Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

On eco-evolutionary dynamics of phenologies in competitive communities and their robustness to climate change

Thomas Cortier, Nicolas Loeuille
doi: https://doi.org/10.1101/2021.12.01.470711
Thomas Cortier
1iEES, Institut of ecology and environmental sciences of Paris, Pierre and Marie Curie campus, 4 place Jussieu 75005 Paris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cortier.thomas@gmail.com
Nicolas Loeuille
1iEES, Institut of ecology and environmental sciences of Paris, Pierre and Marie Curie campus, 4 place Jussieu 75005 Paris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Global changes currently cause temporal shifts in the favourable conditions for different phases of species life cycles. Phenologies characterizing temporal presence, may adapt through heritable evolution in response to these changes. Given a community context, this evolution may cause a change in the phenology overlap and thus a change of interspecific interactions such as competition. Using a model in which phenologies compete and coevolve, we study the conditions under which diversity emerges, as well as their annual distribution. We find that the environment richness (food quantity, light, pollinators…) and competition constrain the diversity and spread of phenologies. A robust pattern of phenologies distribution emerges consistent with Swedish flowering observations. Once a stable community is reached, we apply a progressive change in environmental conditions. We found that adaptation eventually restored diversity, but that the simulated change often led to numerous extinctions due to increased competition. The percentage of diversity lost depends on the speed of change and on the initial diversity. Phenologies already pre-adapted to the new environmental conditions drive the restoration of diversity after the change. We finally study a spatial version of the model in which local communities are organized along an environmental gradient. Pre-change, allowing dispersal decreases the local adaptation of phenologies to their local fixed environmental conditions. Dispersal however largely enhances the maintenance of biodiversity in changing environments, though its benefits are not homogeneous in space. Evolution remains the only rescue mechanism for southern phenotypes.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted December 02, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
On eco-evolutionary dynamics of phenologies in competitive communities and their robustness to climate change
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
On eco-evolutionary dynamics of phenologies in competitive communities and their robustness to climate change
Thomas Cortier, Nicolas Loeuille
bioRxiv 2021.12.01.470711; doi: https://doi.org/10.1101/2021.12.01.470711
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
On eco-evolutionary dynamics of phenologies in competitive communities and their robustness to climate change
Thomas Cortier, Nicolas Loeuille
bioRxiv 2021.12.01.470711; doi: https://doi.org/10.1101/2021.12.01.470711

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3514)
  • Biochemistry (7364)
  • Bioengineering (5341)
  • Bioinformatics (20316)
  • Biophysics (10038)
  • Cancer Biology (7769)
  • Cell Biology (11346)
  • Clinical Trials (138)
  • Developmental Biology (6445)
  • Ecology (9977)
  • Epidemiology (2065)
  • Evolutionary Biology (13351)
  • Genetics (9369)
  • Genomics (12603)
  • Immunology (7724)
  • Microbiology (19083)
  • Molecular Biology (7458)
  • Neuroscience (41125)
  • Paleontology (300)
  • Pathology (1235)
  • Pharmacology and Toxicology (2142)
  • Physiology (3174)
  • Plant Biology (6873)
  • Scientific Communication and Education (1276)
  • Synthetic Biology (1900)
  • Systems Biology (5324)
  • Zoology (1091)