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Abstract 

We show that accurate imputation can be carried out in three commercial plant species (maize, 

sugar beet and wheat) and that accurate imputation does not require a pedigree, although pedigree 

information can improve accuracy and speed. Our approach uses a hidden Markov model to build 

a haplotype library from individuals genotyped at high-density and then uses this library to impute 

low-density genotyped individuals to high-density. To build the library, we use founders when the 

pedigree is known, or a sample of progeny when the pedigree is unknown. Without a pedigree, 

and with 50 individuals genotyped at high-density and 100 low-density markers per chromosome, 

the median accuracies were 0.97 (maize), 0.96 (sugar beet), and 0.94 (wheat). We obtained similar 

accuracies with a pedigree. For biparental crosses with 100 markers per chromosome, median 

accuracies were 0.96 (maize), 0.96 (sugar beet) and 0.94 (wheat). For the imputation scenarios 

without a pedigree, we compared accuracies with those obtained by running Beagle 5.1. In all but 

one scenario, our method outperformed Beagle. We believe that plant breeders can effectively 

apply imputation in many crop species. 
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Introduction 

In this paper, we show that accurate imputation can be carried out in three commercial plant 

species (maize, sugar beet and wheat) and that accurate imputation does not require a pedigree, 

although pedigree information can improve accuracy and speed. Imputation is a valuable and 

widely used tool in plant breeding programmes and can decrease the cost of genomic selection. 

Genomic selection can increase the effectiveness of plant breeding [1,2] but requires genotyping 

large numbers of individuals at large-enough marker density, and this can be prohibitively 

expensive. One strategy to reduce cost is to genotype only a small number of individuals at high-

density (higher unit cost) and a much larger number at low-density (lower unit cost). Imputation 

can then recover much of the lost information by finding haplotypes common to the low- and high-

density genotypes and allows genomic selection to be applied [3–5].  

A common way to perform imputation is to use a hidden Markov model, which models an 

individual’s genotype as a mosaic of haplotypes from a haplotype library (built from individuals 

genotyped at high-density). We examine two ways to build the haplotype library. For accurate 

imputation, the library should contain as many of the (unique) haplotypes present in the population 

as possible. A guaranteed way to build such a library is to build it from founder genotypes; 

however, these are not always available. If the founders are not available, we can use a sample of 

individuals from the population. Increasing the number of sampled individuals will increase the 

‘completeness’ of the haplotype library (and hence increase imputation accuracy), albeit at an 

increased cost of genotyping. We refer to the two ways to build the haplotype library as imputation 

with a pedigree (founders used to build the library) or without a pedigree (sample of progeny used 

to build the library). 

One of the steps to applying imputation for plant breeding programs is the demonstration that 

already-existing imputation methods can yield good accuracies in commercial plant breeding 

programs. Previous work by Pook et al. 2019 [6], found that several versions of an already existing 

software package, Beagle (versions 4.0, 4.1, 5.0 and 5.1 [7–10]), achieved good imputation 

accuracies but depended on setting model parameters far away from their defaults to take into 

account the lower genetic diversity present in plant and animal breeding populations. 

In this study, we evaluate the performance of a hidden Markov model approach on commercial 

breeding material across three crop species: maize (Zea mays L.), sugar beet (Beta vulgaris L.) 

and wheat (Triticum aestivum L.).  

We obtained high imputation accuracies even with few low-density markers. Without a 

pedigree, and with 50 individuals genotyped at high-density and 100 low-density markers per 

chromosome, the median accuracies were 0.97 (maize), 0.96 (sugar beet), and 0.94 (wheat). We 

obtained similar accuracies with a pedigree. For the biparental crosses with 100 markers per 

chromosome, median accuracies were 0.96 (maize), 0.96 (sugar beet) and 0.94 (wheat). Imputation 

accuracy was better with a pedigree, but only when similar numbers of individuals were used to 

build the haplotype libraries. 

We believe that plant breeders can effectively apply imputation in many crop species and that 

while pedigree information is not required to obtain good accuracy, it can increase the accuracy 

and speed of imputation.  
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Materials and Methods 

Imputation method 

We used a Li and Stephens style hidden Markov model to perform imputation and phasing 

with and without a pedigree. This imputation method consists of two parts. First, we create a 

haplotype library by phasing the genotypes of individuals genotyped at high-density. Then we use 

the haplotype library to impute low-density genotyped individuals to high-density. For imputation 

with a pedigree, we restricted the haplotype library to founder haplotypes and examined biparental, 

three and four-way crosses separately. 

Hidden Markov model 

To perform imputation, we used a Li and Stephens hidden Markov model [11]. Under this 

model, we assume that an individual’s haplotypes are a mosaic of haplotypes from a haplotype 

reference library. The model infers which haplotypes the individual carries at each locus. We can 

define the model to work either on a single chromosome in a haploid model (for inbred individuals) 

or on pairs of chromosomes in a diploid model (for outbred individuals). The states in the model 

are either single haplotypes (haploid model) or pairs of haplotypes (diploid model) from the 

reference library. To define the hidden Markov model, we construct a state transition function, 

𝑃(𝑆𝑖|𝑆𝑖−1), and an emission function, 𝑃(𝐺𝑖|𝑆𝑖), where 𝑆𝑖 is the hidden state and 𝐺𝑖 the genotype 

at locus 𝑖. The transition function describes how states change throughout the genome, based on 

ancestral recombinations. The emission function connects the haplotype states to the observed 

genotype data, which may be collected with some error. The form of these functions depends on 

the type of hidden Markov model.  

Haploid hidden Markov model 

The haploid hidden Markov model assumes the genotype is homozygous at all loci (we set any 

residual heterozygous loci to missing). Homozygous loci are appropriate for inbred individuals 

generated either from multiple rounds of selfing or by doubled haploid technology. It models a 

target genotype as a mosaic of single haplotypes. Each hidden state corresponds to one of these 

haplotypes: if there are 𝐻 haplotypes, then there are 𝐻 possible hidden states. Initially, each state 

is deemed equally likely.  

The transmission function is defined by examining the possibility of moving to another state 

as we move from one locus to the next. The model assumes that if a transition between states 

occurs, then all destination states are equally likely, including a transition back to the original state. 

We follow Li et al., 2010 [12], and define this state-to-state transition probability as 𝜃/𝐻, where 

𝐻 is the number of states (haplotypes), and 𝜃 is a model parameter. The transition function is then:  

𝑃(𝑆𝑖|𝑆𝑖−1)  =  
1 − 𝜃 +

𝜃

𝐻
, if 𝑆𝑖 = 𝑆𝑖−1

𝜃

𝐻
, otherwise

 

In this model, 𝜃 represents an ancestral recombination rate, which gives the likelihood of a 

recombination occurring between the source haplotype in the haplotype reference library and the 

individual’s haplotype. For imputation with a pedigree, this can be calculated by using the genetic 

map length. We approximate this by using 𝜃 = 1/𝑁, where 𝑁 is the number of high-density loci 

in the chromosome being imputed. Such a value corresponds to a single recombination (on 
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average) between a parent and offspring, or equivalently a chromosome length of 100 cM. 

Different values might be more appropriate for imputation without a pedigree, or for larger or 

smaller chromosomes. In practice, however, we found that imputation accuracy is not particularly 

sensitive to this parameter and we used a fixed value of 𝜃 = 1/𝑁 for all loci. We do not iteratively 

refine it, as do Li et al., 2010. 

We model the emission probabilities using an error-rate parameter 𝜖. The emission probability 

is 1 − ϵ if the state's allele matches that of the target haplotype and ϵ if not. If the target allele is 

missing, the emission probability is set such that all states are equally likely (probability 1/𝐻). We 

also found that imputation accuracy is not sensitive to this parameter and used a fixed value of 

0.01 across all loci. 

Diploid hidden Markov model 

The diploid hidden Markov model is similar to the haploid one. Instead of focusing on a single 

haplotype, it represents a target genotype as a mosaic of pairs of haplotypes. This model is 

appropriate for outbred individuals. The hidden states correspond to all possible ordered pairs of 

haplotypes, such that 𝐻 haplotypes correspond to 𝐻2 states. As with the haploid model, all possible 

states are initially equally likely.  

The probability of changing state from one locus to the next depends on the kind of state 

change. Assuming that the transitions of each haplotype (in the state) are independent, we can 

calculate the transition function by simply multiplying those from the haploid model: 

𝑃(𝑆𝑖|𝑆𝑖−1)  =  

(1 − 𝜃 +
𝜃

𝐻
) × (1 − 𝜃 +

𝜃

𝐻
) , no change in state

(1 − 𝜃 +
𝜃

𝐻
) ×

𝜃

𝐻
, one haplotype changes

𝜃2

𝐻2
, both haplotypes change

 

As with the haploid model, we set 𝜃 to 1/𝑁 across all loci. 

We simplify the emission probabilities for the diploid case compared to Li et al., 2010, and 

only consider cases where the state's pair of alleles is consistent with the target genotype (with 

probability 1 − 𝜖) or not (probability 𝜖). If the target genotype is missing, we set the emission 

probability to 1/𝐻2 such that all states are equally likely. We used a fixed value of 0.01 for 𝜖. 

Phasing and imputing genotypes 

We calculate the probability of each state using the forward-backward algorithm (see, e.g., 

[13]), which gives a probability distribution, over the possible states, at each locus. We calculate 

genotype dosages by converting the state distributions, at each locus, to distributions over possible 

genotypes (0, 1, or 2). At a given locus, each state corresponds to a genotype, and we calculate the 

probability for each genotype by summing over the relevant state probabilities. The genotype 

dosage is the expected value of the probability distribution over genotypes. We calculate dosages 

in the imputation part of the method. 

For a target genotype, we sample states, in a similar way, by applying the forward algorithm, 

but sampling on the backwards pass (see Thompson [14], pp. 95 for an example of this). Each 

sample is one of the possible mosaics of haplotypes that models the genotype (single haplotypes 
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in the haploid model or pairs of haplotypes in the diploid model). We use sampling in the haplotype 

library creation part of the method. 

Haplotype filtering 

For the diploid hidden Markov model, it is often not computationally tractable to consider all 

possible states, as the number of states grows as 𝐻2. To control the complexity, we reduce the 

number of haplotypes to a (fixed-size) subset of haplotypes that are most similar to the target 

genotype. (We also keep this as an option for the haploid model, but it is often not necessary as 

the size of the state space only grows linearly). We divide each chromosome into windows 

containing equal numbers of markers. In each window, we rank the haplotypes in order of 

increasing number of opposite homozygous markers compared to the target genotype. We then 

select the top-ranked haplotypes from these lists. In the event of tied ranks, we randomly choose 

from the tied haplotypes. This approach is similar to that used in IMPUTE2 [15], except we do not 

iteratively refine the haplotypes selected based on the previous phasing of the haplotypes.  

For all the studies presented here, we used five windows per chromosome to filter a subset of 

100 haplotypes from the haplotype library (unless the library contained fewer haplotypes, in which 

case we used all of them). 

Haplotype library creation 

To create a haplotype library, we use a modified version of the method of Li et al., 2010 [12]. 

We only present a summary here and refer the reader to the reference for full details. First, we 

select individuals that will make up the haplotype library. Usually, these are individuals genotyped 

at high-density. The method phases these individuals using an iterative process as follows:  

i. randomly phase each genotype into a pair of haplotypes 

ii. sample a (refined) pair haplotypes using a suitable hidden Markov model 

iii. correct and update the haplotype pair  

iv. repeat steps ii) and iii) a fixed number of times.  

In pilot simulations, we found that good imputation accuracy required only a few iterations (5–10) 

and we used five iterations for all the studies here. 

Random phasing 

We randomly phase each target genotype into a pair of haplotypes. At heterozygous loci, the 

major allele is randomly assigned to either the first or second haplotype with equal probability. 

Missing loci are filled in according to the population minor allele frequency, MAF𝑖: at locus 𝑖, 
each haplotype is assigned the minor allele with probability MAF𝑖, or the major allele with 

probability 1 − MAF𝑖. Homozygous loci are de-facto phased. 

Sample and correct haplotypes 

We construct a hidden Markov model for each target genotype we are phasing. For a given 

target, the reference haplotypes we use are a filtered subset of haplotypes from all other individuals 

in the library (i.e., we exclude the haplotypes from the target individual). We sample haplotypes 

from the model to generate a pair of haplotypes. In the case of the haploid model, the pair of 

haplotypes is formed from two identical copies of the single sampled haplotype. A sample from 

the diploid model is already a pair of haplotypes. We correct the sampled pair of haplotypes to be 

consistent with the target genotype. At inconsistent loci, we alter the haplotypes' alleles using the 

same random phasing strategy as already described.  
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We repeat the sampling and correction steps for each individual in the library, and then update 

the library to consist of the new haplotype pairs. Each time we sample (and correct) a pair of 

haplotypes, we refine the phasing. 

Imputation of low-density genotyped individuals 

The method imputes low-density genotyped individuals to high-density using the same hidden 

Markov model and high-density haplotypes from a haplotype library. The hidden Markov model 

represents a low-density genotype as a mosaic of high-density haplotypes. We define the model 

over the high-density markers so that the state probability distributions are also defined over these 

markers. We pad the low-density genotypes with missing markers such that they have the same 

number of markers (as the high-density ones). From the probability distributions, we calculate 

genotype dosages at all high-density marker positions, effectively imputing the individual’s low-

density genotype at the high-density loci. If needed, imputed genotypes can be calculated by 

rounding the dosages to the nearest integer. 

Plant materials 

We used data from three crop species: maize (Zea mays L.), sugar beet (Beta vulgaris L.) and 

wheat (Triticum aestivum L.). Maize data consisted of 338 double haploid (DH) progeny generated 

from crosses of 26 DH lines, with the crosses being a mix of biparental, three- and four-way. Sugar 

beet data consisted of 1614 lines from biparental crosses of 41 heterozygous parents. The progeny 

were selfed twice. Wheat data consisted of 1035 DH lines from crosses of 113 inbred lines, with 

the crosses being a mix of biparental and three-way. Parents and progeny were genotyped on crop-

specific marker arrays with different numbers of markers. This study used approximately 600k 

markers for maize, 20k for sugar beet and 25k for wheat. Table 1 shows the numbers of genotyped 

individuals used in the imputation studies. 

All materials described in this study are proprietary to KWS SAAT SE & Co. KGaA. 

Imputation scenarios without a pedigree 

To test the accuracy of imputation without a pedigree, we used all biparental cross data from 

the three crops but excluded the parents. We varied the numbers of individuals genotyped on the 

high-density array to be 10, 20, 50, 100, 200, 500, or 1000. The remaining individuals were 

assigned to a simulated, low-density array with 10, 50, 100, 250, 500 or 1000 markers per 

chromosome. To account for the effect of which individuals are genotyped at high-density, we 

created ten replicates by repeating the partitioning of individuals into the high- and low-density 

arrays. 

To perform the imputation, we used the individuals genotyped at high-density to build the 

haplotype library and imputed the low-density genotypes to high-density. We compared both 

haploid and diploid hidden Markov models with the expectation that the haploid model would be 

better suited to maize and wheat and the diploid model to sugar beet. In practice, we found the 

diploid model generally outperformed the haploid one even for maize and wheat, and so report 

results only for the diploid model. 

Imputation scenarios with a pedigree 

When the pedigree is known, we imputed progeny genotyped at low-density from their parents 

genotyped at high-density. We used data from biparental crosses (maize, sugar beet and wheat), 

three-way crosses (maize and wheat) and four-way crosses (maize only). As with the scenarios 
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without a pedigree, we simulated six low-density marker arrays for the progeny with 10, 50, 100, 

250, 500 or 1000 markers per chromosome.  

We used all high-density, parent genotypes to build the haplotype library and imputed the 

progeny by restricting the haplotype reference library to just the individual’s parent haplotypes. 

We also compared the haploid and diploid hidden Markov models and found that the diploid model 

generally outperformed the haploid one, and so report results only for the diploid model. 

Simulated marker arrays 

We simulated low-density marker arrays by choosing a fixed number of markers from the 

original data. We followed the method described in Whalen et al., 2019 [16] and selected markers 

that have high minor allele frequency and are approximately evenly-spaced.  

To simulate a low-density array with 𝑛 markers per chromosome, we divide each high-density 

chromosome into 𝑛 evenly-spaced windows and score each marker with the following function: 

score𝑖 =  −(1 − 𝑑𝑖)[𝑝𝑖 log2 𝑝𝑖 + (1 − 𝑝𝑖) log2(1 − 𝑝𝑖)] 

where 𝑝𝑖  is the minor allele frequency of marker 𝑖 and 𝑑𝑖 is the fractional distance between the 

marker and the centre of its window. This function is maximised for markers that are close to the 

centre of their window (1 − 𝑑𝑖 ≈ 1) and have minor allele frequency close to 0.5. For each 

window, we chose the marker with the highest score to be included on the low-density array.  

Imputation accuracy 

For each scenario, we imputed the individuals one chromosome at a time. Imputation accuracy 

was measured using the Pearson correlation between the true genotype and imputed genotype 

dosages both corrected for minor allele frequency (see, e.g., [17,18]). To obtain an accuracy for 

each chromosome, we use the median accuracy over all imputed individuals and all ten replicates. 

For wheat, we did not attempt to impute the D genome due to the low numbers of assigned markers 

(average of 54.7 markers per chromosome). 

Comparison with Beagle 

For the biparental cross scenarios without a pedigree, we compared accuracies with those 

obtained by running Beagle 5.1 [7,10]. We ran Beagle in two steps: first creating a haplotype 

library from the individuals genotyped at high-density and then imputing the individuals 

genotyped at low-density using that haplotype library. In both steps, we used the default settings, 

except we used an effective population size of 100, following Pook et al. [6]. 
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Results 

Increasing the number of low-density markers increases imputation accuracy. For imputation 

without a pedigree, increasing the number of individuals used to build the haplotype library 

increases accuracy. Imputation with a pedigree is more accurate than without a pedigree, when the 

same number of individuals (founders or progeny) are used to build the haplotype libraries. The 

accuracy of our method is better than Beagle in the majority of cases. 

Imputation accuracy without a pedigree 

Figure 1 shows imputation accuracy for biparental cross scenarios without a pedigree, versus 

the number of markers on the low-density array when 50 individuals were used to build the 

haplotype library (100 haplotypes). This figure, and subsequent box plots, show the variation in 

accuracy across chromosomes: the data for each box are the per chromosome median accuracies. 

Accuracies increase smoothly with increasing marker density and plateau at around 250 markers. 

The accuracies increase from 0.85 (maize), 0.77 (sugar beet) and 0.69 (wheat) at ten markers to 

0.99 (maize), 0.98 (sugar beet) and 0.97 (wheat) at 250 markers. 

For imputation without a pedigree, the number of individuals used to build the haplotype 

library is an important factor. Increasing the number of individuals increases imputation accuracy, 

but also increases genotyping cost. Figure 2 shows imputation accuracy versus the number of 

individuals used to build the library for 100 low-density markers. Accuracies increase smoothly as 

the number of individuals increases, reaching a plateau after approximately 100 individuals.  

Imputation accuracy with a pedigree 

Results for imputation with a pedigree are similar. Figure 3 shows imputation accuracy versus 

the number of markers on the low-density array for maize (biparental, three-way and four-way 

crosses), sugar beet (biparental only) and wheat (biparental and three-way). Accuracies increase 

smoothly and reach a plateau at around 250 markers. In all cases, imputation accuracy decreases 

with increasing numbers of founders. For biparental crosses, the accuracies increase from 0.80 

(maize) 0.79 (sugar beet), 0.72 (wheat) at ten markers to 0.97 (maize), 0.98 (sugar beet), 0.97 

(wheat) at 250 markers. For three-way crosses, accuracies increase from 0.72 (maize), and 0.66 

(wheat) at ten markers to 0.96 (maize) and 0.96 (wheat) at 250 markers. Accuracies for the four-

way cross (maize only) increase from 0.48 at ten markers to 0.91 at 250 markers. 

Comparison between imputation with and without a pedigree 

Imputation accuracy with a pedigree is higher when a similar number of individuals are used 

to build the haplotype library. Figure 4 compares the imputation accuracy between scenarios for 

biparental crosses with and without a pedigree. For all crops, the accuracy of the scenarios with a 

pedigree is greater when the number of individuals used to build the haplotype libraries is 

comparable.   

It is possible to exceed the accuracy of imputation with a pedigree by using enough individuals 

(compared to founders) to build the haplotype library. In maize, imputation using 50 progeny to 

build the haplotype library has higher accuracy than imputation with a pedigree, in which seven 

founders are genotyped at high density. For the other two crops, the corresponding numbers, at 

which the imputation accuracy is exceeded, are 100 progeny versus 32 founders for sugar beet and 

100 progeny versus 60 founders for wheat.  
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Comparison with Beagle 

For the biparental cross scenarios without a pedigree, we compared the performance of our 

method (which we call AlphaPlantImpute2) with Beagle 5.1. Figure 5 shows the accuracy of 

AlphaPlantImpute2 versus the accuracy of Beagle 5.1. In all but one scenario, our method 

outperforms Beagle. As the number of individuals used to build the haplotype library increases, 

the accuracy of Beagle moves closer to that of our method, but only exceeds it for sugar beet with 

ten markers and 1000 individuals.  
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Discussion 

In this paper, we demonstrate that plant breeders can effectively apply imputation in many crop 

species. Pedigree information is not required to obtain good accuracy, but it can improve the 

accuracy and the speed of imputation. 

Excellent imputation accuracy is possible without pedigrees 

Our results show that excellent accuracy is possible in realistic scenarios. With 50 individuals 

genotyped at high-density and 250 markers per chromosome on the low-density array, imputation 

accuracies exceeded 0.97 for the three crop species. As the accuracies plateau around these values, 

there is an accuracy-cost trade-off that the plant breeder needs to consider. For example, doubling 

the number of individuals to 100 would increase the accuracy to > 0.99 for all crops, but doubles 

the genotyping cost. 

Pedigree information is useful 

Pedigree information can increase accuracy by reducing the set of haplotypes that are used for 

imputation. Such a reduction also leads to a considerable speed improvement for the diploid hidden 

Markov model as the time it takes to impute individuals scales quadratically with number of 

haplotypes. 

With relatively few founders, the imputation accuracy can be exceeded by scenarios without a 

pedigree when a greater number of progeny (compared to founders) genotyped at high-density are 

used to build the haplotype library. A possible strategy combining the best from scenarios with 

and without a pedigree would be to use founders and additional progeny genotyped at high-density 

to build the haplotype library. Then, as with the scenarios with a pedigree, only use the founder 

haplotypes to impute the progeny. Such a strategy would be an interesting follow on study. 
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Conclusion 

We have shown that accurate imputation is possible in commercial crop species. For the plant 

breeder, the choice of the number of markers on the low-density array, and the number of 

individuals genotyped at high-density is essential. Too few markers or individuals, and imputation 

accuracy will be low, but increasing the numbers provides ever-decreasing returns as the 

accuracies quickly plateau. For the crop species studied here, we found that excellent imputation 

accuracy needs approximately 50 individuals genotyped at high-density and low-density arrays of 

approximately 100 markers per chromosome. Accurate imputation does not require pedigree 

information or the genotyping of founders at high-density; however, these can easily be 

incorporated into the method and can increase imputation accuracy and computational speed. 
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Figures 

 

Figure 1: imputation accuracy versus number of low-density markers (per chromosome) for 

biparental crosses of maize, sugar beet and wheat. The reference haplotype library contains 100 

haplotypes (built from 50 individuals genotyped at high-density). Note: there are no boxes for 

wheat at 500 or 1000 markers as all the wheat chromosomes have fewer than 500 high-density 

markers. The data for each box are the per chromosome median accuracies. Model parameters, 

as described in the text. 
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Figure 2: imputation accuracy versus the number of individuals used to build the haplotype 

library (genotyped at high-density) for biparental crosses of maize, sugar beet and wheat. The 

number of low-density markers is fixed at 100. Note: there are no boxes for maize (200, 500 or 

1000 individuals) or wheat (1000 individuals) as the corresponding datasets contain fewer 

individuals. The data for each box are the per chromosome median accuracies. Model 

parameters, as described in the text. 
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Figure 3: imputation accuracy versus number of low-density markers (per chromosome) for a) 

maize (biparental, three- and four-way crosses), b) sugar beet (biparental) and c) wheat 

(biparental and three-way). Note: there are no boxes for wheat at 500 or 1000 markers as all 

wheat chromosomes have fewer than 500 high-density markers. The data for each box are the per 

chromosome median accuracies. Model parameters, as described in the text. 
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Figure 4: imputation accuracy versus number of low-density markers (per chromosome) with a 

pedigree (all founders used to build the haplotype library) and without a pedigree (10, 20, 50 or 

100 individuals used to build the haplotype library). The data for each box are the per 

chromosome median accuracies. Model parameters, as described in the text. 
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Figure 5: imputation accuracy of our method (AlphaPlantImpute2) versus Beagle 5.1 for 

biparental cross scenarios without a pedigree. Each point displays the median imputation 

accuracy over all imputed individuals, replicates and chromosomes. Model parameters, as 

described in the text. 
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Tables 

Table 1: numbers of genotyped individuals used in the with and without a pedigree imputation 

studies. Note: for sugar beet and wheat, we used more individuals in the without a pedigree case 

as we could use individuals irrespective of whether their founders were genotyped. 

 Without a 

pedigree 

 With a pedigree 

 Biparental  Biparental Three-way Four-way 

 Progeny  Founders Progeny Founders Progeny Founders Progeny 

Maize 127  7 127 10 142 13 69 

Sugar beet 1614  32 1338 – – – – 

Wheat 555  60 506 71 443 – – 
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