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Abstract

Background: Identifying key transcriptional features, such as genes or transcripts, involved in cellular differenti-
ation remains a challenging problem. Current methods for identifying key transcriptional features predominantly
rely on pairwise comparisons among different cell types.These methods also identify long lists of differentially
expressed transcriptional features. Combining the results from many such pairwise comparisons to find the
transcriptional features specific only to one cell type is not straightforward.Thus, one must have a principled
method for amalgamating pairwise cell type comparisons that makes full use of prior knowledge about the
developmental relationships between cell types.

Method: We developed Cell Lineage Analysis (CLA), a computational method which identifies transcriptional
features with expression patterns that discriminate cell types, incorporating Cell Ontology knowledge on the
relationship between different cell types. CLA uses random forest classification with a stratified bootstrap to
increase the accuracy of binary classifiers when each cell type have a different number of samples. Regularized
random forest results in a classifier that selects few but important transcriptional features. For each cell type pair,
CLA runs multiple instances of regularized random forest and reports the transcriptional features consistently
selected. CLA not only discriminates individual cell types but can also discriminate lineages of cell types related
in the developmental hierarchy.

Results: WeappliedCLA to Functional Annotation of theMammalianGenome5 (FANTOM5) data and identified
discriminative transcription factor and longnon-codingRNA (lncRNA) genes for 71 human cell types.With capped
analysis of gene expression (CAGE) data, CLA identified individual cell-type–specific alternative promoters for
cell surface markers. Compared to random forest with a standard bootstrap approach, CLA’s stratified bootstrap
approach improved the accuracy of gene expression classificationmodels formore than 95%of 2060 cell type pairs
examined. Applied on 10X Genomics single-cell RNA-seq data for CD14+ monocytes and FCGR3A+ monocytes,
CLA selected only 13 discriminative genes.These genes included the top 9 out of 370 significantly differentially
expressed genes obtained from conventional differential expression analysis methods.

Discussion: Our CLA method combines tools to simplify the interpretation of transcriptome datasets from
many cell types. It automates the identification of the most differentially expressed genes for each cell type pairs
CLA’s lineage score allows easy identification of the best transcriptional markers for each cell type and lineage in
both bulk and single-cell transcriptomic data.
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Availability: CLA is available at https://cla.hoffmanlab.org.We deposited the version of the CLA source with
which we ran our experiments at https://doi.org/10.5281/zenodo.3630670.We deposited other analysis code and
results at https://doi.org/10.5281/zenodo.5735636.

1 Introduction

Discovering cell-type–specific transcriptional features is important for identifying oncogenes1, finding disease-
associated genes2–4, and determining drivers of cell differentiation5. Current methods allow identifying the
transcriptional features differentially expressed between a pair of cell types6–8. These differential expression
analysis methods, however, often identify a long list of significant transcriptional features of variable relevance.
Ideally, one would want a method to focus on the most important transcriptional features that can discriminate
among cell types. The availability of large numbers of expression datasets represents an opportunity to identify
cell-type–specific transcriptional features by aggregating the results frommultiple cell type pairs.

To simplify the analysis of multiple cell type pairs we have developed the Cell Lineage Analysis (CLA) frame-
work, which uses the regularized random forest9 machine learning classifier. CLA indicates how often a particular
transcriptional feature discriminates one cell type in multiple cell type pairs. CLA also uses information from the
Cell Ontology10 about the relationships between cell types to find the transcriptional features that discriminate
lineages.

TheCell Ontology describes hierarchical relationships betweenmost cell types using relations such as is_a (Fig-
ure 1).The is_a relation implies inheritance between cell types such that the children inherit the properties of their
ancestors. By using the is_a relationships, we define a cell type’s lineage as that cell type and all its descendants.

CLA uses the FANTOM5 (FF) sample ontology11 which assigned cell line and primary cell samples from
Functional Annotation of the Mammalian Genome 5 (FANTOM5) to matching cell types in the Cell Ontology.

For cell types within lineages, CLA uses the is_a relationship such that each cell type inherits the samples
from its descendants. Thus, if CLA identifies a transcriptional feature that discriminates both a cell type and its
parent cell type against other cell types, we describe that feature as discriminating a lineage.

To identify the transcriptional features that discriminate between a pair of cell types, CLA uses regularized
random forest9, amachine learning algorithm that builds an ensemble of decision trees that perform classification
together. Similar to random forest12,13, regularized random forest creates decision points that use transcriptional
feature expression values to split samples into two groups. At each decision point, random forest selects one
transcriptional feature, out of a random subset of features, which has expression values that discriminate the cell
types the most. After creating all the decision points, one can estimate the discriminative power of the selected
features.

To remove the least discriminative transcriptional features, and thus reduce the number of features selected
by random forest, regularized random forest adds a regularization step that penalizes the selection of new features
during the construction of decision trees. Regularized random forest selects fewer transcriptional features when
compared to the non-regularized version. Therefore, regularized random forest increases the chances of selecting
the most discriminative transcriptional features.

In addition to standard Cell Ontology information, CLA requires two inputs: (1) a table of expression values
for transcriptional features in different samples and (2) a list of associations between samples and cell types. As
individual samples can be annotated with multiple cell types from the same lineage, we excluded comparisons
that would involve the same sample in both cell types.

Here, we apply CLA to 751 FANTOM5 human primary cell and cell line samples grouped into 71 Cell Ontology
cell types.We show that CLA identifies cell-type–specific genes from a transcription factor dataset and a long non-
coding RNA (lncRNA) dataset.We also show that it identifies alternative promoters froma cluster of differentiation
(CD) dataset.

Our CLA software automates the exploratory analysis of cell type pairs. CLA also identifies the most differ-
entially expressed genes from peripheral blood mononuclear single-cell RNA-seq data. We provide the data
via CLA’s user-friendly web interface (https://cla.hoffmanlab.org).We implemented CLA using Python 314 and
scikit-learn15 (https://github.com/hoffmangroup/cla).
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Figure 1: Summaryworkflow to compute lineage scores. (a)Toy example of the Cell Ontology graph as a tree for
hematopoietic cell lineage. Green: Lineage of dendritic cell (CT 3), including its 2 ancestors leukocyte (CT 2) and
hematopoietic cell (CT 1); orange: 3 cell types not in the CT 3 lineage, including siblings and cousins of dendritic
cell. Leafs: 4 physical hematopoietic cell samples A–D. Arrows: is_a relation between either two cell types or one
cell type and a sample of that type. (b)The 6 cell types, and for each cell type, the associated samples and the
other cell types CLA would compare against—those cell types neither ancestors or descendants of the first cell
type. Yellow: an illustrative case of dendritic cells (CT 3). (c) 5 genes J–N discriminating dendritic cells (CT 3)
from myeloid leukocytes (CT 4), blood cells (CT 5), and granulocytes (CT 6). (Left ) Expression pattern of the
selected genes. Red: higher expression in dendritic cell samples (Up); blue: lower expression in dendritic cell
samples (Down); grey: not selected (Neither). (Right ) Lineage score indicating the number of times that each gene
had higher (red), lower (blue), or non-discriminative expression (grey) in dendritic cells in most comparisons.
White row: gene has non-discriminative expression in dendritic cells in all comparisons.
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2 Results

2.1 CLA discriminates cell types with higher accuracy than the unstratified approach

Due to the hierarchical structure of the Cell Ontology, each cell type may associate with different number of
samples. For example, parent cell types, such as hematopoietic cell (CL:0000988; 𝑛 = 182), have more samples
than descendant cell types such as melanocyte (CL:0000148; 𝑛 = 12). This leads to cell type comparisons with
class imbalance, a problem known to impede the performance of decision trees16.

We designed CLA so that it would work well in conditions of class imbalance. To reduce biases from class
imbalance, we used a stratified sampling approach for random forest17. The stratified sampling approach starts
growing each tree by selecting randomly, and without replacement, the same number of samples for each cell
type pair. We set the number of samples selected per tree to the number of samples from the cell type with
fewer samples. To estimate the accuracy of each random forest, we used the unselected samples, also known as
out-of-bag samples, and computed the out-of-bag score.

We applied CLA to 751 FANTOM5 human samples from 71 Cell Ontology cell types. Of the (712 ) = 2485 possible
cell type pairs, we only selected the 2060 pairs that share zero samples (Figure 1). To evaluate the effect of class
imbalance correctionwith the stratified sampling approach, we compared the accuracies obtained in the 2060 cell
type pairs with andwithout stratified bootstrap.More random forests had higher accuracywith stratified approach
than without (Figure 2a).

With 500, 1000, 1500, and 2000 trees, the average accuracy of the 2060 classifiers ranged between 99.30%
and 99.31%.Thus, increasing the number of trees for each random forest had no noticeable effect on the average
accuracy across all classifiers.

Out of 2060 random forest binary classifiers with 500 trees, 1961 had a higher accuracywith stratified bootstrap
than with unbalanced bootstrap (Figure 2b). Using 2000 trees and the stratified bootstrap increased the accuracy
of 1962 classifiers. Increasing the number of trees from 500 to 2000 only increased the accuracy of 1 additional
cell type pair. In every case, stratified bootstrap increased the accuracy of more than 95% of the classifiers.

2.2 Regularized random forest identifies transcriptional features that discriminate pairs of cell
types

Regularized random forest may select less discriminative transcriptional features in the first trees and the best
transcriptional features in later trees. To avoid reporting of less discriminative features, we ran regularized random
forest 10 times for each comparison between a pair of cell types.We defined a robustness score that indicates in
howmany of these 10 times regularized random forest selected each transcriptional feature. Robustness of 0/10
indicates that regularized random forest never selected the transcriptional feature, and robustness of 10/10
indicates that regularized random forest selected the transcriptional feature every time (Figure 3).

Transcriptional features selected in at least one instance of regularized random forest (robustness> 0) had
higher absolute difference of expression in one of the two cell types (mean: 5.67 TPM) than transcriptional features
selected in zero instances of regularized random forest (robustness= 0; mean: 1.05 TPM). As we increased the
robustness threshold, fewer genes had their first or third quartile expression value near the 𝑦 = 𝑥 line. This
indicated that the genes with the highest robustness had distinct expression patterns in the cell type pair. For
subsequent analyses, we sought to minimize the number of genes per comparison, focusing only on the most
discriminative genes. Thus, below we use only genes with the highest robustness (10/10).

2.3 CLA finds lineage-specific transcription factors

To find transcription factors that can alone discriminate different particular cell lineages, we examined the
transcription factors CLA selected for individual cell types.We anticipated that cell-type–specific transcription
factorswould have higher expression in one cell type or lineage than in every other cell type.Thus,we expected that
CLA would repeatedly select highly specific transcription factors in comparisons involving the highest number of
cell types.
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Figure 2: Number of correctly classified samples out of all samples (accuracy) obtained with random forest
on 2060 cell type pairs and expression of 1639 transcription factors. Rows: number of trees used. (a) Accuracy
of each cell type pair with stratified bootstrap against accuracy without stratified bootstrap. Numbers indicate
howmany cell type pairs have greater accuracy when using stratified bootstrap (top left) or without stratified
bootstrap (bottom right). (b)Histogram of accuracies for each cell type pair with stratified bootstrap (blue) and
without stratified bootstrap (orange).
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Figure 3: capped analysis of gene expression (CAGE) expression of genes selected in the comparison be-
tween 29 columnar-cuboidal epithelial cell samples (CL:0000075) samples and 23 skin fibroblast sam-
ples (CL:0002620). Robustness: number of times that CLA selects a gene out of 10 runs. Error bars indicate
the first and third quartiles of expression in tag per million (TPM) with intersection at median. Diagonal grey
line: 𝑦 = 𝑥 line.

CLA selected the SPI1 hematopoietic transcription factor18,19 in 534/2060 cell type pairs. These 534 pairs
involve 70 of the 71 cell types (Figure 4). CLA selected only 11 other transcription factors that provided discrimina-
tion for comparisons involving this many cell types. On average, transcription factors discriminate comparisons
involving only 31 cell types. This suggests that SPI1 expression either discriminates 1 cell type against every other
cell type, or that it discriminates 1 lineage against many other cell types.

Out of the 534 cell type pairs, 443 contained one of the 18 cell types from the hematopoietic lineage and
33 contained two cell types from the hematopoietic lineage. In addition, 50 cell type pairs contained phagocytes
and a cell type outside of the hematopoietic lineage.While phagocyte (CL:0000234) does not have hematopoietic
cell (CL:0000988) as an ancestor, it does have the hematopoietic cell type CD14-positive, CD16-negative classical
monocytes (CL:0002057) as a child.Through this child, the phagocyte cell type inherits hematopoietic samples.
Similar to phagocyte, we found 5 cell type pairs containing motile cell (CL:0000219), a parent of phagocyte, and
one cell type pair contained nucleate cell (CL:0002242), a parent of lymphocyte (CL:0000542). In general, these
results showed that the presence of high SPI1 expression proves sufficient to identify a cell type as hematopoietic.

CLA also selected SPI1 in two cell type pairs that did not involve cell types from the hematopoietic cell lineage.
The first pair comprises squamous epithelial cell (CL:0000076) against multi fate stem cell (CL:0000048). The
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second pair comprises cell types that come from the same two lineages as the first pair: epithelial cell (CL:0000066;
parent of squamous epithelial cell) against mesenchymal cell (CL:0008019; child of multi fate stem cell). This
suggests that SPI1 expression can discriminate these two lineages.

Figure 4: Screenshot of CLA web interface showing SPI1 lineage scores in the transcription factor dataset.
(Top)Header, showing gene symbol, gene set, and the fraction of cell types that the gene discriminates. (Mid-
dle) Lineage scores for each cell type. Red: Number of times that the gene has higher expression in this cell type.
Blue: Number of times that the gene has higher expression in the comparison cell type. Grey: Number of times
that the gene has no discriminative power. (Bottom) Cell types compared with the selected cell type, monocyte.
Color indicates if the gene has higher expression in this cell type (red), higher expression in the comparison cell
type (blue), or no discriminative power (grey). Every other row has a yellow background as a visual aid.

Higher expression of SPI1 in monocytes (CL:0000576) discriminated against 51 of the 55 cell types com-
pared. CLA did not use SPI1 to discriminate monocytes against 4 other cell types: CD8-positive, alpha-beta T
cell (CL:0000625); blood cell (CL:0000081); granulocyte (CL:0000094); and B cell (CL:0000236).These cell types be-
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Figure 5: Lineage scores of the SPI1 genemapped to the Cell Ontology with a hierarchical layout.Nodes: cell
types; edges: is_a relationship, with the arrow pointing to the descendant. Bar color: fraction of cell type compar-
isons where SPI1 discriminates cell types and has higher expression in current cell type (red), higher expression
in comparison cell type (blue), or no discriminative power (grey). The nodes for stuff accumulating cells (“sac*”,
yellow) and motile cells (“mc**”, green) have descendants in multiple lineages.We duplicated these nodes to
simplify the layout and show the lineage scores separately (top left).

long to the hematopoietic cell lineage (Figure 5), andwe did not expect SPI1 expression to discriminatemonocytes
against other hematopoietic cell types. As expected, SPI1 had higher and discriminative expression exclusively in
the hematopoietic lineage (Figure 5).

Additionally, SPI1 had low and non-discriminative expression inmature alpha-beta T cells and their ancestors,
as described previously18. High expression in hematopoietic cells corresponds with known SPI1 functions of
positive regulation of monocytes, B cells, and dendritic cells18,20.

As SPI1 had the highest lineage score (57/60) in CD14-positive monocytes (CL:0001054), we also looked at the
other transcription factors for this cell type. CLA identified the transcription factor OLIG1 in more cell type pairs
involving CD14-positive monocytes (59/60) than SPI1. This fits the known regulatory role of OLIG1 transcription
factor motifs in immune function andmonocyte cells21.
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2.4 CLA identifies cell-type–specific lncRNAs

Themost common class of human genes, lncRNAs, have higher tissue specificity than protein-coding genes22.
To identify cell-type–specific lncRNAs, we applied CLA to 4603 GENCODE lncRNA genes in FANTOM5 CAGE
expression data for 71 cell types.We found 95 lncRNAs with CAGE expression that discriminatesmore than 80% of
the comparisons for 15 cell types (Figure 6).
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Of the 95 cell-type–specific lncRNAs, 3 have a non-systematic HGNC23 gene symbol. These symbols denote
genes with known function: LUCAT1, IATPR, and GIHCG.

TheoncogeneLUCAT1, known topromotemultiple cancers24–26, has higher expression inwholeblood27. It also
has discriminative and higher expression in 49 pairwise comparisons (81%) with CD14-positive, CD16-negative
classical monocytes (CL:0002057).

Also regarded as an oncogene, IATPR has a role in breast cancer progression28 and non-small cell lung
cancer progression29. CLA found IATPR with a discriminative higher expression in 53 comparisons (95%) with
CD8-positive, alpha-beta T cell (CL:0000625).

A third oncogene, GIHCG, with known involvement in hepatocellular carcinoma and squamous cell car-
cinoma30,31, had discriminative and higher expression in 55 pairwise comparisons (87%) of hematopoietic
precursor cells (CL:0008001).

Of the 95 lncRNAs that CLA selected, 57 had no HGNC group assigned.The cell-type specificity established
by CLA along with the relative lack of information on the biological roles of these 57 lncRNAs make them good
candidates for further investigation.

2.5 CLA identifies alternative promoters of cell surfacemarkers

Cell surface proteins play an important role in cell communication and act as cell markers in flow cytometry32.
We used CLA to identify cell-type–specific cell surface markers of immune cells, also known as CD genes33. To
quantify promoter level expression we used FANTOM5 CAGE data, which quantify promoter expression at a
higher resolution than RNA-seq34.

We used the FANTOM5 naming convention to distinguish alternative promoters35. This convention identifies
each promoter by its rank of CAGE expression compared to other promoters from the same gene, followed by
gene symbol. For example, p1@CD53 refers to the most highly expressed promoter of the CD53 gene.

As expected, the knownB-cell biomarkers36 CD19 andTNFRSF17 (CD269)37 discriminatedB cell (CL:0000236)
and lymphocyte of B lineage (CL:0000945). The CD53 gene’s most expressed promoter, p1@CD53, only discrimi-
nated cell type pairs that involved cell types from the hematopoietic cell lineage. Other CD53 promoters, however,
discriminated more specific cell types within the hematopoietic lineage. The third-most-expressed promoter,
p3@CD53, discriminated only between B cells and their parent, lymphocyte of B lineage.The fifth-most-expressed
promoter, p5@CD53, exclusively discriminated CD14-positive, CD16-negative classical monocytes (CL:0002057).
These results suggest that CLA identifies alternative promoters specific to particular cell types.

CLA found that for CD22, known as a B cell regulator38, promoter p1CD22 had discriminative expression
only for B cells and its parent, lymphocyte of B lineage. Similarly to CD53, the discriminative power of CD22’s
alternative promoter p13@CD22 decreased in B cells and increased for CD14-positive, CD16-negative classical
monocytes, and phagocytes (CL:0000234).

2.6 Comparison of CLA against differential gene expression

We examined the utility of CLA for identifying biomarkers, as compared to differential expression analysis. Tools
to perform differential expression analysis, such as DESeq26 or edgeR7, often return a long list of differentially
expressed genes.We hypothesized that CLA’s regularized random forest approach might yield a smaller set of
important genes with differential expression.

We compared the results of CLAwithDESeq2CAGEdata for 1639 transcription factors in 29 samples associated
with columnar-cuboidal epithelial cells (CL:0002066) and 23 samples associatedwith skin fibroblasts (CL:0002620).
We chose these two cell types for two reasons. First, these two cell types have a relatively balanced number of
samples associated. Second, these two cell types each inherit samples from a variety of leaf cell types (columnar-
cuboidal epithelial cells: 10 leaf cell types; skin fibroblasts: 8 leaf cell types).

While DESeq2 identified 551 differentially expressed transcription factors, CLA identified 24 transcription
factors.The 24 transcription factors selected by CLA did not contain transcription factors deemed equivalent (sub-
subsection 3.3.1). CLA identified 6 genes that occur in the top 10 DESeq2 results sorted by adjusted p-values (Fig-
ure 7a). The most differentially expressed gene using DESeq2, PAX6, had no expression in more than half of
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the samples of each group. Because of this, CLA selected PAX6 only once out of 10 random forests. CLA always
selected, however, significantly differentially expressed genes with a higher number of nonzero expression values,
such asMAF or RFX8.

These results show that CLA identified fewer genes than differential expression methods. As CLA excluded the
genes that often had zero expression in both cell types, it will prove more useful in many scenarios.
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Figure 7: Expression of differentially expressed genes. Boxplot grey box: interquartile range (IQR). Boxplot
whisker: most extreme value within quartile ±1.5 IQR. Sinaplot39: each dot represents a single cell. DE rank: rank
of DESeq2 or Seurat adjusted p-value of significantly differentially expressed genes. Gene symbol color indicates
CLA robustness score < 10 (black) or exactly 10 (red). (a) Top 10 out of 551 significantly differentially expressed
transcription factors reported by DESeq2 from 29 bulk CAGE columnar-cuboidal epithelial samples and 23 bulk
CAGE skin fibroblast samples. (b) Top 10 out of 370 significantly differentially expressed genes reported by Seurat
from single-cell RNA-seq data between 480 CD14+ monocyte samples and 162 FCGR3A+ monocyte samples.
(c) CD14, the main driver of CD14+ monocyte samples, outside the top 10 differentially expressed genes reported
by Seurat.

2.7 Identifyingmarkers from single-cell data

After demonstrating CLA’s ability to identifying cell-type–specific in bulk primary cell and cell line data, we also
tested it on single-cell RNA-seq data.We applied CLA to 10XGenomics single-cell RNA-seq data on 542 peripheral
bloodmononuclear cells (PBMCs) from a healthy donor.We repeated a scenario in the Seurat8 tutorial (https:
//satijalab.org/seurat/v3.2/pbmc3k_tutorial.html), finding genes that discriminate two clusters: CD14+ mono-
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cytes (𝑛 = 480) and FCGR3A+ monocytes (𝑛 = 162).
CLA identified 13 genes that discriminated between CD14+ monocytes and FCGR3A+ monocytes with robust-

ness of 10/10.We compared the same cell types using Seurat8, which uses a non-parametricWilcoxon rank sum
test to identify differential expression in single-cell RNA-seq data. Seurat identified 370 significantly deferentially
expressed genes. CLA’s selected genes included Seurat’s top 9 differentially expressed genes, as sorted by adjusted
p-value. CLA’s results included the main driver of the FCGRA+ monocyte cluster FCGR3A (Figure 7b). Themain
driver of the CD14+ cluster, CD14, however, had a robustness score of 9/10, and had a lower corrected p-value
from the results of differential expression using Seurat (Figure 7c).

The genes selected by CLA with robustness of 10/10 all have nonzero expression in more than 75% of the cells
in at least 1 cluster. Alternatively, the genes selected with a robustness score lower than 10/10, such as CD14,
had zero expression in more than 25% of the cells in both clusters. These results showed that CLA identifies
cluster-specific genes not driven by zeros, unlike Seurat. Seurat also selected 370 genes, farmore than the 13 genes
selected by CLA.

3 Methods

3.1 Gene expression data

3.1.1 Transcription factor promoters

We downloaded Ensembl40 gene identifiers for 1639 known and likely human transcription factors from the
Human Transcription Factors database41 (https://humantfs.ccbr.utoronto.ca/download/v_1.01/TFs_Ensembl_
v_1.01.txt).We identified genes with matching identifiers from the GENCODE42 v32 comprehensive gene set (ftp:
//ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz), selecting
rows with feature type gene using pybedtools43 v0.7.10. Then we used pybedtools to identify the first base of each
gene, which we considered as the location of the promoter.With this approach, we associated each transcription
factor with its gene’s most upstream promoter.

3.1.2 lncRNA promoters

We identified genes with biotype lncRNA from the GENCODE42 v32 comprehensive gene set (ftp://ftp.ebi.ac.
uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz), selecting rows with
feature type gene using pybedtools43 v0.7.10. Then we used pybedtools to identify the first base of each gene,
which we considered as the location of the promoter.With this approach, we associated each lncRNA with its
gene’s most upstream one promoter.

3.1.3 Cluster of differentiation (CD) promoters

Wedownloaded from theHGNC resource23 a list of 394CDgenes (HGNCgroup 471) in January 2020.We identified
transcripts with matching identifiers from the GENCODE42 v32 comprehensive gene set (ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz), selecting rows with feature
type transcript using pybedtools43 v0.7.10.With BEDTools44 v2.27.1, wemerged the CD promoters within 1000 bp
using the command bedtools merge -d 1000 -sorted. This ensured that alternative promoters had at
least 1000 bp distance between each other.Wemerged FANTOM5 CAGE peaks within 500 bp using the command
bedtools merge -d 500 -sorted.With this approach, CD genes may have multiple promoters.

3.1.4 Assignment of expression values to promoters

Toassign anexpression value to eachpromoter for each transcription factor, lncRNA, andCD,weextended their ge-
nomic coordinates by ±500 bp using pybedtools slop. Then, we intersected the promoters with FANTOM5 CAGE
peaks (https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks_expression/hg38_
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fair+new_CAGE_peaks_phase1and2_tpm.osc.txt.gz) using the command bedtools intersect -sorted -
wo.Whenmultiple peaks overlapped a single promoter, we selected only the peak with the highest expression.
This approach assigned promoter expression values for multiple promoters of the CD genes. For the transcription
factor and lncRNA datasets, however, it assigned one expression value per gene.

3.2 Sample to cell type association

We associated 340 Cell Ontology cell types to 751 FANTOM5 samples using the rule that each parent cell type
inherits all the samples from its descendants accessible via is_a relationships.Wemerged cell types associated
with identical sets of samples. From the merged cell types, we identified the one individual cell type closest to the
common ancestor in the Cell Ontology graph.We used this cell type’s name for the merged cell type. In case of tie,
we use the name of first cell type in alphabetical order. To focus onmajor cell types, we removed Cell Ontology
terms associated with fewer than 10 samples.

In total, we generated a list of samples for 71 distinct cell types. Each cell type had between 11 and 270
associated samples (mean: 45.9; median: 24).

3.3 Transcriptional feature selection with random forest

We used regularized random forest9 to identify a minimum set of transcriptional features that discriminate
samples between two cell types.

3.3.1 Identifying equivalently discriminative transcriptional features

We excluded transcriptional features with zero variance across all samples. To identify other features equivalent
for discriminating between two cell types, we used the following process on the samples associated with either of
the cell types:

1. Repeat 3 times:

(a) Shuffle the list of samples, without replacement.
(b) Encode the rank of the gene expression values for each transcriptional feature across the samples

as a binary string:
i. Construct a single vector of gene expression values for that transcriptional feature across
the samples for both cell types.

ii. Sort the vector in ascending order.
iii. Create a string of binary values from the sorted gene expression values, where the binary

value indicates to which of the two cell types the sample corresponds.
(c) Compute Hamming distance45 between every pair of binary strings.

2. Tag as equivalent those transcriptional features with Hamming distance of 0 in all 3 repetitions.

3. Consider each clique of mutually equivalent transcriptional features as an equivalence class.

4. Randomly select 1 feature to represent each equivalence class. Exclude the class’s other transcriptional
features from the gene expression data.

The shuffling step in each iteration accounted for the arbitrary ordering of the sorted gene expression vectors
in case of ties. Requiring a zero Hamming distance between two genes in 3 different random shufflings increased
robustness in calling transcriptional features equivalent.
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3.3.2 Stratified bootstrap sampling

We used a stratified bootstrap sampling approach to reduce the bias in random forest construction that arises
from class imbalance17,46. This approach guaranteed that each decision tree in each random forest started with
an equal number of samples from each cell type—specifically the number of samples 𝑠 from the cell type with the
fewest samples. Specifically, we randomly selected, with replacement, 𝑠 samples from each cell type. This means
that each decision tree in each random forest might start with a slightly different collection of samples, possibly
with some repetition of samples.

3.3.3 Random forest out-of-bag score accuracy

We used out-of-bag samples from the bootstrap sampling step to provide an unbiased estimate of a random
forest classifier, the out-of-bag score12. After growing a forest of decision trees, we classified each out-of-bag
sample using the trees that grownwithout using the sample. If most trees correctly predicted the sample’s class, we
considered the out-of-bag sample correctly classified.The proportion of out-of-bag samples that this procedure
correctly classified is the out-of-bag score.

3.3.4 Regularized random forest

The random forests consist of decision trees made of nodes (decision points) and edges (two branches from each
decision point) that classify samples using𝑚 input transcriptional features.When constructing a decision tree
from 2𝑠 bootstrap-selected samples, we split nodes in a way that minimized the Gini impurity 47, how often the
decision tree would misclassify one of those training samples. In other words, we sought to find transcriptional
features and expression thresholds that maximized the Gini gain, defined as the decrease in Gini impurity.
Beginning with a root node containing all bootstrap selected input samples, we executed the following procedure
on each node in a growing decision tree:

1. If all the samples in the node come from the same cell type, we consider it a leaf node and continue to the
next unprocessed node.

2. We constructed a subset of the𝑚 input transcriptional features, consisting of a union of:

• ⌊√𝑚⌋ transcriptional features, randomly selected, without replacement
• all transcriptional features previously used to split nodes in this tree or any previously constructed
trees

3. We split the node using the transcriptional feature in the subset that could maximize the Gini gain.

Only splitting nodes using transcriptional features that can provide larger gain than any previously used
features provides a regularization capacity that reduces the total number of features used by the constructed
random forest. Using amore compact set of features can reduce overfitting.We then reported these features along
with the previously excluded features in their equivalence classes (subsubsection 3.3.1) as if CLA selected them.
After this step, we did not distinguish the previously excluded features from other features.

3.3.5 Robustness scores

Since random forest construction always begins with a random subset of transcriptional features, we might
select features with low discriminative power by chance48. To identify and remove the selected transcriptional
features with the lowest discriminative power, we defined a robustness score that indicated howmany times we
selected the transcriptional features in constructing 10 random forests, each forest itself made of many decision
trees (Figure 3).We also reported a robustness score for all the transcriptional feature in equivalence classes.
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3.4 Peripheral bloodmononuclear cells (PBMCs)

We obtained exactly 2700 PBMC single-cell RNA-seq samples from 10X Genomics (https://cf.10xgenomics.com/
samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz).We processed the data using Seu-
rat8 v4 and following the Seurat tutorial (https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html).

To removemultiplets, we discarded cells with more than 2500 genes detected. To remove low-quality cells,
we discarded cells with fewer than 200 genes detected. To remove cells exhibiting mitochondrial contamination,
we used the Seurat function PercentageFeatureSet() to discard cells with more than 5% of read counts
overlapping with mitochondrial genes.

To normalize the data, we used the Seurat function NormalizeData(normalizationmethod=
'LogNormalized', scale.factor=10000). This divided each gene read count by the number of reads
in each cell, and multiplied the relative counts by 10 000.

3.5 Differential expression analysis

We used the Seurat function FindMarkers() with default parameters to identify the genes differently ex-
pressed between CD14+ monocytes and FCGR3A+ monocytes.We used the normalized PBMC data as input to
Seurat (subsection 3.4).

We used DESeq2 v1.30 with default parameters to identify the transcription factors differentially expressed
between columnar-cuboidal epithelial cells and skin fibroblasts. We used FANTOM5 read counts
(https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks_expression/hg38_fair+
new_CAGE_peaks_phase1and2_tpm.osc.txt.gz) to generate transcription factor promoter count data
(subsubsection 3.1.4).We used the transcription factor promoter count data as input to DESeq2.

4 Discussion

We describe a simple, yet efficient, method to identify markers that distinguish between cell type pairs. Here,
we used bulk CAGE and single-cell RNA-seq gene and promoter expression data, but one can easily apply our
approach to other data containing genomic feature observations across large collections of samples.

While common differential expression tools selected more than 300 features on both single-cell RNA-seq
and bulk CAGE datasets, CLA selected at most 24 features. Transcriptional features considered significantly
differentially expressed by differential expression tools had median expression values of 0 in the two compared
cell types, including the top transcriptional features (Figure 7).When features most often have expression values
of 0 in both two cell types, they have decreased utility as distinctive markers for those cell types, to say the least.
CLA, however, selected the top differentially expressed features without including zero-inflated features. In this
way, CLA seems better at selecting cell-type–specific features. By selecting fewer and better cell-type–specific
features, CLA simplifies analyses comparing multiple cell types. This makes CLA suitable for the analysis of large
compendia of data describing many cell types.

Lacking comprehensive ground truth data on marker genes for cell types prevented hyperparameter tuning.
Our method has one important hyperparameter, the number of trees used in each random forest.We chose to use
500 trees for every cell type pairs because this resulted in more comparisons with higher accuracy, as estimated
using out-of-bag samples (Figure 2).

Using only the highest threshold (10/10) of robustness may eliminate important transcriptional features from
selection by CLA.The regularization layer prevents the selection of transcriptional features less important than
previously selected transcriptional features. Thus, by chance, one random forest instance may start using an
important transcriptional feature in the first decision point and keep reusing it.

Using CLA, we automated the identification of cell-type–specific transcriptional features by comparing all
possible cell type pairs from the FF sample ontology. Other studies that have used the Cell Ontology to identify
cell-type–specific genes49 have required setting arbitrary thresholds for considering a gene as specific or not50 or
have only considered increases in gene expression in a cell type of interest51. Our approach allows one to easily
identify cell-type–specific transcriptional features from thousands of samples.
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