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ABSTRACT18

Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system and climate modelling to
territorial and urban planning. Global LULC products are continuously developing as remote sensing data and methods grow.
However, there is still low consistency among LULC products due to low accuracy for some regions and LULC types. Here,
we introduce Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the consensus of 15 global LULC maps
available in Google Earth Engine. Sentinel2GlobalLULC v1.1 contains 195572 RGB images organized into 29 global LULC
mapping classes. Each image is a tile that has 224×224 pixels at 10×10 m spatial resolution and was built as a cloud-free
composite from all Sentinel-2 images acquired between June 2015 and October 2020. Metadata includes a unique LULC
type annotation per image, together with level of consensus, reverse geo-referencing, and global human modification index.
Sentinel2GlobalLULC is optimized for the state-of-the-art Deep Learning models to provide a new gate towards building precise
and robust global or regional LULC maps.

19

1 Background & Summary20

Land-Use and Land-Cover mapping aims to comprise the continuous biophysical properties of the Earth surface into synthetic21

categorical classes of natural or human origin, such as forests, shrublands, grasslands, marshlands, croplands, urban areas22

or water bodies1. High resolution LULC mapping plays a key role in many fields, from natural resources monitoring, to23

biodiversity conservation, urban planning, agricultural management or climate and earth system modelling2–4. Multiple24

LULC products have been derived using satellite information at the global scale (Table 2), contributing to a better monitoring25

and understanding of our planet5, 6. However, despite the acceptable accuracy of each individual product, a considerable26

disagreement between products has been reported4, 7–22. There are several methodological reasons behind this problem:27

• Different satellite sensors with different spatial resolutions were used in each product, so the difference in precision from28

coarse to fine resolution partially determines the final quality of each product.29

• Different pre-processing techniques, like atmospheric corrections, cloud removal and image composition were used in30

each LULC product.31

• Each LULC product has a different temporal updating rate, some are regularly updated, whereas others have never been32

updated.33
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• Different classification techniques, field-data collection approaches and subjective interpretations were used to create34

each product.35

• Different classification systems (LULC legends) were adopted in each product, usually focused on distinct applications.36

• Different validation techniques and different ground truth reference data were used in each product, which impedes a37

reliable accuracy comparison.38

Over the last few years, several attempts have been made to overcome these inconsistencies with a harmonised approach39

capable of providing greater control in the validation and comparison over the growing number of existing LULC products23, 24.40

Even though, users still have some issues regarding appropriate product selection due to the following factors:41

• In most cases, users are unable to find a product that fits their desired LULC class or geographic region of interest25, 26.42

• These products are usually collected at a coarse resolution, which makes analysis at a finer scale difficult12.43

• These products offers a limited number of LULC classes that usually change from one product to another27.44

In parallel, Deep artificial neural networks, also known as Deep learning (DL), are increasingly used in LULC mapping with45

promising potential28. This interest is motivated by the good performance of DL models in computer vision and, particularly of46

Convolutional Neural Networks (CNNs) in remote sensing image classification and many applications29–33. However, to reach47

high performance, DL models need to be trained on large smart datasets34. The concept of smart data involves all pre-processing48

methods that improve value and veracity of the data in addition to the quality of the associated expert annotations35.49

Currently, there exist several remote sensing datasets derived from satellite and aerial imagery ready for training DL models50

for LULC mapping (Table 1). However, they still suffer from some limitations, particularly to be used with DL models:51

• None of them represent the global heterogeneity of the broad categories of LULC classes throughout the Earth. Usually,52

they are biased towards specific regions of the world, limited to national or continental scales, which can propagate such53

bias to the DL models36–38. As illustration, the reader can see how visual features of urban areas may change from one54

country to another (Figure 1).55

• They are relatively small and have only hundreds to few thousands of annotated data records39.56

• They suffer from high variability in atmospheric conditions, and they have high inter-class similarity and intra-class57

variability, which makes class differentiation difficult39, 39.58

To overcome these limitations, we introduce in this paper Sentinel2GlobalLULC, a smart dataset with 29 fully annotated59

LULC classes at global scale built with Sentinel-2 RGB imagery. Every image in this dataset is geo-referenced and labeled with60

its corresponding LULC annotation. Each image label was carefully built from a consensus approach of up to 15 global LULC61

maps available on Google Earth Engine(GEE)40. We released a tif and jpeg version of each image. Moreover, we attached to62

these images, a CSV file for each LULC class containing the coordinates of each image center, and additional metadata. Sen-63

tinel2GlobalLULC could be used to train and/or evaluate DL based models for global LULC mapping. Sentinel2GlobalLULC64

aims to foster the creation of accurate global LULC products exploiting the advantages that currently offer deep learning65

models. We expect this dataset to improve our understanding and modelling of natural and human systems around the world.66

2 Methods67

To build Sentinel2GlobalLULC, we followed two main steps. First, we established a spatial consensus between 15 global68

LULC products for 29 LULC classes. Then, for each class, we carefully extracted the maximum possible number of Sentinel-269

RGB images in 224×224 pixel tiles at 10 m/pixel spatial resolution. Both tasks were implemented using GEE, an efficient70

programming, processing and visualisation platform that allowed us to have free manipulation and access to all used LULC71

products and Sentinel-2 imagery, simultaneously.72

2.1 Finding spatio-temporal agreement across 15 global LULC products73

To establish the spatio-temporal consensus between different LULC products for each one of the 29 LULC classes, we followed74

four steps: 1) identification of the LULC products to use for the consensus, 2) standardization and harmonization of the LULC75

legend that was subsequently used as annotation, 3) spatio-temporal aggregation across selected LULC products, and 4) spatial76

reprojection and tile selection based on optimized spatial purity thresholds.77
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2.1.1 Global LULC products selection78

To find areas of high consensus in their LULC mapping, we selected the 15 global LULC products available in GEE (Table 2).79

Reaching consensus across such rich diversity of LULC products, in terms of spatial resolution, time coverage, satellite source,80

LULC classes and accuracy, made our LULC annotation robust. This way, each image was annotated with a LULC class only81

if all combined products agreed (i.e., 100% of agreement in space and time). For some LULC classes, we had to decrease the82

purity threshold to reach a large number of samples. The purity level is always provided as metadata for each image (details in83

the subsection Re-projection and Selection of purity threshold).84

2.1.2 Standardization and Harmonization of LULC legends85

Land cover (LC) data describes the main type of natural ecosystem that occupies an area; either by vegetation types such as86

shrublands, grasslands and forests, or by other biophysical classes such as permanent snow, bare land and water bodies. Land87

use (LU) includes the way in which people modify or exploit an area, such as in urban areas or agricultural fields.88

To build our 29 LULC classes nomenclature, we established a standardization and harmonization approach based on expert89

knowledge. During this process we took into account the needs of different practitioners in the LULC mapping field and the90

thematic resolution of the global LULC legends available in GEE. Hence, our nomenclature consists of 23 LC and 6 LU distinct91

classes interoperable through a set of criteria across 15 LULC products specified in our consensus rules (Table 3). A six-level92

(L0 to L5) hierarchical structure was adopted in the creation of these 29 LULC classes (Figure 2).93

The LC part contains 20 terrestrial ecosystems and three aquatic ecosystems. The terrestrial systems are: Barren lands,94

Grasslands, Permanent snow, Moss and Lichen lands, Close Shrublands, Open Shrublands, in addition to 12 Forests classes95

that differed in their tree cover, phenology, and leaf type. The aquatic classes are: Marine water bodies, Continental water96

bodies, and Wetlands; furthermore, wetlands are divided into three classes: Marshlands, Mangroves and Swamps. The LU part97

is composed of urban areas and five coarse cropland types that differed in their irrigation regime and leaf type.98

2.1.3 Combining products across time and space99

For each one of the 29 LULC classes, we combined in space and time the global LULC information among the 15 GEE LULC100

products. For each product and LULC type, we first set one or more criteria to create a global mask at the native resolution of101

the product in which each pixel was classified as 0 or 1 depending on whether it met the criteria for belonging to that LULC102

type or not, respectively (see first stage in Table 3). Then (see second stage in Table 4), for each LULC type, we calculated the103

average of all the masks obtained from each product to create a final global probability map at the finest resolution from all104

products with values ranging between 0 and 1. Value 1 meant that all products agreed to assign that pixel to a particular class105

and value 0 meant that none of the products assigned it to that particular class (Figure 3). These 0-to-1 values are interpreted as106

the spatio-temporal purity level of each pixel to belong to a particular LULC class.107

As an example of the first stage (see details in Table 3), to specify if a given pixel belongs to a dense, evergreen or108

needleleaf forest, we evaluated its tree cover level using "≤" and "≥", while for bands containing the leaf type information, we109

used the equal operator "=". For the spatio-temporal combination of multiple criteria we have used the following operators:110

"AND","OR" and "ADD". For example, we combined the tree cover percentage criteria with the leaf type criteria using "AND"111

in order to select forest pixels that meets both conditions. To combine many years instances of the same product we used112

"ADD", except for product P13 where we used "AND" to select permanent water areas. Whenever we used the "ADD" operator,113

we normalized pixel values afterwards to bring it back to a probability interval between 0 and 1 using the division by the total114

number of combined years or criteria.115

In the second stage (see details in Table 4), we combined for each LULC class, the 15 global probability maps resulted116

from the previous stage to create a final global probability map. This combination was carried out using various operators117

such as "ADD", "MULTIPLY" and "OR", depending on the LULC type. When "ADD" was used, the final pixel values were118

normalized by dividing the final addition value of each pixel by the total number of added products. The "MULTIPLY" operator119

was mostly used at the end, to remove urban areas from non-urban LULC classes, or to remove water from non-water systems.120

The multiplication operator was also adopted to make sure that a certain criteria was respected in the final probability map. For121

instance, for the swamp class, we multiplied all pixels in the final stage by a water mask where saline water areas have a value122

of 0 in order to eliminate mangroves from swamp pixels and vice versa. Finally, we used "OR" operator between different123

water related products in order to take advantage of the fact that each one complements the other in terms of spatial coverage124

and accuracy.125

2.1.4 Re-projection and Selection of purity threshold126

After the consensus assessment, the 29 final probability maps maintained the spatial resolution of the last aggregated LULC127

product, i.e., the water product at 30m/pixel. Since our objective was finding pure tiles of 224×224 10-m pixels (i.e. Sentinel-2128

pixels) for each LULC class, we reprojected the 30 m/pixel probability maps to 2240 m/pixel by using the spatial mean reducer129

in GEE.130
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For each one of the reprojected maps, we defined a pixel value threshold to decide whether a given 2240×2240 m tile was131

representative of each LULC class or not. If the number of available pure tiles (i.e., pixel value = 1) was too small for one class,132

we decreased the threshold for purity level for that class until getting a large enough number of tiles (the purity level is always133

provided as metadata for each tile). On the other hand, when the number of pure tiles for a LULC class was too large, (i.e.,134

greater than 14000), we applied a stratified selection to download a maximum of 14000 images. This selection was carried out135

through an automatic maximum geographic distance algorithm to guarantee that selected images were as geographically far136

from each other as possible. In Table 5, we present the number of tiles we found and downloaded for each LULC class using137

thresholds ranging from 0.75 to 1. We illustrated the reprojection and selection processes in Figure 4.138

2.2 Data Extraction139

Sentinel2GlobalLULC provides the user with two types of data: CSV files and Sentinel-2 RGB images. In the following140

subsections, we first present the additional gHM index attached to these both data types, then the adopted methods to generate141

each one of them.142

2.2.1 gHM values extraction143

As an additional metadata related to the level of human influence in each image, we calculated for each tile the spatial mean144

of the global human modification index for terrestrial lands41, where 0 means no human modification and 1 means complete145

transformation. Since the original gHM product was mapped at 1×1 km resolution, we reprojected it to 2240×2240 m using146

the same procedure than explained for the LULC consensus masks.147

2.2.2 CSV files generation148

Once we identified tiles to be selected for each LULC class, we have grouped their center coordinates into a CSV file each.149

Tiles were organized giving their probability values in an descendant order. Each row in the CSV file corresponds to a selected150

tile in that class. In fact, these CSV files contains the geographical center point coordinates, the pixel purity value, the name of151

the attributed LULC class in addition to the extracted gHM value for that tile. Then, we used the geographical coordinates of152

each tile to identify its exact administrative address geolocation. To implement this reverse geo-referencing operation, we used153

a free request-unlimited python module called reverse_geocoder. This method has allowed us to identify the country code, the154

administrative department at two levels and the locality of each tile in the CSV files. This way, we integrated in all LULC155

classes CSV files these reverse geo-referencing information as new columns.156

For LULC class that has more than 14000 pure tiles, we have released the coordinates before and after the stratified selection157

in case the user was interested in all tiles and not only the exported ones. These coordinates could allow the end user to158

download new images if needed.159

2.2.3 Sentinel-2 RGB images exportation160

After extracting all these pieces of information and grouping them into CSV files, we went back to the geographic center161

coordinates of each tile and used them to extract the corresponding 224×224 pixel Sentinel-2 RGB tiles using GEE. Each162

exported image was identical to the 2240×2240 m area covered by its Sentinel-2 tile.163

We chose "Sentinel-2 MSI (Multi-Spectral Instrument) product" since it is free and publicly available in GEE at the fine164

resolution of 10×10 m. We chose "Level-1C" since it provides the longest data availability of Sentinel-2 images. To build165

RGB images, we extracted the three bands B4, B3 and B2 that correspond to Red, Green and Blue channels, respectively.166

To minimize the effect of atmospheric effects on the RGB images, such as clouds, aerosols, smoke, etc., every image was167

built from the 25th-percentile aggregation of its corresponding image collection gathered by Sentinel-2 satellites between June168

2015 and October 2020. In addition, we previously discarded all pixels where the maximum cloud probability exceeded 20%169

according to the metadata provided in the Sentinel-2 collection.170

Usually, Sentinel-2 MSI product includes true colour images in JPEG2000 format, except for the "Level-1C" collection171

used here. The three original bands (B4, B3, and B2) required a saturation stretching of their reflectance values into 0-255 RGB172

digital values. Thus, we stretched the saturation reflectance of 3558 into 255 to obtaine true RGB channels with digital values173

between 0 and 255. The choice of these mapping numbers was taken from the Sentinel-2 true colour image recommendations174

section of Sentinel user guidelines. Finally, after exporting the selected tiles for each LULC class as ".tif" images, we converted175

them into ".jpeg" format using a lossless conversion algorithm.176

2.3 Technical implementation177

To implement all our methodology steps, we first created a javascript in GEE for each LULC class. Each script is a multi-task178

javascript where we implemented a switch command to control which task we want to execute. In each one of these scripts,179

we selected from GEE LULC datasets repository the 15 LULC products used to build the consensus of that LULC class.180

Each script was responsible of elaborating the spatio-temporal combination of the selected products and generating the final181

consensus map for that LULC class as described in the subsection Combining products across time and space. Then, it exports182
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the final global probability map as an asset into GEE server storage to make its reprojection faster. In the same script, once183

the consensus map exportation was done, we imported it from the GEE assets storage and reprojected it to 2240×2240 m184

resolution; then, we exported the new reprojected map into GEE assets storage again to make its analysis and processing faster.185

Afterwards, we imported the reprojected map into the same script and apply different processing tasks. During this processing186

phase, many purity threshold values were evaluated. Then, we elaborated in this same script the pure tiles identification and187

their center coordinates exportation into a CSV file. A distinct GEE script was developed to import, reproject and export the188

global gHM map. The resulted gHM map was saved as an asset, then imported and used in each one of the 29 LULC multi-task189

scripts.190

A python script was developed separately to read the exported CSV files for each LULC class and apply the reverse191

geo-referencing on their pure tiles coordinates then add the found geolocalization data (country code, locality...etc) to the192

original CSV files as new columns. Then, another python script was implemented to read the new resulted CSV files with all193

their added columns (reverse geo-referencing data, gHM data) and use the center coordinates of each pure tile in that class194

to export its corresponding Sentinel-2 satellite tif image within GEE through the python API. Finally, after downloading all195

the exported tif images from our Google drive, we created another python script to convert the exported tif images into JPEG196

format.197

Data Records198

Sentinel2GlobalLULC dataset is stored in the following Zenodo repository(DOI:10.5281/zenodo.5055632). This dataset199

consists of three zip compressed folders:200

• Sentinel-2 GeoTiff images folder: This folder contains the exported Sentinel-2 RGB images for each LULC class201

grouped into sub-folders named according to each LULC class. Each image has a filename with the following structure:202

"LULC class ID_LULC class short name_Pixel probability value_Image ID_GHM value_Latitude _Longitude_Country203

code_Administrative department level1_Administrative department level2_Locality". Pixel probability value can be204

interpreted as the spatial purity of the image to represent that LULC class and was calculated as the spatial mean of all the205

pixels of the final probability maps contained in each image tile, reprojected and expressed as a percentage. Short names206

for all classes were derived from the original ones in a way to have exactly 13 characters each, and IDs for different207

classes were assigned randomly. This information for each class is explained in Table 6.208

• Sentinel-2 JPEG images folder: This folder contains the same images as in the GeoTiff folder, but converted into ".jpeg"209

format while preserving the same nomenclature and organization. In Figure 5, we illustrate a sample of each one of the210

29 classes images in JPEG format.211

• CSV files folder: For user convenience, the metadata of every image tile (i.e., the same information already contained212

in the image filenames) is also provided in CSV format. Image tiles in the CSV files are organized from the highest to213

the lowest consensus probability value. These CSV files have 11 columns: ID of LULC Class, Short name of LULC214

Class, ID Image, Pixel Probability Value as percentage, GHM Value, Center Latitude, Center Longitude, Country Code,215

Administative Departement Level 1, Administative Departement Level 2, Locality.216

For too large LULC classes (i.e., with more than 14000 potential samples) that had to undergo a stratified selection, we217

provide the user with 2 CSV files: one containing all pure tiles coordinates without geo-referencing columns, and another218

file just containing the 14000 exported tiles coordinates with their geo-referencing information.219

Technical Validation220

To assess the quality of the Sentinel2GlobalLULC dataset in terms of its representativity of each LULC class and of image221

quality, two of the coauthors visually inspected very high resolution imagery (Google Earth and Bing Maps) of a random222

sample of each class. The validation process was established in three stages:223

• First, for each LULC class, we selected 100 samples to visually verify their LULC annotation. To maximize the224

global representativity of the validated samples, the selection of these 100 samples was carried out by maximizing the225

geographical distance among all samples using an add-hoc script in R. In Figure7, we present the distribution map of the226

100 samples selected for each LULC class.227

• Second, each one of the selected samples was visually inspected in Google Earth and Bing Maps by two of the co-authors228

(E.G. and D.A-S.) to independently assign it to one of the 29 LULC classes. These two experts assigned each sample to a229

LULC class when it occupied more than 70% of the image tile.230
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• Third, the confusion matrix for this validation was calculated at six different levels of our LULC classification hierarchy231

(from L0 to L5 as presented in Figure2). In Table7, we summarized the obtained F1 scores at each level.232

The obtained mean F1 scores ranged from 0.99 at level L0 to 0.91 at level L5 (Table7). Such decrease in accuracy as the233

number of classes increased from level L0 to level L5 was mainly due to the hard distinction between forest types at L5 and the234

complexity of visual features in Grasslands and Shrublands classes from level L2.235

Usage Notes236

To make the Sentinel2GlobalLULC dataset easier to use, reproduce, and exploit and to promote its usage with DL models,237

we have provided users with a python code to load all RGB images and train several Convolutional Neural Networks (CNNs)238

models on them using different learning hyper-parameters. Knowing that most CNN frameworks admit only jpeg or png images239

formats, we provided a python script to convert ".tif" into ".jpeg" format with a full control on the conversion quality and the240

choice of images to convert. Moreover, as for some LULC classes we limited the number of exported images to 14000, we241

have provided a python script that can help the user to export more Sentinel-2 images of these classes if needed, using the242

coordinates stored in the CSV files.243

In addition, to provide a global insight about the consistency and accuracy of the global distribution of these 29 LULC244

classes, we also publicly shared the final reprojected global consensus maps for each class as GEE assets. To help the user to245

visualize the global distribution of each LULC class, we have provided a GEE script with the assets links to choose, import,246

manipulate, and visualize any LULC class map. Image exportation is also possible through python API for GEE and we gave247

the user a complete control on the number of tiles to export, the time interval to select for image collections, the cloud removal248

parameters, the true RGB colors calibration, and the Google drive account where to store the exported images. The user should249

be aware that GEE imposes a limited request number with a maximum of 3000 exportation tasks to run simultaneously on the250

same Google account.251

Code Availability252

All used scripts to implement our dataset and links to the GEE stored assets are available in the following Github repository253

(DOI:10.5281/zenodo.5638409) with guidelines stored in a README file explaining all instructions about their execution.254
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Figures & tables389

Italy Japan Mexico Nigeria USA

Figure 1. Illustration from different countries of the Sentinel-2 satellite images corresponding to one of the 29 Land-Use and
Land-Cover (LULC) classes (e.g. Urban and built-up area) extracted from Sentinel2GlobalLULC dataset. Each image has
224×224 pixels of 10×10 m resolution. Pixel values were calculated as the 25th-percentile of all images captured between
June 2015 and October 2020 that were not tagged as cloudy. Fifteen LULC products available in Google Earth Engine agreed
in annotating each image to represent one LULC class
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Dataset Source Source mapping
type

Number of
images Image Size Spatial

Resolution
No.

Bands
No.

Classes Extent

ISPRS Vaihingen
(42) - Airborne 33 im 2000 x 2000 0.09 3 6 Local

ISPRS Postdam
(42) - Airborne 38 im 6000 x 6000 0.09 3 6 Local

Brazilian coffee
scenes

(43)
SPOT-5 Spaceborne 50,004 im 64 x 64 10 3 3 Local

SAT-4
(44) NAIP program Airborne 500,000 im 28 x 28 1 4 4 Local

SAT-6
(44) NAIP program Airborne 405,000 im 28 x 28 1 4 6 Local

UCMerced
(45) OPLS Airborne 2100 im 256 x 256 0.3 4 21 Local

Zeebruges
(link) LiDAR Airborne 100,000 im 10 x 10 0.05 3 8 Local

WHU-RS19
(46) Google Earth Airborne 1005 im 600 x 600 Up to 0.5 3 19 Local

SIRI-WHU
(47) Google Earth Airborne 2.240 im 200 x 200 2 3 12 Local

RSSCN7
(48) Google Earth Airborne 2800 im 400 x 400 - 3 7 Local

RSC11
(link) Google Earth Airborne 1232 im 512 x 512 0.2 3 11 Local

NWPU-RESISC45
(18) - - 31,500 im 256 x 256 3̃0-0.2 3 45 Local

AID
(49) Google Earth Airborne 10,000 im 600 x 600 8̃-0.5 3 30 Local

BigEarthNet
(19) Sentinel-2 Satellite 590,326 img. - - - - 10 European countries

SpaceNet-7
(50)

Dove Satellite
Constellation
Planet Labs’

Satellite img. - - - - 100 cities

Table 1. List of existing Land-Use and Land-Cover (LULC) datasets ready for training Deep Learning (DL) models.

LULC product Satellite or Spaceborne Resolution Used years Reference
P1: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type1: Annual International Geosphere-Biosphere
Programme (IGBP) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 51

P2: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 2: Annual University of Maryland (UMD) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 51

P3: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 3: Annual Leaf Area Index (LAI) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 51

P4: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 4: Annual BIOME-Biogeochemical Cycles (BGC) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 51

P5: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 5: Annual Plant Functional Types classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 51

P6: Copernicus Global LULC Layers: CGLS-LC100 collection 3 (version 3.0.1) PROBA-V 100 meters 2017 to 2019 52

P7: Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30m (version 3.0) Multi-satellite 30 meters 2015 53

P8: GlobCover: Global LULC Map (version 2.0) ENVISAT 300 meters 2009 ESA 2010 and UCLouvain
P9: GFSAD1000: Cropland Extent 1km Multi-Study Crop Mask,
Global Food-Support Analysis Data (version 0.1) Multi-satellite 1000 meters 2010 54

P10: Global PALSAR-2/PALSAR Forest/Non-Forest Map (version fnf) ALOS, ALOS 2 25 meters 2017 55

P11: Hansen Global Forest Change (version 1.7) Landsat 8 1 arc seconds 2000 to 2019 56

P12: Global Forest Canopy Height (version 2005) Lidar 30 arc seconds 2005 57

P13: JRC Yearly Water Classification History (version 1.2) Landsat (5,7,8) 30 meters 2017 to 2019 58

P14: JRC Global Surface Water Mapping Layers (version 1.2) Landsat(5,7,8) 30 meters 1984 to 2019 58

P15: Tsinghua FROM-GLC year of change to impervious surface(version 10) Landsat 30 meters 1985 to 2019 59

Table 2. Main characteristics of the 15 global Land-Use and Land-Cover (LULC) products available in Google Earth Engine
(GEE) that were combined to find consensus in the global distribution of 29 main LULC classes
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Figure 2. Tree representation of the six-level (L0 to L5) hierarchical structure of the Land-Use and Land-Cover (LULC)
classes contained in the Sentinel2GlobalLULC dataset. Outter circular leafs represent the final or most detailed 29 LULC
classes of level L5. The followed path to define each class is represented through inner ellipses that contain the names of
intermediate classes at different levels between the division of the Earth’s surface (square) into LU and LC (level L0) and the
final class circle (level L5). All LULC classes belong to three levels at least, except the 12 forest classes that belong to L5 only.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
C1 16 15 NA 7 11 60 TCC < 10 200 0 2 (TC < 10)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H < 1 1∪0 0 Not(≥ 1)
C2 16 15 NA 7 11 NA TCC < 10 200∪150 0 2 (TC < 10)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H < 1 1∪0 0 Not(≥ 1)
C3 10 10 1 6 6 30 TCC < 10 140 NA 2 (TC < 10)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H < 2 1∪0 0 Not(≥ 1)
C4 7 7 2 NA 5 20∩ (10 < SCF < 50) TCC < 10 150 0 2 (TC < 10)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H < 2 1∪0 0 Not(≥ 1)
C5 6 6 2 NA 5 20∩ (SCF > 50) TCC < 10 130 0 2 (TC < 10)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H < 2 1∪0 0 Not(≥ 1)
C6 NA NA NA 4 4 4+(15 < TCF < 30) 15 < TCC < 30 60 NA 1 (15 < TC < 30)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C7 NA NA NA 4 4 4+(40 < TCF < 60) 40 < TCC < 60 50 NA 1 (40 < TC < 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C8 4 4 6 4 4 4+(TCF > 60) TCC > 60 50 NA 1 (TC > 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C9 NA NA NA 3 3 3+(15 < TCF < 30) 15 < TCC < 30 NA NA 1 (15 < TC < 30)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C10 NA NA NA 3 3 3+(40 < TCF < 60) 40 < TCC < 60 NA NA 1 (40 < TC < 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C11 3 3 8 3 3 3+(TCF > 60) TCC > 60 NA NA 1 (TC > 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C12 NA NA NA 2 2 2+(15 < TCF < 30) 15 < TCC < 30 40 NA 1 (15 < TC < 30)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C13 NA NA NA 2 2 2+(40 < TCF < 60) 40 < TCC < 60 40 NA 1 (40 < TC < 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C14 2 2 5 2 2 2+(TCF > 60) TCC > 60 40 NA 1 (TC > 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C15 9 9 NA 1 1 1+(15 < TCF < 30) 15 < TCC < 30 90 NA 1 (15 < TC < 30)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C16 8 8 4 1 1 1+(40 < TCF < 60) 40 < TCC < 60 70 NA 1 (40 < TC < 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C17 1 1 7 1 1 1+(TCF > 60) TCC > 60 70 NA 1 (TC > 60)∩ (G = 0)∩ (L = 0)∩ (D 6= 2) T H > 2 1∪0 0 Not(≥ 1)
C18 11 11 NA NA NA 90 TCC > 10 170 NA NA (TC > 10)∩ (G = 0)∩ (L = 0)∪ (D = 2) T H > 2 2∪3 1 Not(≥ 1)

C19 11 11 NA NA NA 90 TCC > 10
a.160∪180
b.Not(170) NA NA (TC > 10)∩ (G = 0)∩ (L = 0)∪ (D = 2) T H > 2 2∪3 1 Not(≥ 1)

C20 11 11 NA NA NA 90 TCC < 10
160∪170
∪180 NA NA (TC < 10)∩ (G = 0)∩ (L = 0)∪ (D = 2) T H < 2 2∪3 1 Not(≥ 1)

C21 17 0 0 0 0 200 NA 210 NA 3 NA NA 3 1 Not(≥ 1)
C22 17 0 0 0 0 80 NA 210 NA 3 NA NA 3 1 Not(≥ 1)
C23 15 NA NA NA 10 70 NA 220 NA NA NA NA 1∪0 0 Not(≥ 1)

C24 12 12 3∪1 5∪6 7∪8 40 NA 11∪14
1∪2∪3
∪4∪5 NA NA NA 2∪3

0∪4∪
∪8∪10 Not(≥ 1)

C25 12 12 1 6 7 40 NA 11 1∪2 NA NA NA 1∪0 0 Not(≥ 1)
C26 12 12 1 6 7 40 NA 14 3∪4∪5 NA NA NA 1∪0 0 Not(≥ 1)
C27 12 12 3 5 8 40 NA 11 1∪2 NA NA NA 1∪0 0 Not(≥ 1)
C28 12 12 3 5 8 40 NA 14 3∪4∪5 NA NA NA 1∪0 0 Not(≥ 1)
C29 13 13 10 8 9 50 NA 190 NA NA NA NA 1∪0 0 NU

Table 3. First stage of the rule set criteria used to find consensus across the 15 Land-Use and Land-Cover (LULC) products
available in Google Earth Engine (GEE) for each of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset. P1 to
P15: product 1 to 15. C1 to C29: class 1 to class 29. For each product, one or multiple criteria were established to create a
global probability map (pixel values 0 or 1) for a given LULC class. A total number of 15x29 = 435 of global probability maps
were calculated. The numbers in each column (i.e., from 0 to 220) correspond to the pixel values from each product band. NU:
Not Used, NA: Not Available, TC: Tree Cover, G: Tree Gain, L: Tree Loss, D: Datamask, TH: Tree Hight, TCC: Tree Canopy
Cover, TCF: Tree-Cover Fraction, and SCF: Shrub-Cover Fraction. ∩:"AND", ∪:"OR" , +:"ADD".
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Class ID LULC class Spatial Combination
C1 Barren lands Norm(Add(P1:P12)*P13*P14*P15)
C2 Moss and Lichen lands Norm(Add(P1:P12)*P13*P14*P15)
C3 Grasslands Norm(Add(P1:P12)*P13*P14*P15)
C4 Open Shrublands Norm(Add(P1:P12)*P13*P14*P15)
C5 Close Shrublands Norm(Add(P1:P12)*P13*P14*P15)
C6 Open Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C7 Close Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C8 Dense Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C9 Open Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C10 Close Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C11 Dense Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C12 Open Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C13 Close Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C14 Dense Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C15 Open Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C16 Close Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C17 Dense Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C18 Mangrove Wetlands Norm(Add(P1:P7,P9:P14)*P8*P15)
C19 Swamp Wetlands Norm(Add(P1:P7,a.P8,P9:P14)*b.P8*P15)
C20 Marshland Wetlands Norm(Add(P1:P6,P8:P10,P13,P14)*(P11 OR P12 OR P7)*P15)
C21 Marine Water Bodies Norm(Add(P1:P12)*P13*P14*P15)
C22 Continental Water Bodies Norm(Add(P1:P12)*P13*P14*P15)
C23 Permanent Snow Norm(Add(P1:P12)*P13*P14*P15)
C24 Croplands Flooded with seasonal water Norm(Add(P1:P12)*(P13 OR P14)*P15)
C25 Cereal Irrigated Cropland Norm(Add(P1:P12)*P13*P14*P15)
C26 Cereal Rainfed Cropland Norm(Add(P1:P12)*P13*P14*P15)
C27 Irrigated Broadleaf Cropland Norm(Add(P1:P12)*P13*P14*P15)
C28 Rainfed Broadleaf Cropland Norm(Add(P1:P12)*P13*P14*P15)
C29 Urban and built-up areas Norm(Add(P1:P12)*P13*P14*P15)

Table 4. Second stage of the rule set criteria used to find consensus across the 15 Land-Use and Land-Cover (LULC) products
available in Google Earth Engine (GEE) for each of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset. P1 to
P15: product 1 to 15. C1 to C29: class 1 to class 29. For each LULC class, the 15 global probability maps (with pixel values 0
or 1) obtained in the first stage from products P1 to P15 were spatially combined to build 29 final global probability maps (with
pixel values 0 to 1), one for each LULC class (C1 to C29). "Add":ADD, "*":MULTIPLY, "Norm": the normalization using
division by number of used products
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LCLU Class Consensus probability values (%) Number of selected images Stratified selection0.75 (75%) 0.80 (80%) 0.85 (85%) 0.90 (90%) 0.95 (95%) 1.00 (100%)
Urban 63953 - 34102 21814 12590 192 12590 no
Barren 4330418 - 4055836 3876467 3545756 2668009 14000 (2668009) yes

Moss and Lichen 59120 - 18438 4669 1158 0 4669 no
Close Shrublands 41407 12502 1872 226 16 0 12502 no
Open Shrublands 2461415 - 1209375 644272 101288 805 14000 (101288) yes

Marshland 4205 - 675 143 15 0 4205 no
Swamp 489 - 4 0 0 0 489 no

Mangrove 425 - 63 3 0 0 425 no
Grassland 4022949 - 1894337 943177 128263 8895 8895 no

Rainfed Broadleaf Cropland 427314 - 209143 99337 32123 416 416 no
Irrigated Broadleaf Cropland 224867 - 92488 53064 30691 354 354 no

Cereal Rainfed Cropland 1185497 - 604459 284914 91147 1022 1022 no
Cereal Irrigated Cropland 517789 - 167994 52959 23555 842 842 no
Cropland Seasonal Water 6048 - 3192 2008 995 15 2008 no

Dense Evergreen Needleleaf Forest 474138 - 178293 66151 13995 0 13995 no
Close Evergreen Needleleaf Forest 43040 3875 69 0 0 0 3875 no
Open Evergreen Needleleaf Forest 17462 3939 331 0 0 0 3939 no
Dense Evergreen Broadleaf Forest 2131269 - 1829897 1594657 1232914 144026 14000 (144026) yes
Close Evergreen Broadleaf Forest 12512 1270 77 1 0 0 1270 no
Open Evergreen Broadleaf Forest 574 42 0 0 0 0 574 no

Dense Deciduous Needleleaf Forest 60866 - 12954 2888 148 0 2888 no
Close Deciduous Needleleaf Forest 42166 6383 35 0 0 0 6383 no
Open Deciduous Needleleaf Forest 10439 23 0 0 0 0 10439 no
Dense Deciduous Broadleaf Forest 399264 - 176176 97182 31284 1 14000 (31284) yes
Close Deciduous Broadleaf Forest 71127 - 1353 23 1 0 1353 no
Open Deciduous Broadleaf Forest 25342 4439 466 2 0 0 4439 no

Permanent Snow 1065127 - 1033466 1013490 984014 877232 14000 (877232) yes
Continental Water Bodies 3543953 - 3199652 343779 318483 265214 14000 (265214) yes

Marine Water Bodies 3606955 - 3357810 2903459 2822544 2577444 14000 (2577444) yes

Table 5. Summary of the varying number of found and eventually selected Sentinel-2 image tiles of 224×224 pixels
depending on the different consensus level reached across the 15 Land-Use and Land-Cover (LULC) products available in
Google Earth Engine (GEE) for each of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset. LULC classes
that due to the too large number of samples had to undergo a stratified selection by maximizing geographical distance among
samples are highlighted in bold.
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Figure 3. Example of the process of building the final global probability map for one of the 29 Land-Use and Land-Cover
(LULC) classes (e.g. C1: "Barren") by means of spatio-temporal agreement of the 15 LULC products available in Google Earth
Engine (GEE). The final map is normalized to values between 0 (white, i.e., areas with no presence of C1 in any product) and 1
(black spots, i.e., areas containing or compatible with the presence of C1 in all 15 products), whereas the shades of grey
corresponds to the values in between (i.e., areas that did not contain or were not compatible with the presence of C1 in some of
the products). This process is divided into two stages: the first stage (the blue part, see details in Table 3) and the second stage
(the yellow part, see details in Table 4). LULC products available for several years are represented with superposed rectangles,
while single year products are represented with single rectangles. GMP: global probability map, NA: Not Available.
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Figure 4. Example of the workflow to obtain a Sentinel-2 image tile of 2240×2240 m for one of the 29 Land-Use and
Land-Cover (LULC) classes (e.g. C1: "Barren"). The process starts with the reprojected final global probability map obtained
from stage two (Table 4) and ends with its exportation to the repository of a Sentinel-2 image tile of 224×224 pixels. The
white rectangle is the only one having a probability value of 1 (Recall that the purity threshold used for Barren was 1, i.e.,
100%). The black pixels has a null probability value, while the probability values between 0 and 1 are represented in gray scale
levels.
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LCLU Class Short name Class ID

Urban UrbanBlUpArea 29
Barren BarrenLands__ 1

Moss and Lichen MossAndLichen 2
Close Shrublands SrublandClose 5
Open Shrublands ShrublandOpen 4

Marshland WetlandMarshl 20
Swamp WetlandSwamps 19

Mangrove WetlandMangro 18
Grassland Grasslands___ 3

Rainfed Broadleaf Cropland CropBroadRain 28
Irrigated Broadleaf Cropland CropBroadIrri 27

Cereal Rainfed Cropland CropCereaRain 26
Cereal Irrigated Cropland CropCereaIrri 25
Cropland Seasonal Water CropSeasWater 24

Dense Evergreen Needleleaf Forest ForestsDeEvNe 17
Close Evergreen Needleleaf Forest ForestsClEvNe 16
Open Evergreen Needleleaf Forest ForestsOpEvNe 15
Dense Evergreen Broadleaf Forest ForestsDeEvBr 14
Close Evergreen Broadleaf Forest ForestsClEvBr 13
Open Evergreen Broadleaf Forest ForestsOpEvBr 12

Dense Deciduous Needleleaf Forest ForestsDeDeNe 11
Close Deciduous Needleleaf Forest ForestsClDeNe 10
Open Deciduous Needleleaf Forest ForestsOpDeNe 9
Dense Deciduous Broadleaf Forest ForestsDeDeBr 8
Close Deciduous Broadleaf Forest ForestsClDeBr 7
Open Deciduous Broadleaf Forest ForestsOpDeBr 6

Permanent Snow PermanentSnow 23
Continental Water Bodies WaterBodyCont 22

Marine Water Bodies WaterBodyMari 21

Table 6. Dictionary to map each Land-Use and Land-Cover (LULC) class to its corresponding short name and ID in the
Sentinel2GlobalLULC dataset
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1 BarrenLands 2 MossAndLichen 3 Grasslands 4 ShrublandOpen 5 SrublandClose

6 ForestsOpDeBr 7 ForestsClDeBr 8 ForestsDeDeBr 9 ForestsOpDeNe 10 ForestsClDeNe

11 ForestsDeDeNe 12 ForestsOpEvBr 13 ForestsClEvBr 14 ForestsDeEvBr 15 ForestsOpEvNe

16 ForestsClEvNe 17 ForestsDeEvNe 18 WetlandMangro 19 WetlandSwamps 20 WetlandMarshl

21 WaterBodyMari 22 WaterBodyCont 23 PermanentSnow 24 CropSeasWater 25 CropCereaIrri

26 CropCereaRain 27 CropBroadIrri 28 CropBroadRain 29 UrbanBlUpArea

Figure 5. Samples of images for each one of the 29 Land-Use and Land-Cover (LULC) classes contained in the
Sentinel2GlobalLULC dataset
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Figure 6. Global map of the distribution of the 2240×2240 m tiles representing 29 Land-Use and Land-Cover (LULC)
classes that were generated from the spatio-temporal agreement across the 15 global LULC products available in Google Earth
Engine. The purity threshold used for each LULC class is specified in Table 5.
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Figure 7. Global distribution of the selected 100 images for each Land-Use and Land-Cover (LULC) class to perform the
validation of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset. An add-hoc script in R was used to
maximize the geographical distance among the 100 points of each class.
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L0 F1 L1 F1 L2 F1 L3 F1 L4 F1 L5 F1

Land Cover 0.99

Terrestrial Lands 1.00

BarrenLands 0.97 BarrenLands 0.97 BarrenLands 0.97 BarrenLands 0.97
MossAndLichen NA MossAndLichen NA MossAndLichen NA MossAndLichen NA
Grasslands 0.75 Grasslands 0.75 Grasslands 0.75 Grasslands 0.75

Shrubland 0.89 ShrublandOpen 0.76 ShrublandOpen 0.76 ShrublandOpen 0.76
SrublandClose 0.97 SrublandClose 0.97 SrublandClose 0.97

Forests 1.00

ForestsDe 1.00

ForestsDeBr 1.00
ForestsOpDeBr 0.82
ForestsCIDeBr 0.89
ForestsDeDeBr 0.96

ForestsDeNe 1.00
ForestsOpDeNe 0.92
ForestsCIDeNe 0.88
ForestsDeDeNe 0.95

ForestsEv 0.99

ForestsEvBr 0.99
ForestsOpEvBr 0.70
ForestsCIEvBr 0.72
ForestsDeEvBr 0.91

ForestsEvNe 1.00
ForestsOpEvNe 0.82
ForestsCIEvNe 0.88
ForestsDeEvNe 0.99

PermanentSnow 1.00 PermanentSnow 1.00 PermanentSnow 1.00 PermanentSnow 1.00

Aquatic Lands 0.98
Wetland 0.96

WetlandMangro 0.96 WetlandMangro 0.96 WetlandMangro 0.96
WetlandSwamps 0.99 WetlandSwamps 0.99 WetlandSwamps 0.99
WetlandMarshl 0.94 WetlandMarshl 0.94 WetlandMarshl 0.94

WaterBody 0.99 WaterBodyMari 0.95 WaterBodyMari 0.95 WaterBodyMari 0.95
WaterBodyCont 0.93 WaterBodyCont 0.93 WaterBodyCont 0.93

Land Use 0.98 Croplands 0.98

CropSeasWater 0.93 CropSeasWater 0.93 CropSeasWater 0.93 CropSeasWater 0.93

CropCerea 0.99 CropCereaIrri 1.00 CropCereaIrri 1.00 CropCereaIrri 1.00
CropCereaRain 0.98 CropCereaRain 0.98 CropCereaRain 0.98

CropBroad 0.99 CropBroadIrri 1.00 CropBroadIrri 1.00 CropBroadIrri 1.00
CropBroadRain 0.99 CropBroadRain 0.99 CropBroadRain 0.99

UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99
Mean 0.99 0.98 0.95 0.95 0.95 0.91

Table 7. Results of the validation procedure of the representativeness of the images contained in the Sentinel2GlobalLULC
dataset for each Land-Use and Land-Cover (LULC) class at different levels of the hierarchical legend (from L0 to L5).
Accuracy is expressed as the mean F1 score (i.e., a balance between precision and recall) for each LULC class at each level,
rounded to two decimal values.
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