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Abstract 

Adaptive sampling enables selection of individual DNA molecules from sequencing libraries, 

a unique property of nanopore sequencing. Here we develop our adaptive sampling tool 

readfish to become “barcode-aware” enabling selection of different targets within barcoded 

samples or filtering out individual barcodes. We show that multiple human genomes can be 

assessed for copy number and structural variation on a single sequencing flow cell using 

sample specific customised target panels.  

Main Text 

Adaptive sampling is the process by which individual DNA molecules within a library can be 

dynamically selected for sequencing, a property unique to Oxford Nanopore Technologies 

(ONT) sequencers 1. Recently we developed readfish, which uses real-time base calling to 

analyse read data as molecules are being sequenced 2. Using readfish, it is possible to 

enrich target regions of human genomes as well as manipulate sequencing coverage of 

metagenomic samples 2–4. Here we show this method can be extended by enabling the use 

of barcoded samples with readfish. This allows for individual barcodes to be switched off 

during a run or enables the use of targets specific to each sample and barcode. 
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An advantage of sequence based approaches to adaptive sampling is that existing tools, 

such as barcode demultiplexers, can be easily incorporated into the readfish workflow. 

Although signal based methods to identify barcodes exist, no sufficiently fast methods are 

currently available 5. We therefore adapted our existing readfish pipeline to be compatible 

with built-in Guppy demultiplexing (ONT) and incorporated barcode classifications into the 

data readfish uses to make a decision about sequencing or rejecting a read. 

 

An important consideration in adaptive sampling is what duration of signal data is needed for 

an accurate mapping of a read fragment. Previously we used chunks of 0.4 seconds of data 

2, (roughly 1,600 samples) but reasoned the inclusion of additional barcode sequence at the 

start of each read would require additional data. To test this we took a set of reads (see 

methods) and sampled signal from the start of each representing data seen when running 

adaptive sampling. We then used a variety of base caller models (see methods) and two 

signal alignment tools, Uncalled and Sigmap, to analyse mappings from each of these 

synthetic reads and methods 3,6. As readfish uses the start coordinate of a mapping to 

determine if a read is on target, we compared the predicted mapping coordinate with that 

from the full length read (high accuracy mode - HAC). A correct mapping is defined as one 

where the start mapping coordinates are within 100 bases of one another. We found that 

3,600 samples (or 0.8 seconds of data) was sufficient to correctly place reads (F1>0.9, fast 

model) (Figure 1A). Similarly, this same window also enabled appropriate barcode mapping 

accuracy (F1>0.9, fast model) (Figure 1B). Therefore we configured all our experiments to 

use data in chunks of 0.8 seconds (3,200 samples of data). 

 

Readfish can be configured to handle barcodes in two ways. For simple experiments, the 

user can identify a list of barcodes to be either rejected or accepted. In this way users can 

exclude or include a subset of barcodes on a sequencing run (Figure 2A). For more complex 

experiments, the user can configure a set of targets for each individual barcode in a library 

and so sequence specific regions from each. For example, a cancer gene panel for sample 
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A, a developmental disorders panel for sample B and a neuropathology panel for sample C. 

Figure 2B illustrates a simple barcoded sample where different regions of a bacterial 

genome are selected on each barcode in real-time. As readfish maps using sequences it is 

only limited by available memory and easily handles gigabase genomes. In addition there is 

no requirement for each sample to be from the same organism and so readfish can target 

multiple references. To simplify creation and dynamic update of readfish configuration files, 

we provide a set of command line tools to configure options for multiple barcodes 

(https://github.com/looselab/readfish-tools).  

 

To test the performance of this approach, we used three previously described cell lines: 

GM12878, from the Utah/CEPH pedigree; NB4, a cell line carrying a fusion between PML 

and RARA representing an acute promyelocytic leukemia (APL); and 22Rv1, a prostate 

cancer derived cell line containing significant chromosomal abnormalities 7–9. For each 

sample, we chose a specific gene panel. GM12878 was targeted using a panel defined by 

the gene list in the commercially available TruSight 170 Tumor panel 10. As the NB4 cell line 

contains an APL fusion, we selected the TruSight RNA Fusion Panel 11. For the more 

complex 22Rv1 prostate cancer line we used the previously described COSMIC panel 2,12. 

Samples were barcoded and sequenced on a single flow cell, and run for 72 hours (see 

methods). Every 24 hours the flow cell was washed with nuclease flush and another aliquot 

of the library loaded 2. In a single experiment using a flow cell with 1,330 pores, 18.1 Gb of 

data were generated, with a total of 15 Gb successfully demultiplexed into barcoded data 

(Table 1). 

 

Across the whole experiment, the on target read N50 was 7 kb, with the rejected read N50 

being 579 bases, or approximately 1.3 seconds of sequencing. This results in mean read 

coverage on target regions of between 11x and 15x. Inspection of individual targets including 

BRCA1, NBR1, PML and RARA demonstrates the ability to specifically target unique regions 

on each sample (Figure 3).  Current best practice for variant calling requires higher minimal 
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depth than we achieve when looking at three samples. However, long range structural 

variants can be measured and so we used cuteSV 13 to analyse these three samples. As 

expected, multiple reads supporting the detection of a fusion between PML and RARA were 

detected in the NB4 cell line (Figure 4). In contrast, this rearrangement was not found in the 

22Rv1 line. We cannot formally exclude the presence of this variant in GM12878 as neither 

PML or RARA were within the gene panel used for this cell line (Figures 3,4).  

 

Finally, we turned to a natural application for adaptive sampling which considers the 

mappings of rejected reads. Various approaches have been developed using binning of 

short reads to detect copy number variation by applying a variety of statistical approaches 14. 

These methods also work with nanopore sequencing 15, but the resolution of detection will 

be dependent on the total number of reads generated during a sequencing run. Adaptive 

sampling increases read count as a consequence of rejecting molecules once they are 

confidently mapped to an off-target region. We therefore developed a simple approach to bin 

read counts across the genome such that, on average, each bin would contain 100 reads, 

and monitored this in real-time using our minoTour tool 16. For each barcoded sample 

changes in copy number are immediately apparent and can be visualised using any change 

point detection approach, here we use Ruptures (Figure 5) 17. As expected, GM12878 

(barcode 1) does not show significant copy number changes, whereas NB4 (barcode 2) and 

22Rv1 (barcode 3) both closely recapitulate results generated by Bionano optical mapping 

(Figure 6).  

Discussion 

Extending readfish to become “barcode aware” enables more sophisticated selection 

experiments that are better able to exploit adaptive sampling in a variety of contexts. Here 

we demonstrate that individual samples can be targeted with unique panels of genes, 

selected based on knowledge of the sample, enabling the user to ask and answer specific 
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questions. On a single MinION flow cell, 3 human genomes can be analysed in real-time 

with coverage sufficient to detect structural and copy number variation. In this case, yield 

limitations prevent a realistic assessment of SNPs. However, we anticipate higher yield or 

running two human samples per flow cell would enable this. Of course, smaller genomes will 

generate proportionally higher coverage enabling more samples to be run on a single flow 

cell as well as providing greater depth for variant calling. Similarly, as flow cell yield 

increases, and these features become available on platforms such as the PromethION, it will 

become possible to target multiple human samples on single flow cells. 

 

Alongside these targeted experiments, this approach also allows users to simply switch off 

barcodes for which sufficient data have been generated. This will enable dynamic 

adjustment of yields obtained from individual samples in barcoded libraries. Our initial testing 

shows these approaches will work with the full 96 barcodes currently available on nanopore 

platforms. Coupling multiple samples with barcode aware readfish and real-time analysis of 

the data obtained will enable faster experimental turn around times, more efficient use of 

flow cell resources and more comprehensive analysis pipelines. 

Methods 

Synthetic read generation and analysis. 

To demonstrate our choice of parameters for read mapping and barcode calling, we 

obtained reads mapping to either chromosome 15 or 17 from the sequenced subset of reads 

ending up in the pass folder from NB4 (barcode02). Using the ONT Fast5 API 

(https://github.com/nanoporetech/ont_fast5_api), we generated varying sizes of chunks of 

signal from the start of these reads incrementing in 0.1 second equivalents (400 samples) to 

1 second, then 0.25 seconds to a total of 10,000 samples per read (2.5 seconds). These 

reads were base called using Guppy (v5.0.16+b9fcd7b) and mapped using minimap2 to the 
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target regions of chromosomes 15 and 17 defined by the trusight RNA fusion panel 11. 

Mapping used minimap2 18 with the -x map-ont and --paf-no-hit option to retain all reads 

regardless of mapping. We chose the high accuracy model as our truth set as this is the 

current standard base caller. By using the subset of reads from chromosome 15 and 17 

targets only, and hence a smaller reference,  we could also test signal based methods for 

mapping reads including uncalled (v2.2) and sigmap (v0.1) 3,6.  

 

For determining alignment accuracy we considered read starts mapping within 50 bases of 

the truth set as true positives, although for many applications this may be overly stringent. At 

this stringency, the fast base calling model recovered true mappings with an F1 score of 

0.903524 (precision = 0.927901, recall = 0.880395). The code is available in the 

accompanying data notebooks. As a result we selected 0.8 seconds of data for analysis. 

Neither sigmap nor uncalled were optimised beyond the default settings and performance 

could likely be improved further. 

 

For barcoding of data, we used Guppy demultiplexing and tested no other approach. Truth 

sets were defined using the full length reads as above. We compared the impact of the base 

caller model on barcode detection and found the fast model recovers the correct barcode 

with an F1 > 0.9 at 1,600 samples. 

Running readfish Barcoding 

Running read until and adaptive sampling requires the ONT Read Until API (version 3.0.0, 

https://github.com/nanoporetech/read_until_api/tree/release-3.0) and the ONT PyGuppy 

Client library (version 5.0.13, https://pypi.org/project/ont-pyguppy-client-lib/5.0.13/). Readfish 

(https://github.com/LooseLab/readfish; commit 9e8794a) was run using a GridION MK1 

(MinKNOW v4.3.2; Guppy v5.0.13; minimap2 v2.22), the MinKNOW configuration scripts 

were configured to serve data in 0.8 second chunks. 
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The readfish script carrying out the selective sequencing was “readfish barcode-targets”. 

This script runs the core Read Until process as specified in the experiment’s TOML file. With 

a single reference genome the script can select specific target regions on each barcode by 

using Guppy to base call and demultiplex the raw signal in real-time. The resultant read is 

then aligned to the reference using minimap2 and is determined to be on or off target 

depending on it's barcode assignment and mapping start. 

Library Preparation, Sequencing and Analysis 

Barcoded LSK-110 (ONT) sequencing libraries were prepared from either GM12878 cells 

(Coriell), NB4 cells (gift from M. Hubank) or 22Rv1 cells (ATCC) as described in Jain et al. 7. 

For test experiments bacterial DNA was extracted using genomic tip (QIAGEN). Extracted 

DNA was sheared to approximately 12 kb using g-Tube (Covaris). All sequencing used FLO-

MIN106 R9.4.1 flow cells. Flow cells were run with flushing and reloading as previously 

described in Payne et al. 2.  

To investigate structural variation across the dataset, we ran CuteSV on each barcoded 

sample using standard options but varying the -s MIN SUPPORT values. No SVs in known 

fusion genes were reported in NA12878 or 22Rv1 (-s 2), known fusions including PML 

RARA were readily detected in NB4 (-s 5)13. SVs were visualised using Ribbon 19. 

To visualise changes in copy number, reads were mapped to hg38, filtered to mapping 

scores >20 and uniquely mapping. Then the first primary mapping for any read was 

determined and mappings binned into windows along the genome such that on average 

each bin contains 100 reads. Runs were monitored in real-time using minoTour 

(https://github.com/LooseLab/minotourapp/; commit: 1f9c678), providing coverage statistics, 

mappings and estimates of copy number variation in real-time 16.  During real-time analysis 

reads were mapped to Chm13 telomere-to-telomere assembly 20,21. Post-run copy number 

plots were generated using matplotlib with data mapped to hg38 to compare with the output 

of the Bionano copy number pipeline (see notebooks).  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.12.01.470722doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470722
http://creativecommons.org/licenses/by-nc/4.0/


 

To visualise coverage over specific targets reads were divided into those actively sequenced 

and those unblocked using the unblocked read ids file generated by readfish. Reads were 

mapped to hg38, coverage depth calculated using mosdepth v0.3.122 and visualised using 

matplotlib (v3.4.3).   

Bionano Methods 

DNA extraction and labelling for Bionano 

DNA was prepared from frozen cell pellets of 1.5 million cells using the Bionano Prep SP 

Blood and Cell Culture DNA Isolation Kit (Bionano Genomics; 80042) according to the 

manufacturer's instructions. DNA was homogenised and quantified using Qubit dsDNA BR 

Kit (Thermo Fisher; Q32853) on a Qubit 4 Fluorometer (Thermo Fisher; Q33238). 750 ng of 

gDNA was then labelled with Direct Label Enzyme 1 (DLE-1) and DNA backbone stain using 

the Bionano Prep Direct Label and Stain (DLS) kit (Bionano Genomics; 80005) according to 

the manufacturer’s instructions. Labelled DNA was quantified using the Qubit dsDNA HS Kit 

(Thermo Fisher; Q32851) on a Qubit 4 Fluorometer. Labelled DNA was loaded onto a 

Bionano Saphyr G2.3 chip (Bionano Genomics; 20366) and run on a Gen 2 Bionano Saphyr 

System (Bionano Genomics; 60325) until 1.320 Tbp of data had been collected for each of 

NB4 and 22Rv1. This data had respective mapping rates to hg38 reference sequence of 

89% and 79%, equating to 382x and 337x coverage respectively. 

Data analysis 

Post run data filtering and analysis was carried out using Bionano Access 1.5.2. For each 

sample the data set was filtered and sub-sampled to produce 320 Gbp of data with 150 kb 

minimum length and at least 9 labels per molecule. Filtered data was processed to produce 

annotated de novo assemblies using the default parameters, but with masking using the 

hg38 DLE-1 SV Mask BED file. Structural variant (SV) and copy number variants (CNV) 

coordinates were then visualised using Bionano Access. All described analysis was 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.12.01.470722doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470722
http://creativecommons.org/licenses/by-nc/4.0/


 

performed on dedicated Bionano compute with the following versions installed: Bionano 

Access1.5.2, Bionano Tools 1.5.3, Bionano Solve Solve3.5.1_01142020, RefAligner 

10330.10436rel, HybridScaffold 12162019, SVMerge 12162019 , VariantAnnotation 

12162019, Compute on Demand 1.5.1. 
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Figures and Tables 

 

Figure 1 
Comparison of base callers, alignments and barcode classifications. A set of pass 
reads derived from chromosome 15 and 17 targets from the truSight Fusion panel were 
generated. A) Reads were base called using the super accuracy (sup), high accuracy (hac), 
fast (fast) or sketch (sketch) models of guppy and mapped to a synthetic genome containing 
only the target regions for those read targets. These same reads were also mapped using 
the signal aligners Uncalled and Sigmap. Truth was defined as the start mapping coordinate 
for the full length read (original). Read fragments were scored as mapping correctly if the 
start mapping coordinates were within 50 bases of the true start mapping position. 0.9 F1 is 
exceeded at 0.8 seconds of data (3200 samples) for the fast model. B) F1 score as 
measured by concordance in barcode identified where truth is the HAC model. 
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Figure 2 

 
Naive barcoding selective sequencing A) Demonstration of “switching off” individual 
barcodes from a sequencing library. Selected barcodes identified in the panel titles. Top row 
shows sequenced reads, lower panel shows the rejected or unblocked reads. As barcoding 
both ends is used to specify barcode, all rejected reads become unclassified (Un) by default.  
B) Switching the mode of operation for readfish from simple barcode rejection to differential 
targets. Sample shown is Clostridioides difficile. Targeted regions are shown in black.  
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Figure 3 

 
Target and barcode specific gene coverage. Illustration of coverage over each barcoded 
sample for each target in the panel. Blue is sequenced read coverage, red illustrates 
coverage of rejected reads. A) shows coverage over BRCA1 and the adjacent gene NBR1. 
BRCA1 was a target for barcode 1 and 3, but not 2. The targeted regions are illustrated 
below the coverage plots. Note that the region representing BRCA1 differs in barcode 1 and 
3 by design. NBR1 was only targeted on barcode 2. B) and C) illustrate coverage over PML 
and RARA respectively, which were only targeted on barcodes 2 and 3. 
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Figure 4 

 
Visualising Structural Variation. Using Ribbon, we visualise reads covering PML (chromosome 15) and any known fusions. A) Barcode 01, 
GM12878, has only two reads in the candidate region as PML is not included within the targets for this sample. B) Barcode 02, NB4, shows 
multiple reads spanning PML and linking to RARA (chromosome 17) as expected for this fusion cell line. C) Barcode 03, 22Rv1, also had PML 
within the target gene list, but had no structural variant in this region as expected. SVs were identified using CuteSV (supplementary file 1).  
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Figure 5 

Real-time monitoring of copy number change. MinoTour generates real-time counts of reads dynamically binned such that each bin 
contains on average 100 reads. Samples shown here mapped to Chm13 T2T reference. Left hand plots show coverage over all chromosomes, 
right hand plots show just chromosome 12. Red Blue banding indicates change points as dynamically detected by Ruptures. A) barcode 01, 
GM12878, bin width 86,600 bases. B) barcode 02, NB4, bin width 60,570 bases C) barcode 03, 22Rv1, bin width 76,470 bases. 
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Figure 6 

 
Matched Nanopore Bionano CNV visualization. Nanopore read data and Bionano optical 

reads both mapped against hg38. Blue points show where binned data indicates greater 

than expected copy number, red points where binned data indicates lower than expected 

copy number.  A) NA12878 showing Nanopore adaptive sampling data only from barcode 

01. B) NB4 and C) 22Rv1 showing Nanopore adaptive sampling data and Bionano optical 

mapping data.  
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Table 1 
 

Barcode Sample Panel Gene 
Number 

Yield 
(Gb) 

On 
Targe
t (Gb) 

On 
Targe
t N50 

On 
Targe
t 
Mean 

Off 
Target 
Mean 

Mean 
Target 
Coverage  

01 GM12878 TruSight 
170 Tumor 
Panel 

170 3.8 0.355 8,149 1,926 554 11.0 

02 NB4 TruSight 
RNA Fusion 
Panel 

508 6.1 1.240 7,191 4,203 551 15.0 

03 22Rv1 COSMIC 717 5.1 1.250 6,858 5,065 556 11.5 

Unclassified    3.1    736  

Total    18.79   3,221  587  

 
Sample Performance.  Run metric performance per barcode and over the entire flow cell. 

Metrics are derived from real-time monitoring with minoTour. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.12.01.470722doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470722
http://creativecommons.org/licenses/by-nc/4.0/

