it right again. It looks like, right now, you could be in a phase where the group's 435 
information is useful. Perhaps these are trials from the end of their experiment, when they had 436 
developed a pretty good idea of what was going on. Be careful though because we have mixed up 437 
the order of the other people's trials so that their choices will also follow phases. Try again. Perhaps 438 
the other shape is right this time? [Participant responds] 439 
 440 
Green! This time the green shape was right! The chance of each shape being right or wrong will 441 
change as you play, so pay attention! The group were incorrect this time. Remember that sometimes 442 
you will see less useful information from the group - for example from the beginning of their 443 
experiment where they didn't have a very good idea of what was going on. Have another go ... 444 
[Participant responds] 445 
 446 
This time the green shape was right! The chance of each shape being right or wrong will change as 447 
you play, so pay attention. The group were correct too. It looks like, right now, you could be in a 448 
phase where the group's information is useful. Try to be as accurate as possible. Getting it right, 449 
gives you points. Get enough points and you could earn a silver or even a gold prize! Have another 450 
go... [Participant responds] 451 
 452 
Things happen in phases in this game. Remember, the tick or cross in the middle tells you if the 453 
group were correct or incorrect. That means that the shape with the red box was the correct choice. 454 
Have another go... [Participant responds] 455 
 456 
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The group were correct this time. The tick in the middle tells you that they picked the correct choice. 457 
There will now be a short quiz. Pick one more shape and then we'll head to the real game! 458 
[Participant responds] 459 
 460 
ii. Social-primary group 461 
 462 
Welcome. You have a choice between going with, or against advice from a group. Below you can see 463 
a blue and green frame, one frame is filled with a red box: this indicates the most popular choice 464 
selected by a group of 4 people who previously played this task. One frame is correct. You can pick 465 
the same frame as the group have picked or choose to go against the group’s advice. When the 466 
question mark appears, make your selection by pressing the left or right keyboard buttons. 467 
[Participant responds] 468 
 469 
Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if the 470 
group of previous players were correct or incorrect. 471 
This time they were correct! This means that the frame filled with the red square was the correct 472 
frame. 473 
Here they think the blue frame (filled with red) will be correct. Try picking a frame now. [Participant 474 
responds] 475 
 476 
The group were correct! This means that this time the others got it right and picked the correct 477 
colour.  478 
Things happen in phases in this game. The game could be in a phase where the group are more likely 479 
to be correct. Have another go. [Participant responds] 480 
 481 
The group were correct again! The blue frame was right again. It certainly looks as though you are in 482 
a phase where the group are correct but make sure you pay attention to the feedback because the 483 
phase that you are in can change at any time. Blue and green can also go through phases: it looks 484 
like you might be in a phase where the blue frame is more likely to be correct. Try again. [Participant 485 
responds] 486 
 487 
The others got it right again. It looks like, right now, you could be in a phase where the group's 488 
information is pretty useful. Perhaps these are trials from the end of their experiment, when they 489 
had developed a pretty good idea of what was going on. Be careful though because we have mixed 490 
up the order of the other people's trials so that their choices will follow phases. Try again. 491 
[Participant responds] 492 
 493 
The group were incorrect this time. This time the green frame was correct. The chance of each frame 494 
being right or wrong will change as you play, so pay attention! Remember that sometimes you will 495 
see less useful information from the group - for example from the beginning of their experiment 496 
where they didn't have a very good idea of what was going on. Have another go ... [Participant 497 
responds] 498 
 499 
The group were correct this time. The chance of each frame being right or wrong will change as you 500 
play, so pay attention. Try to be as accurate as possible. Getting it right, gives you points. Get 501 
enough points and you could earn a silver or even a gold prize! Have another go... [Participant 502 
responds] 503 
 504 
Things happen in phases in this game. Remember, the tick or cross in the middle tells you if the 505 
group were correct or incorrect. That means that the frame filled with the red was the correct 506 
choice. Have another go... [Participant responds] 507 
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 508 
The group were correct this time. The tick in the middle tells you that they picked the correct choice. 509 
There will now be a short quiz. Pick one more time and then we'll head to the real game! [Participant 510 
responds] 511 
 512 

Feedback Questionnaire 513 

 514 
Participants competed a short feedback questionnaire after the behavioural task, consisting of the 515 

following questions: 516 

 517 

1. Did you understand what you were required to do? 518 

2. How clear were the task instructions?  519 

3. Did you use the group's suggestions (red shape) to help you to make your decision?   520 

4. Did you pay attention to which colour (blue/green) was more likely to be correct?  521 

5. How difficult did you find the task? 522 

 523 

100% of participants said that they understood the task instructions and what they were supposed 524 

to do. Participants rated on a 5-point Likert scale how often they i) used the group's suggestions (red 525 

shape) to help make their decision, comprising the social rating score, and ii) if they paid attention to 526 

the colour of the shape (blue/green) that was correct when making their decision (the individual 527 

rating score). Social and individual ratings were submitted to separate one-sample t-tests, to ensure 528 

that participants in both the individual-primary and social-primary groups were paying attention to 529 

both sources of information. Both social (t(42) = 30.765,p < 0.001 ) and individual ratings (t(42) = 530 

29.565 , p <0.001) were significantly greater than zero.  531 

 532 

  533 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470554
http://creativecommons.org/licenses/by/4.0/


 19 

 534 

Supplemental References 535 
 536 
1.  Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism-Spectrum Quotient 537 

(AQ): Evidence from ... J Autism Dev Disord. 2001;31(1):5-17. 538 

2.  Bagby RM, Taylor GJ, Parker JDA. The twenty-item Toronto Alexithymia scale-II. Convergent, 539 

discriminant, and concurrent validity. J Psychosom Res. 1994;38(1):33-40. doi:10.1016/0022-540 

3999(94)90006-X 541 

3.  Carver CS, White TL. Behavioral Inhibition, Behavioral Activation, and Affective Responses to 542 

Impending Reward and Punishment: The BIS/BAS Scales. J Pers Soc Psychol. 1994;67(2):319-543 

333. doi:10.1037/0022-3514.67.2.319 544 

4.  Lovibond PF, Lovibond SH. Manual for the Depression Anxiety Stress Scales. 2nd ed. 545 

(Psychology Foundation, ed.).; 1995. 546 

5.  Davis MH. A Mulitdimensional Approach to Individual Differences in Empathy. J Pers Soc 547 

Psychol. 1983;44(1):113-126. doi:10.1037/0022-3514.44.1.113 548 

6.  Beck AT, Steer RA, Brown G. Beck Depression Inventory-II. In: APA PsycTests; 1996. 549 

7.  Porges SW. Body Perception Questionnaire (BPQ) Manual. Stress Int J Biol Stress. 1993;(c):1-550 

7. 551 

8.  Watson D, Clark L, Tellegen A. Development and validation of brief measures of positive and 552 

negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063-1070. 553 

doi:10.1037//0022-3514.54.6.1063. 554 

9.  Behrens TEJ, Hunt LT, Woolrich MW, Rushworth MFS. Associative learning of social value. 555 

Nature. 2008;456(7219):245-249. doi:10.1038/nature07538 556 

10.  Cook JL, Swart JC, Froböse MI, et al. Catecholaminergic modulation of meta-learning. Elife. 557 

2019;8:1-38. doi:10.7554/eLife.51439 558 

11.  Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group 559 

studies. Neuroimage. 2009;46(4):1004-1017. doi:10.1016/j.neuroimage.2009.03.025 560 

12.  Daunizeau J, Adam V, Rigoux L. VBA: A Probabilistic Treatment of Nonlinear Models for 561 

Neurobiological and Behavioural Data. PLoS Comput Biol. 2014;10(1). 562 

doi:10.1371/journal.pcbi.1003441 563 

13.  Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human 564 

cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 565 

2006;120(3):497-517. doi:10.1037/0735-7044.120.3.497 566 

14.  Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human 567 

cognition: Psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 568 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470554
http://creativecommons.org/licenses/by/4.0/


 20 

2006;120(3):497-517. doi:10.1037/0735-7044.120.3.497 569 

15.  Grace AA. Dopamine. In: Neuropsychopharmacology: The Fifth Generation of Progress. ; 570 

2002:120-132. 571 

16.  Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: Opportunity costs and the control of 572 

response vigor. Psychopharmacology (Berl). 2007;191(3):507-520. doi:10.1007/s00213-006-573 

0502-4 574 

17.  Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Working memory capacity predicts 575 

dopamine synthesis capacity in the human striatum. J Neurosci. 2008;28(5):1208-1212. 576 

doi:10.1523/JNEUROSCI.4475-07.2008 577 

18.  Sternberg S. Memory-scanning: mental processes revealed by reaction-time experiments. Am 578 

Sci. 1969;57(4):421-457. 579 

 580 

 581 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470554
http://creativecommons.org/licenses/by/4.0/



