
1 

 

Mathematical characterization of population dynamics in breast cancer cells 

treated with doxorubicin  

Emily Y. Yang1, Grant R. Howard2, Amy Brock2-4, Thomas E. Yankeelov1-3,5-7, Guillermo 

Lorenzo1,8,* 

 
1Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 

Austin, TX, USA 

2Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA 

3Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, 

TX, USA 

4Interdisciplinary Life Sciences Program, The University of Texas at Austin, Austin, TX, USA 

5Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Austin, TX, USA 

6Department of Oncology, The University of Texas at Austin, Austin, Austin, TX, USA 

7Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, 

TX, USA 

8Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy 

 

 

 

 

 

 

 

*Corresponding author 

Guillermo Lorenzo, PhD 

Oden Institute for Computational Engineering and Sciences 

The University of Texas at Austin 

201 E 24th St, 78712-1229 Austin TX, USA 

Email: guillermo.lorenzo@utexas.edu, guillermo.lorenzo@unipv.it 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470781doi: bioRxiv preprint 

mailto:guillermo.lorenzo@utexas.edu
mailto:guillermo.lorenzo@unipv.it
https://doi.org/10.1101/2021.12.01.470781
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract  

The development of chemoresistance remains a significant cause of treatment failure in breast cancer. We 

posit that a mathematical understanding of chemoresistance could assist in developing successful treatment 

strategies. Towards that end, we have developed a model that describes the effects of the standard 

chemotherapeutic drug doxorubicin on the MCF-7 breast cancer cell line. We assume that the tumor is 

composed of two subpopulations: drug-resistant cells, which continue proliferating after treatment, and 

drug-sensitive cells, which gradually transition from proliferating to treatment-induced death. The model 

is fit to experimental data including variations in drug concentration, inter-treatment interval, and number 

of doses. Our model recapitulates tumor growth dynamics in all these scenarios (as quantified by the 

concordance correlation coefficient, CCC > 0.95).  In particular, superior tumor control is observed with 

higher doxorubicin concentrations, shorter inter-treatment intervals, and a higher number of doses (p < 

0.05). Longer inter-treatment intervals require adapting the model parameterization after each doxorubicin 

dose, suggesting the promotion of chemoresistance. Additionally, we propose promising empirical formulas 

to describe the variation of model parameters as functions of doxorubicin concentration (CCC > 0.78). 

Thus, we conclude that our mathematical model could deepen our understanding of the effects of 

doxorubicin and could be used to explore practical drug regimens achieving optimal tumor control. 
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Introduction  

Breast cancer is the most common cancer among women worldwide and the leading cause of cancer 

death in over 100 countries [1]. Chemotherapy is a primary component of cancer treatment and options 

have both advanced and increased considerably in recent years [2]. However, the development of 

chemoresistance, and resulting tumor recurrence, remains a common cause of treatment failure and a 

primary cause of cancer death [3],[4]. Indeed, for a standard chemotherapy drug such as doxorubicin, 

chemoresistance can develop within just 6-10 months [5],[6].  

From a biological perspective, the development of chemoresistance is governed by many complex 

mechanisms, such as treatment-induced genetic and epigenetic alterations, altered metabolic states, and 

adaptive responses of the tumor microenvironment [7]–[10]. Tumor cells can also possess an intrinsic 

phenotypic or genetic resistance that can render the therapy ineffective even before acquired 

chemoresistance develops [11]–[13]. Moreover, the existence of intratumoral heterogeneity and its role in 

tumor regrowth have become increasingly recognized, as the presence of even a minor subpopulation of 

drug-resistant cells can give rise to tumor relapse [9],[14]–[16]. Furthermore, phenotype switching, in 

which tumor cells swap between varying degrees of drug-resistant and drug-sensitive phenotypes, can 

enable the establishment of more permanent chemoresistance mechanisms that hinder complete tumor 

eradication [9],[17]–[19]. In light of the complex biological processes underlying chemoresistance 

development, we believe that a robust framework is needed to comprehensively integrate the growing 

knowledge of this phenomenon and guide future research efforts. To this end, we propose that 

experimentally-validated mathematical models of chemoresistance mechanisms could be a potent tool in 

understanding the dynamics of overall tumor drug response. The description of cancer growth and 

therapeutic response by leveraging mechanistic mathematical models is a rich field known as mathematical 

oncology [20]–[22]. This approach has already shown promise in characterizing breast cancer growth and 

treatment response in both the preclinical and clinical settings [23]–[30].  

There are several mechanistic approaches to mathematically describe chemoresistance [31], with the 

original theoretical models dating back more than two decades [32],[33]. The standard strategy consists of 

defining a multicompartmental tumor cell population including one or multiple species of both drug-

resistant and drug-sensitive cells, which evolve and interact over time following a set of ordinary 

differential equations, or over both space and time according to a set of partial differential equations [34]–

[38]. Alternatively, Sun et al. utilized a stochastic, multiscale model that incorporated heterogeneous 

population dynamics with drug pharmacokinetics and microenvironment contributions to drug resistance 

in melanoma patients [39]. Furthermore, Pisco et al. and Álvarez-Arenas et al. applied the evolutionary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470781
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

theories of Darwinian selection and Lamarckian induction to guide their modeling of drug resistance in 

leukemia cells and non-small cell lung carcinoma, respectively [40],[41]. However, despite these promising 

studies, there is a still a dearth of experimentally-validated mechanistic models of chemoresistance in breast 

cancer, with which we could test alternative biological hypotheses to ultimately enhance chemotherapeutic 

strategies for individual patients. For instance, Chapman et al. developed a model integrating phenotypic 

switching of cell differentiation states and tumor heterogeneity to characterize therapeutic escape in the 

triple-negative subtype, but the empirical validation of their model predictions currently remains limited 

[42]. Additionally, in vitro studies usually label cell lines as homogeneously drug-resistant or drug-sensitive 

and assume a static drug sensitivity [43],[44], which overlooks the existence of intratumoral heterogeneity 

and transient drug resistance. Moreover, preclinical studies often assess tumor cell death at a single time 

point 24-72 hours post-treatment [45]–[47]. This experimental setting does not enable the characterization 

of long-term tumor drug responses and, hence, the development of drug-induced chemoresistance.  

Here, we present a mechanistic model to describe the dynamics of drug response and 

chemoresistance development in MCF-7 breast cancer cells treated with doxorubicin, which we fit to time-

resolved microscopy measurements of tumor cell number subjected to diverse therapeutic plans over long 

experimental times (>8 days). Doxorubicin is an anthracycline drug that is extensively used in 

chemotherapeutic regimens for breast cancer [30],[48],[49] and whose mechanism of action induces tumor 

cell death [50]–[52]. Our work continues the first efforts of Howard et al. in studying doxorubicin resistance 

in breast cancer cell populations by leveraging several experimentally-informed mechanistic models 

[34],[53]. While Howard et al. originally proposed multiple models to characterize this phenomenon and 

selected the best of them for each dataset, we have developed a single model that can be extended for 

multiple drug doses and is also amenable to an adaptive parametrization with each doxorubicin dose. To 

incorporate intratumoral heterogeneity, we assume that the doxorubicin treatment induces a 

compartmentalization of the breast cancer cell population into two subgroups: surviving cells and cells that 

will die due to doxorubicin action. This compartmentalization ultimately results from the underlying 

distribution of diverse drug sensitivity phenotypes in the breast cancer cell population. The surviving cells, 

which we classify as resistant with respect to the treatment, continue proliferating after exposure to 

doxorubicin, while the remainder of the cells, which we classify as sensitive to the treatment, progressively 

transition from proliferation to drug-induced death. Hence, drug sensitivity is assumed to be dynamic with 

time, thereby accounting for tumor cell plasticity [9],[17]–[19]. Additionally, our model is fit to the same 

time-resolved microscopy experiments used in Howard et al. [53], in which breast cancer cells were 

subjected to doxorubicin treatments varying in either drug concentration, inter-treatment interval, or the 

number of doses. Our results show that our proposed model can fit the data observed in all three scenarios 

with remarkable accuracy. We have also analyzed the model parameter trends for each experiment and built 
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empirical parameter formulas as functions of doxorubicin concentration, which may provide further insight 

into the development of chemoresistance.  

The remainder of this work is organized as follows. First, we describe the procedures to acquire and 

process our time-resolved microscopy data. We also describe the derivation of the model and explain the 

numerical and statistical methods leveraged in this study. We then present the results from our model 

fittings for each of the three aforementioned experimental scenarios and analyze the corresponding quality 

of fit and trends in model parameters. To conclude, we discuss the main implications from our work, its 

limitations, and future directions.    

 

Methods 

Data acquisition  

As complete data acquisition procedures are provided elsewhere [34], here we present only the salient 

details.  

Cell culture. MCF-7 human breast cancer cells (ATCC HTB-22) were cultured in Minimum Essential 

Media (Gibco) supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin-streptomycin 

(Gibco). Cells were maintained at 37º C with 5% CO2. A stable fluorescent cell line expressing constitutive 

EGFP with a nuclear localization signal (MCF7-EGFPNLS1) was established to aid in the automated cell 

quantification of the time resolved microscopy measurements [34],[53]. Genomic integration of the EGFP 

expression cassette was accomplished by leveraging the Sleeping Beauty transposon system. The EGFP-

NLS sequence was obtained as a gBlock (IDT) and cloned into the optimized Sleeping Beauty transfer 

vector pSBbi-Neo (which was a gift from Eric Kowarz, Addgene plasmid #60525) [54]. To mediate 

genomic integration, this two-plasmid system consisting of the transfer vector containing the EGFP-NLS 

sequence and the pCMV(CAT)T7-SB100 plasmid containing the Sleeping Beauty transposase was co-

transfected into the MCF-7 population utilizing Lipofectamine 2000 (mCMV(CAT)T7-SB100 was a gift 

from Zsuzsanna Izsvak, Addgene plasmid #34879)[55]. After gene integration with Sleeping Beauty 

transposase, EGFP+ cells were collected by fluorescence activated cell sorting and maintained in media 

supplemented with 200 ng/mL G418 (Caisson Labs) in place of penicillin-streptomycin. 

Doxorubicin response experiments. Cells were seeded in a 96-well plate at a target density of 2,000 

cells/well and grown for approximately 48 hours to allow for cell adhesion and recovery from passaging. 

An IncuCyte S2 Live Cell Analysis System (Essen/Sartorius, Goettingen, Germany) was used to collect 

fluorescent and phase contrast images every 2-4 hours. Images were collected for periods of 21-56 days to 
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ensure that cultures in which cells recover after exposure to doxorubicin, were able to display logistic 

growth. Doxorubicin treatment was prepared by reconstituting doxorubicin hydrochloride (Cayman 

Chemical 15007, Ann Arbor, Michigan) in water and mixing it with 100 µL of growth media at 2× the 

target concentration, which was then added to each well of the plate. The drug-containing media was then 

replaced with fresh growth media after 24 hours. Three experiment types were run, in which either the 

doxorubicin concentration, the inter-treatment interval, or the number of doses was varied (see Table 1). 

Each doxorubicin concentration was tested in n = 6 replicates, while each inter-treatment interval and 

number of doses was tested in n = 12 replicates. 

Data preprocessing   

Image Analysis. Using IncuCyte’s integrated software, cell quantification was performed on the 

fluorescent images using the green fluorescence channel. Individual cells were consistently resolved using 

standard image analysis techniques of background subtraction, followed by thresholding, edge detection, 

and minimum area filtering.  The phase contrast images were consulted in parallel to aid the validation of 

image analysis [34],[53]. 

Data truncation. The time courses extracted from some wells did not provide meaningful data 

throughout the entire time course due to a variety of reasons. These included the cell population growing 

to confluence and fluctuating with feeding cycles, being disturbed during media replenishment, or growing 

three-dimensionally resulting in cells overlapping each other and thereby compromising the ability to 

accurately quantify cell numbers. Thus, for each dataset, the estimated cell number was truncated either 

just prior to reaching confluence, when the cell number dropped more than 50% due to media handling, or 

when repeated discontinuities were observed in the time course data.  

Data normalization. For smaller discontinuities in which less than 50% of the cells were lost, the 

data was normalized by dividing the cell number at time points before the discontinuity by a constant 𝛼 

[34],[53], calculated via Eq. (1): 

 

𝛼 =  

(𝑁𝑑−1 − 𝑁𝑑−2)
(𝑡𝑑−1 − 𝑡𝑑−2)

+ 2
𝑁𝑑−1

𝑡𝑑 − 𝑡𝑑−1

2
𝑁𝑑

𝑡𝑑 − 𝑡𝑑−1
+

𝑁𝑑 − 𝑁𝑑+1
𝑡𝑑+1 − 𝑡𝑑

 
 

(1) 

 

in which 𝑁𝑑, 𝑁𝑑−𝑖, and 𝑁𝑑+𝑖 are the cell numbers at the discontinuity, 𝑖 points before the discontinuity, and 

𝑖 points after the discontinuity, respectively.  𝑡𝑑, 𝑡𝑑−𝑖, and 𝑡𝑑+𝑖  are the times of the discontinuity, 𝑖 points 

before the discontinuity, and 𝑖 points after the discontinuity, respectively. The objective of this 
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normalization was to smooth the first and second derivatives of the cell number across the discontinuity 

[34],[53] .  

Outlier removal. For replicates that possessed outliers, the rmoutliers function from MATLAB 

R2020b (The Mathworks, Natick, MA) was used to remove data points using median filtering. A visual 

inspection of the resulting data confirmed that this method removed evident outliers from the original series, 

while maintaining the natural fluctuations in tumor cell counts (see Supplementary Figures S1-S5).  

Mathematical model  

We present a mathematical model to describe the response of MCF-7 breast cancer cells to treatment 

with doxorubicin in the three experimental scenarios listed in Table 1. We begin by describing the biological 

mechanisms captured by the model assuming a single dose of doxorubicin (Experiment 1, Table 1). Then, 

we show how the model can be generalized to multiple doses (Experiments 2 and 3, Table 1), and can also 

be modified to vary specific parameters with each dose. Figure 1 illustrates the main tumor cell dynamics 

described by our model after each dose of doxorubicin, which are further detailed in the following 

paragraphs. The reader can refer to Supplementary Table S1 for a consolidated list of model parameter 

definitions and their units. 

Single-dose model. We start with a population of tumor cells (𝑁) that grow untreated for a specified 

period of time prior to doxorubicin treatment (approximately 48h). We assume that these untreated cells 

follow logistic growth: 

𝑑𝑁

𝑑𝑡
= 𝑔0𝑁 (1 −

𝑁

𝜃𝑢
) (2) 

𝑁(0) = 𝑁0 
 

(3) 

where 𝑔0 is the untreated proliferation rate, 𝜃𝑢 the untreated tumor cell carrying capacity, and 𝑁0 is the 

initial number of tumor cells. We set 𝜃𝑢= 53,873 cells, which corresponds to the mean value resulting from 

the fitting of Eqs. (2-3) to the untreated datasets in Experiment 1 (i.e., 0 nM doxorubicin; further details can 

be found in Supplementary Tables S2-S5 and Supplementary Figure S1). 

Let 𝑡𝐷𝑜𝑥
1  denote the time at which a single dose of doxorubicin is delivered, as described in 

Experiment 1 (Table 1). At this time point, we assume that a fraction 𝑓𝑟 of the tumor cells exhibits a drug-

resistant response (𝑅), while a fraction 1 - 𝑓𝑟 exhibits a drug-sensitive response (𝑆). We denote the initial 

number of drug-resistant and drug-sensitive cells right after the treatment with doxorubicin as 𝑅(𝑡𝐷𝑜𝑥
1+ ) and 

𝑆(𝑡𝐷𝑜𝑥
1+ ), respectively, which are defined based on the number of untreated cells immediately before the 

delivery of doxorubicin, 𝑁(𝑡𝐷𝑜𝑥
1− ), as 
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𝑅(𝑡𝐷𝑜𝑥
1+ ) = 𝑓𝑟𝑁(𝑡𝐷𝑜𝑥

1− ) 

 
(4) 

𝑆(𝑡𝐷𝑜𝑥
1+ ) = (1 − 𝑓𝑟)𝑁(𝑡𝐷𝑜𝑥

1− ) (5) 
 

such that the total tumor cell number 𝑁 for time 𝑡 > 𝑡𝐷𝑜𝑥
1  is calculated as 

𝑁(𝑡) = 𝑅(𝑡) + 𝑆(𝑡). (6) 
 

Note that Eqs. (4)-(6) ensure the continuity in the tumor cell count before and after the treatment with 

doxorubicin, as observed in the corresponding experimental data (see Supplementary Figure S2). 

We assume that the drug-resistant cells also follow logistic growth with a different rate and carrying 

capacity:  

𝑑𝑅

𝑑𝑡
=  𝑔𝑟𝑅 (1 −

𝑁

𝜃𝐷𝑜𝑥
) (7) 

where 𝑔𝑟  is the proliferation rate of drug-resistant tumor cells and 𝜃𝐷𝑜𝑥 is the treated tumor cell carrying 

capacity. For the drug-sensitive cells, we assume that their logistic growth dynamics gradually transition 

from proliferation to treatment-induced death at an exponentially-decaying rate: 

𝑑𝑆

𝑑𝑡
= (𝑘𝑑 + (𝑔𝑠 − 𝑘𝑑) exp (−𝛾𝑑(𝑡 − 𝑡𝐷𝑜𝑥

1 ))) 𝑆 (1 −
𝑁

𝜃𝐷𝑜𝑥
) (8) 

where 𝑘𝑑  and 𝑔𝑠 denote the drug-induced death rate and the proliferation rate of drug-sensitive tumor cells, 

respectively, while 𝛾𝑑 represents the drug-induced death delay rate.  

To estimate the treated tumor cell carrying capacity (𝜃𝐷𝑜𝑥) in Eqs. (7)-(8), we used either one of two 

approaches. If the last tumor cell count in a dataset was greater than 30% of 𝜃𝑢, then 𝜃𝐷𝑜𝑥 was fit along 

with the other model parameters. Conversely, if the last tumor cell count was less than 30% of 𝜃𝑢, then we 

fixed 𝜃𝐷𝑜𝑥 to the mean of the values obtained from the replicates of the same experiment in which this 

parameter was directly fit. The rationale for this approach is that we observed that final tumor cell counts 

below 30% of 𝜃𝑢did not provide enough identifiability for 𝜃𝐷𝑜𝑥, which ultimately induced significant model 

fitting errors. 

Multiple-dose model. Let us now consider a treatment schedule consisting of 𝑛𝑑 doses of doxorubicin 

delivered at times 𝑡𝐷𝑜𝑥
𝑖 , (𝑖 = 1,2, … , 𝑛𝑑), as described in Experiments 2 and 3 (Table 1). For the first dose, 

the multiple-dose model remains identical to the single-dose model described in the previous section. For 

the subsequent drug doses, we assume that a fraction 𝑓𝑟 of the drug-resistant cells before treatment, 𝑅(𝑡𝐷𝑜𝑥
𝑖− ), 

continue to exhibit this response, while a fraction 1 − 𝑓𝑟 gives rise to a new drug-sensitive subpopulation 
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𝑆𝑖. Thus, after the delivery of the 𝑖𝑡ℎ dose (𝑖 ≥ 2), the number of drug-resistant tumor cells 𝑅(𝑡𝐷𝑜𝑥
𝑖+ ) and 

the initial number of the new subpopulation of drug-sensitive cells 𝑆𝑖(𝑡𝐷𝑜𝑥
𝑖+ ) are calculated as 

𝑅(𝑡𝐷𝑜𝑥
𝑖+ ) = 𝑓𝑟𝑅(𝑡𝐷𝑜𝑥

𝑖− ) (9) 
 

𝑆𝑖(𝑡𝐷𝑜𝑥
𝑖+ ) = (1 − 𝑓𝑟)𝑅(𝑡𝐷𝑜𝑥

𝑖− ) (10) 
 

such that the total number of tumor cells during and after treatment with multiple doses of doxorubicin is 

given by  

𝑁(𝑡) =  𝑅(𝑡) + ∑ 𝑆𝑖

𝑛𝑑

𝑖=1

(𝑡)ℋ(𝑡 − 𝑡𝐷𝑜𝑥
𝑖 ), (11) 

where ℋ(𝑡 − 𝑡𝐷𝑜𝑥
𝑖 ) is the Heaviside step function, which equals 0 for t < 𝑡𝐷𝑜𝑥

𝑖  and 1 for t ≥ 𝑡𝐷𝑜𝑥
𝑖 . Note that 

Eqs. (8)-(11) ensure the continuity in the total tumor cell number before and after each doxorubicin dose, 

as observed in the data from Experiments 2 and 3 (Table 1; see Supplementary Figures S3-S5). 

In this multiple-dose model, we assume that the drug-resistant cells continue to follow logistic growth 

after each of the consecutive doxorubicin doses, as described by Eq. (7). Additionally, each of the 𝑖𝑡ℎ drug-

sensitive subpopulations is assumed to follow the growth dynamics defined in Eq. (8). Thus, for 𝑖 =

1,2, … , 𝑛𝑑, the dynamics of each drug-sensitive subpopulation 𝑆𝑖 is given by 

𝑑𝑆𝑖

𝑑𝑡
= (𝑘𝑑 + (𝑔𝑠 − 𝑘𝑑) exp (−𝛾𝑑(𝑡 − 𝑡𝐷𝑜𝑥

𝑖 ))) 𝑆𝑖 (1 −
𝑁

𝜃
) (12) 

  

Finally, we consider two versions of the multiple-dose model: one featuring constant parameters, and 

another in which we vary 𝑓𝑟 and 𝛾𝑑 with the delivery of each dose. Our underlying hypothesis is that longer 

inter-treatment intervals require an adaptive parameterization because they contribute to the development 

of chemoresistance [34], [56]–[58], which would be represented in our model by higher fractions of 

resistant cells (𝑓𝑟) along with drug-sensitive subpopulations (𝑆𝑖) exhibiting longer transition times from 

proliferation to treatment-induced death (i.e., lower values of 𝛾𝑑). In the Results section, we show that these 

hypotheses are significantly supported by the fitting of these two model versions to the data from 

Experiments 2 and 3 (Table 1). 

Numerical methods 

Model fitting. We fit the single-dose model to the time-course data from Experiment 1 (Table 1), and 

we fit the multiple-dose model to the time-course data from Experiments 2 and 3 (Table 1). Model fitting 

was carried out with a nonlinear least-squares method, via the MATLAB (R2020b) function lsqnonlin. We 
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leveraged a trust-region reflective algorithm with function, step, and optimality tolerances of 10-6, while the 

maximum number of function evaluations and iterations was set to 20,000. The parameter bounds and initial 

guesses were guided by the results from Howard et al. [34], and are summarized in Supplementary Tables 

S2, S8, S12, S16 and S17. The ordinary differential equations in our models were solved using a Runge-

Kutta method as provided by ode45 in MATLAB (R2020b).   

Empirical parameter formulas. We constructed empirical formulas for the single-dose model 

parameters as a function of doxorubicin concentration based on the model fittings to the datasets from 

Experiment 1 (Table 1). To this end, we also applied a nonlinear least-squares method using a trust-region 

reflective algorithm provided by lsqnonlin in MATLAB (R2020b), as described in the previous section. 

The initial guess and bounds for the empirical parameters in these formulas were chosen according to the 

range of the single-dose model parameter values obtained from the fittings to the datasets from Experiment 

1 (Table 1). The medians of the distributions of these fitted model parameters at each doxorubicin 

concentration were used as the observed values for the empirical parameter formula fits. Based on the 

observed trends of the fitted single-dose model parameters, we chose different empirical equations to 

describe their change as a function of doxorubicin concentration (e.g., an exponential decay; see the Results 

section and Supplementary Tables S6 and S7 for further details). 

Statistical analysis  

To assess our model’s quality of fit to the time course data, we calculated the coefficient of 

determination (𝑅2), the normalized root mean square error (NRMSE), the Pearson correlation coefficient 

(PCC), and the concordance correlation coefficient (CCC) [59]. In the Results section, we report the median 

and range of these metrics across all the replicates of each experiment. More detailed values can be found 

in the Supplementary Tables S4, S10, S14, S20. Nonlinear regression parameter confidence intervals and 

nonlinear regression prediction confidence intervals were calculated using nlparci and nlpredci in 

MATLAB (R2020b), respectively. To test for significant differences between two values of a model 

parameter or quality-of-fit metric within each experimental scenario, we performed two-sided Wilcoxon 

rank-sum tests with 5% significance using ranksum in MATLAB (R2020b).  

To assess the validity of the proposed empirical formulas using the single-dose model fittings, we 

ran a simulation test in which we qualitatively compared the model outcomes based on these formulas with 

the corresponding experimental observations at each drug concentration. To this end, Latin hypercube 

sampling based on lhsdesign in MATLAB (R2020b) was used to define 200 parameter combinations 

assuming uniform distributions over the 95% confidence intervals of the fitted empirical parameter 

formulas at each doxorubicin concentration, as calculated by nlpredci in MATLAB (R2020b). 
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Results 

Fitting the single-dose model to Experiment 1 data: varying doxorubicin concentrations  

Figure 2 shows representative model fits for the observed growth of MCF-7 cell populations treated 

with only one dose of doxorubicin at concentrations ranging from 10 to 300 nM (Experiment 1, Table 1). 

Model fits for all replicates at each drug concentration (n = 6) can be found in Supplementary Figure S2. 

We report the median and range of all the fitted model parameters for each doxorubicin concentration in 

Supplementary Table S3, while Figure 3 shows the boxplots of the fitted parameter distributions for each 

doxorubicin concentration. The median and range of the quality of fit metrics for the single-dose model fits 

to Experiment 1 data were: NRMSE (3.33 [0.80, 12.43]),  𝑅2 (>0.99 [0.96, >0.99]), PCC (>0.99 [0.98, 

>0.99]), and CCC (0.99 [0.97, >0.99]). Supplementary Table S4 further provides detailed quality of fit 

metrics for each doxorubicin concentration. Figure 2, Supplementary Figure S2, and Supplementary Table 

S3 show that, as doxorubicin concentration is increased, the drug-resistant cells exhibit a decrease in growth 

rate and number, while the drug-sensitive cells undergo a faster transition from proliferation to treatment-

induced death. These trends ultimately lead to significantly lower final total tumor cell counts (𝑝 < 0.05, 

see Supplementary Table S5) and larger delay or even suppression of tumor regrowth in the cells exposed 

to higher doxorubicin concentrations (see Supplementary Figure S2), suggesting that tumor control 

improves as the doxorubicin dose is increased.   

Figure 3 shows the fitted empirical formulas for the fraction of resistant cells (𝑓𝑟), the drug-resistant 

cell proliferation rate (𝑔𝑟), the drug-sensitive cell proliferation rate (𝑔𝑠), the doxorubicin-induced death rate 

of drug-sensitive cells (𝑘𝑑), and the doxorubicin-induced death delay rate of drug-sensitive cells (𝛾𝑑). These 

empirical formulas are functions of doxorubicin concentration, which is denoted with 𝐷. The fitted 

empirical parameter values and their confidence intervals can be found in Supplementary Table S6, while 

the corresponding quality of fit metrics can be found in Supplementary Table S7. For 𝑓𝑟, 𝑔𝑟, and 𝑔𝑠, we 

observe a clear exponentially decaying trend as drug concentration is increased (Fig. 3a-c). In the case of 

𝑓𝑟, we added an additional constant empirical parameter to the decaying exponential to ensure that the 

empirical formula captures the low nonzero values of this parameter for the higher doxorubicin 

concentrations (otherwise, the exponential decay would reach the horizontal asymptote at 𝑓𝑟 = 0 for low 

doxorubicin concentrations). The parameter 𝑘𝑑 exhibits a complex trend, consisting of a steep decreasing 

branch for doxorubicin concentrations under 50 nM, followed by an increasing branch that plateaus for 

doxorubicin concentrations over 150 nM. We found that an empirical formula based on a Morse-potential 

relationship [60] captured this trend (Fig. 3d). For 𝛾𝑑, we chose a decaying exponential flipped with respect 

to the horizontal axis to capture the increasing trend that ultimately plateaus at a nonzero value (Fig. 3e). 
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The median and range of the quality of fit metrics for the proposed empirical formulas were: NRMSE 

(17.65 [5.45, 153.6]), 𝑅2 (0.91 [0.73, 0.98]), PCC (0.95 [0.86, 0.99]), and CCC (0.85 [0.76, 0.88]). We note 

that the NRMSE of the fitted empirical formula for 𝑓𝑟 reached values beyond 100%. This is due to the small 

values of 𝑓𝑟 at high concentrations of doxorubicin, where the NRMSE is not relevant to modeling outcomes; 

for reference, the RMSE for the fitted empirical formula for 𝑓𝑟 is 0.0476. 

Once the parameter formulas had been established, we wanted to qualitatively assess the range of 

tumor growth dynamics that our formulas could reproduce. For each doxorubicin concentration, we 

sampled the 95% confidence intervals of the fitted empirical parameter formulas (dashed purple lines in 

Fig. 3) using Latin hypercube sampling to obtain 200 parameter combinations, with which we ran 

corresponding model simulations. Figure 4 presents the median and range of the model simulations plotted 

against the median and range of the experimental data for each doxorubicin concentration tested in 

Experiment 1 (Table 1). We observe that the proposed empirical parameter formulas (Fig. 3) are able to 

predict a wide range of model solutions and that the simulations are able to capture the overall tumor growth 

dynamics observed in the datasets from Experiment 1 (Table 1). 

Fitting the multiple-dose model to Experiment 2 data: varying inter-treatment intervals  

To fit the experimental data for varying inter-treatment intervals (Experiment 2, Table 1), we initially 

used the two versions of the multiple-dose model; i.e., with all parameters held constant or varying 𝑓𝑟 and  

𝛾𝑑 with each drug dose. Figure 5 shows the distribution of the NRMSE in fitting the datasets at each inter-

treatment interval (n = 12) for both models. We observe a significant difference between the NRMSEs 

obtained with either version of the multiple-dose model, such that the varying 𝑓𝑟 and  𝛾𝑑 model provides a 

significantly lower NRMSE at 8-, 10-, 12-, 14-, and 16-day inter-treatment intervals (𝑝: 0.0043, 0.0017, 

2.46 × 10−4, 5.92× 10−4, 3.66 × 10−5, respectively). Furthermore, the model with constant parameters 

provides a significantly lower NRMSE at the 2-day inter-treatment interval (𝑝 = 0.0024). Thus, the results 

shown in Figure 5 justify the use of the model with constant parameters for inter-treatment intervals shorter 

than 8 days and the model with varying 𝑓𝑟 and  𝛾𝑑 for inter-treatment intervals ≥ 8 days. We followed this 

model selection criterion for fitting the datasets from Experiments 2 and 3 (Table 1) for the remainder of 

this work. 

Figure 6 shows representative model fits for the observed growth of MCF-7 cell populations treated 

with two doses of 75 nM doxorubicin delivered at inter-treatment intervals ranging from 0 to 16 days 

(Experiment 2, Table 1). Model fits for all the replicates at each inter-treatment interval (n = 12) can be 

found in Supplementary Figure S3. Additionally, Supplementary Table S9 summarizes the median and 

range of the fitted model parameters for each inter-treatment interval. The median and range of the quality 
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of fit metrics were: NRMSE (4.64 [2.74, 14.3]), 𝑅2 (0.99 [0.80, >0.99]), PCC (>0.99 [0.91, >0.99]), and 

CCC (0.99 [0.90, >0.99]). More detailed quality of fit metrics for each inter-treatment interval are reported 

in Supplementary Table S10. As the inter-treatment interval lengthens, the drug-resistant cells tend to adopt 

an increasingly larger growth rate and the drug-sensitive cells transition more slowly from proliferation to 

drug-induced death after two doses of doxorubicin treatment (see Figure 6, Supplementary Figure S3, and 

Supplementary Table S9). These effects appear to promote tumor regrowth after the second dose in most 

replicates for inter-treatment intervals of 6 days or longer and after the first dose for inter-treatment intervals 

of 12 days or longer. Overall, this ultimately leads to significantly higher final total tumor cell counts as the 

inter-treatment interval is lengthened (𝑝 < 0.05, see Supplementary Table S11), suggesting that increased 

time spans between consecutive doses of doxorubicin is conducive to poorer tumor control.  

Additionally, Figure 7 shows the distributions of the fitted 𝑓𝑟 and  𝛾𝑑 values from fitting the multiple-

dose model to the data with varying inter-treatment intervals (Experiment 2, Table 1). When the model with 

constant parameters is used (inter-treatment intervals from 0 to 6 days), we observe a trend towards higher 

resistant fractions and delayed transitions to treatment-induced death in drug-sensitive cells as the two doses 

are further spaced in time. This observation is further supported by the distributions of varying 𝑓𝑟 and  𝛾𝑑 

obtained from fitting the multiple-dose model to the data for inter-treatment intervals from 8 to 16 days. 

After the second dose, the resistant fraction significantly increases and the transition from proliferation to 

treatment-induced death in drug-sensitive cells significantly slows (𝑝 < 0.05, see Fig. 7), thereby suggesting 

an enhanced chemoresistance in both tumor cell subpopulations for longer inter-treatment intervals. 

Moreover, the distributions shown in Figure 7 further support the use of the multiple-dose model with 

varying 𝑓𝑟 and  𝛾𝑑 for longer inter-treatment intervals.  

Fitting the multiple-dose model to Experiment 3 data: varying number of doses  

Figure 8 shows representative model fits for the observed growth of MCF-7 cell populations treated 

with 1 to 5 doses of 75 nM doxorubicin delivered at either 2-day or 2-week inter-treatment intervals 

(Experiment 3, Table 1). The datasets from the cells treated with a 2-day inter-treatment interval were fitted 

with the multiple-dose model with constant parameters, while the datasets from the cells treated with a 2-

week inter-treatment interval were fitted with the multiple-dose model with varying 𝑓𝑟 and  𝛾𝑑. Model fits 

for all the replicates for each number of doses and both inter-treatment intervals (n = 12) can be found in 

Supplementary Figures S4 and S5. The median and range of the fitted model parameters for each dose 

number are summarized in Supplementary Tables S13, S18, and S19. For the replicates treated every 2 

days, the median and range of the quality of fit metrics were: NRMSE (12.2 [2.72, 19.1]), 𝑅2 (0.99 [0.87, 

>0.99]), PCC (0.99 [0.93, >0.99]), and CCC (0.99 [0.93, >0.99]). Likewise, for the replicates treated every 
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2 weeks, the median and range of the quality of fit metrics were: NRMSE (3.21 [1.91, 8.57]), 𝑅2 (>0.99 

[0.93, >0.99]), PCC (>0.99 [0.97, >0.99]), CCC (0.99 [0.96, >0.99]). More detailed quality of fit metrics 

for each number of doses and both inter-treatment intervals can be found in Supplementary Tables S14 and 

S20. 

The model fittings plotted in Figure 8 and Supplementary Figures S4 and S5 show that increasing 

the number of doses contributed to improved tumor control for the two inter-treatment intervals investigated 

in this work. In general, for the cells treated every 2 days, we observed significantly lower final total tumor 

cell counts as the number of doses was increased (𝑝 < 0.05, see Supplementary Table S15). Furthermore, 

delivering two or more doses effectively suppressed tumor growth at the end of the experiment, typically 

showing a decreasing branch in the total tumor cell count right after the first dose. When the inter-treatment 

interval was extended to 2 weeks, delivering more than one dose of doxorubicin also contributed to limited 

tumor cell growth (𝑝 < 0.05, see Supplementary Table S21); however, most of the replicates showed an 

increasing trend in total tumor cell count over the experiment duration. Thus, with a 2-week inter-treatment 

interval, an increasing number of doses can decelerate tumor cell growth, but it cannot suppress it as 

observed with a 2-day inter-treatment interval. Furthermore, the model fitting results reported in Figure 8, 

Supplementary Figure S4 and S5, and Supplementary Tables S13, S18, and S19 show that, as the inter-

treatment interval is lengthened from 2 days to 2 weeks, the drug-resistant cells exhibit a larger growth rate, 

while the drug-sensitive cells emerging after the second and subsequent doses undergo a slower transition 

to treatment-induced death. These effects, induced by the lengthened inter-treatment interval, contribute to 

explaining the superior tumor control in the 2-day experiments and align with the corresponding results 

shown in Figure 6, Supplementary Figure S3, and Supplementary Table S9. 

We further investigated tumor cell dynamics for the Experiment 3 data with 2-week inter-treatment 

intervals by analyzing the evolving distributions of parameters 𝑓𝑟 and  𝛾𝑑, which are shown in Figure 9. We 

observe that the drug-resistant fraction corresponding to the 1st to 4th doses (𝑓𝑟
1, 𝑓𝑟

2, 𝑓𝑟
3, 𝑓𝑟

4) shows an 

increasing trend, which is indicative of progressive chemoresistance during treatment and aligns with the 

corresponding results shown in Figure 7. However, the fitted values for 𝑓𝑟
5 are significantly lower than the 

value obtained for 𝑓𝑟
4 (𝑝 = 0.0015). Additionally, we observe that the values for 𝛾𝑑

2 are significantly lower 

than that of 𝛾𝑑
1  (𝑝 = 5.6 × 10−19), following the trend observed in Figure 7 for the data from Experiment 

2. However, the values for 𝛾𝑑
2, 𝛾𝑑

3, 𝛾𝑑
4, and 𝛾𝑑

5 exhibit an increasing trend, with 𝛾𝑑
5 being significantly larger 

than 𝛾𝑑
4 (𝑝 = 0.0093). These changes in 𝑓𝑟 and  𝛾𝑑 suggest that delivering multiple doses of doxorubicin 

may progressively limit or even revert the chemoresistance observed in the initial drug-resistant and drug-

sensitive subpopulations.  
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Discussion  

We have presented a mathematical framework to describe the therapeutic response of MCF-7 breast 

cancer cells to treatment with doxorubicin and the development of chemoresistance in the in vitro setting. 

Our mathematical models feature drug-resistant/drug-sensitive tumor cell response and dynamic drug 

sensitivity to capture the underlying phenotypic heterogeneity and tumor plasticity, respectively. We 

presented a single-dose model that can be extended to a multiple-dose model, in which parameterization 

can vary with each dose. We fitted our models to various time-resolved microscopy datasets, which enabled 

us to evaluate tumor growth dynamics with our models in three experimental scenarios that varied either 

the doxorubicin concentration, the inter-treatment interval, or the number of doses (see Table 1). In all three 

cases, our models recapitulated the experimental observations, achieving a remarkable quality of fit. 

In Experiment 1 (Table 1), we evaluated the effect of a single dose of doxorubicin on MCF-7 breast 

cancer cell growth and we found that tumor control was significantly improved with increased drug 

concentration (𝑝 < 0.05, see Supplementary Table S5). Our single-dose model showed that, at a 

subpopulation level, these dynamics emerged from a lower growth rate of drug-resistant cells and a faster 

transition from proliferation to treatment-induced death in drug-sensitive cells. The dynamics observed in 

our varying concentration experiment have also been reported in other studies of doxorubicin effects on 

breast cancer cell lines, both as monotherapy and in combination with other therapeutic agents 

[52],[61],[62]. 

We used the parameter distributions obtained from our single-dose model fits to the varying drug 

concentration datasets to empirically fit various parameter formulas as functions of doxorubicin 

concentration, as shown in Figure 3. The model simulations generated from our proposed empirical 

parameter formulas were able to capture a spectrum of model solutions that encompass the dynamics 

observed in our data from Experiment 1 (see Figure 4). We observed clear exponentially decaying trends 

for the fraction of drug-resistant cells (𝑓𝑟) and the proliferation rates of drug-resistant and drug-sensitive 

tumor cells (𝑔𝑟 and 𝑔𝑠, respectively) as doxorubicin concentration increases (see Figure 3a-c). These trends 

seem to capture the growth-inhibition effect of doxorubicin as well as the dose-response curve for this drug 

within our mechanistic modeling framework, in which doxorubicin efficacy has been observed to plateau 

at high concentrations [63],[64]. The distributions of the doxorubicin-induced death rate in drug-sensitive 

cells (𝑘𝑑) exhibited a non-monotonic trend as doxorubicin concentration was varied, which we 

approximated with a Morse-potential relationship [60]. This result was counterintuitive, as we had initially 

anticipated a strictly decreasing trend in 𝑘𝑑 for higher doxorubicin doses, which would indicate an 

increasingly more intense effect of treatment-induced death. However, the cytotoxic action of doxorubicin 

[50]–[52] also induces cell cycle arrest. The interplay between these two drug-induced effects may 
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ultimately lead to nonlinear tumor cell responses, such as the one captured by the empirical formula for 

𝑘𝑑  proposed in this work. The relative participation of cell death and cell cycle arrest in the overall 

doxorubicin effect on breast cancer cells may follow more complex dynamics that are not fully captured by 

our models, and thus requires additional investigation.  

Experiment 2 involved the delivery of two doses of doxorubicin to each replicate of MCF-7 breast 

cancer cells at varying-inter-treatment intervals ranging from 0 to 16 days (Table 1). We fit two versions 

of our multiple-dose model to these datasets: either with constant parameters or with 𝑓𝑟 and 𝛾𝑑  varied at 

each drug dose. The model with constant parameters sufficed to describe the observed cell dynamics for 

inter-treatment intervals from 0 to 6 days, while the model with varying 𝑓𝑟 and  𝛾𝑑 was superior for inter-

treatment intervals from 8 to 16 days (𝑝 < 0.05, see Figure 5). For two consecutive doses of doxorubicin 

delivered at varying inter-treatment intervals, our results showed significantly poorer tumor control with 

longer inter-treatment intervals (𝑝 < 0.05, see Supplementary Table S11). In the fittings from the model 

with varying 𝑓𝑟 and  𝛾𝑑, we observed that the second dose induced a significantly larger 𝑓𝑟 and a lower 𝛾𝑑 

(𝑝 < 0.05, see Figure 7), further supporting the adoption of an adaptive model parameterization for inter-

treatment intervals from 8 to 16 days. From a biological perspective, these changes in 𝑓𝑟 and  𝛾𝑑  suggest 

that longer inter-treatment intervals contribute to the development of chemoresistance in both tumor cell 

subpopulations in our model. Indeed, long inter-treatment intervals may allow cancer cells to acquire 

chemoresistance through processes like treatment-induced mutations, altered epigenetics, and phenotype 

switching, which ultimately limit the efficacy of the second dose and may lead to tumor regrowth [7]–

[10],[17]–[19]. This phenomenon has been observed in preclinical studies [56]–[58], but the trends are less 

clear in the clinical setting [56],[65]–[68]. 

In Experiment 3, we treated MCF-7 breast cancer cells with multiple doses of doxorubicin at either 

2-day or 2-week inter-treatment intervals (Table 1). We observed significantly improved tumor control with 

an increased number of doses delivered at a 2-day inter-treatment interval (𝑝 < 0.05, see Supplementary 

Table S15), with tumor growth effectively suppressed after two or more doxorubicin doses. When the 

treatment interval was extended to 2 weeks, tumor growth was significantly decelerated (𝑝 < 0.05, see 

Supplementary Table S21) but not suppressed, aligning with our previous conclusions that longer inter-

treatment intervals may promote chemoresistance. Moreover, these results underscore that, in comparison 

to the total number of doses, it is the treatment interval that holds a critical impact on determining overall 

tumor control. Indeed, as most patients receive chemotherapy treatments delivered every 1-3 weeks, our 

results point to the clinical importance of optimizing treatment interval in designing effective drug regimens 

[30],[56],[65]–[68]. Additionally, the evolving distributions for the varying 𝑓𝑟 and  𝛾𝑑 from the model fits 

to the 2-week inter-treatment interval datasets (see Figure 9) exhibit trends that potentially explain the 
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relationship between the number of doses and the resulting chemoresistance dynamics. For 𝑓𝑟, the initially 

increasing trend for the first four doses (𝑓𝑟
1, 𝑓𝑟

2, 𝑓𝑟
3, 𝑓𝑟

4), suggests a progressive increase in chemoresistance 

with each dose. However, the values of 𝑓𝑟
5 were significantly lower than those of 𝑓𝑟

4 (𝑝 = 0.0015), 

potentially indicating that increasing the number of doses may ultimately hinder chemoresistance. This is 

further corroborated by the trends for 𝛾𝑑, in which 𝛾𝑑
2 drops significantly with respect to 𝛾𝑑

1 (𝑝 = 

5.6 × 10−19), but 𝛾𝑑
2, 𝛾𝑑

3, 𝛾𝑑
4, and 𝛾𝑑

5 exhibit an increasing trend. This result suggests that more doses of 

doxorubicin can promote increasingly sensitive subpopulations that have faster transitions to treatment-

induced death, thus reverting the initial chemoresistance observed in the drug-sensitive subpopulation. We 

do note that because we have only tested up to five doses of doxorubicin, further studies with a larger 

number of doses would be needed to further probe these trends.  

Although our work presents promising insights into the mechanisms of chemoresistance, this study 

does have its limitations. First, we used a limited number of replicates within each experiment (n = 6 or 12, 

see Table 1). Since we do not observe uniform growth dynamics across all replicates, we would like to re-

assess the observations in this study over a larger experimental setup, for example involving a higher 

number of replicates exposed to more diverse combinations of drug concentration, inter-treatment interval, 

and number of drug doses. This would enable us to investigate whether these observations are from 

doxorubicin effects altering tumor cell dynamics or whether the experimental conditions influence the 

development of a representative distribution of drug-resistant and drug-sensitive cells (e.g., ~2,000 seeded 

cells/well might potentially limit the emergence of a resistant subpopulation, which may skew the observed 

response to treatment). Second, we also acknowledge the general limitations of extrapolating from in vitro 

systems to tumors in patients [69], as cell lines do not capture the unique, heterogeneous nature of each 

patient’s tumor. To address this limitation, we plan to evaluate our models on clinically-relevant breast 

cancer cells other than MCF-7 cells (ER+ breast cancer), such as the BT-474 (ER+HER2+ breast cancer) 

and MD-MBA-231 (triple-negative breast cancer) considered by Howard et al. [34]. Third, our cells were 

grown in monolayers, which are not representative of the three-dimensional tumor geometry in vivo. 

However, our mathematical models could be made readily applicable to tumor cell spheroid data. In 

particular, our models could be extended to a set of partial differential equations, accounting for tumor cell 

mobility and spatially-resolved parameters and variables, which would allow for a spatiotemporal 

description of spheroid growth in both in vitro and in vivo settings [30],[70]. Indeed, these extended models 

could incorporate other spatially-varying mechanisms beyond tumor cell dynamics, such as drug diffusion, 

mechanics, and angiogenesis, which have also been recognized as key components of chemoresistance and 

drug action [70]–[74]. Finally, we acknowledge the limitations in modeling subpopulation dynamics with 

total tumor cell data, and that our study thus lacks methods for specifically validating the proposed 
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mathematical description of drug-resistant and drug-sensitive tumor cell dynamics. This issue could 

potentially be addressed by incorporating methods to trace cell lineage, which would enable the collection 

of time-resolved measurements of the diverse drug-sensitive and drug-resistant phenotypes in the tumor 

cell population. For instance, Al’Khafaji et al. have developed a functionalized lineage tracing tool to track 

both cell lineages and direct lineage-specific gene expression using barcoded gRNAs [75]. Then, fitting 

these data to an extension of our model to a multicompartment formulation describing the dynamics of the 

various detected drug sensitivity phenotypes could provide a more precise insight into the dose-dependent 

response (including refined parameter empirical formulas) and how timing and the number of doses mediate 

the global response of the tumor cell population. 

In future studies, we intend to explore a refinement of our model to account for the mechanisms 

underlying the trends observed in the empirical parameter formulas from this work, which will help us 

further understand doxorubicin effects. Further experimentally informed studies with our mechanistic 

models could also contribute to identifying the optimal timing and frequency for doxorubicin delivery in 

preclinical scenarios. Indeed, we would like to explore optimal control theory [74],[76] in vitro through 

heterogeneous multiclonal cultures to identify optimal treatment combinations of doxorubicin 

concentration, treatment interval, and number of doses. Ultimately, we think that the mechanistic insights 

provided by our models and proposed empirical formulas could guide the identification of the minimal dose 

range required to effectively inhibit breast cancer growth in vivo and achieve optimal tumor control, which 

are of great clinical interest to derive minimally toxic therapeutic regimens [50],[74],[77],[78]. Thus, we 

believe that the complex dynamics underlying the dose-dependent effect of doxorubicin deserve further 

research coupling extensive experiments with mechanistic modeling.  

 

Conclusion 

We have developed a biologically-based, mathematical model of MCF-7 breast cancer cell response 

to doxorubicin accounting for the development of chemoresistance, which significantly extends the 

experimentally-informed mechanistic models by Howard et al. [34]. To this end, we proposed a modeling 

framework that can accommodate multiple doxorubicin doses as well as an adaptive parameterization with 

each drug dose. We show that model fittings to longitudinal, time-resolved microscopy data of MCF-7 

breast cancer cells could remarkably recapitulate the observed growth dynamics for all experimental 

scenarios varying in either drug concentration, inter-treatment interval, or number of doses. We also 

propose empirical formulas that describe model parameters as functions of doxorubicin concentration, 

which could contribute to refining our mechanistic model and further our understanding of doxorubicin 

action. We report significantly improved tumor control with higher doxorubicin concentrations, shorter 
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inter-treatment intervals, and a higher number of doses. We also observe that longer inter-treatment 

intervals potentially promote chemoresistance through higher resistant fractions and delayed transitions to 

treatment-induced death in drug-sensitive subpopulations. Our findings show promise in furthering our 

understanding of doxorubicin action and chemoresistance progression, while also representing a step 

towards systematically exploring optimal treatment regimens in vitro.  
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Data availability 

The experimental datasets leveraged in the current study as well as the MATLAB scripts for their analysis 

with our mechanistic models are available at Zenodo (https://doi.org/10.5281/zenodo.5722432). 
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Tables & Figures 

 

Experiment  
Concentration 

[nM] 

Inter-treatment 

Interval 

 [d] 

Number of 

Doses 

Number of 

Replicates 

1 
0, 10, 20, 35, 50, 75, 

100, 125, 150, 300  
- 1 6 

2 75 
0, 2, 4, 6, 8, 10, 12, 

14, 16 
2 12 

3 75 2 or 14 1, 2, 3, 4, 5 12 

 

Table 1. Experimental conditions.  In Experiment 1, one dose of doxorubicin was delivered at 

concentrations varying from 10 to 300 nM (n = 6). In Experiment 2, two doses of 75 nM doxorubicin were 

delivered at inter-treatment intervals varying from 0 to 16 days (n = 12). In Experiment 3, one to five doses 

of 75 nM doxorubicin were delivered at either 2-day or 2-week inter-treatment intervals (n = 12).   

  

 
Figure 1. Generalized model of tumor cell response to multiple doses of doxorubicin treatment. We 

start with a population of untreated tumor cells and let them grow for approximately 48 hours. At time 𝑡𝐷𝑜𝑥
1 , 

we add a dose of doxorubicin (Dox) to each well. We assume that after the treatment, the tumor cells exhibit 

either one of two responses: drug-resistant (𝑅) or drug-sensitive (𝑆1). The fraction of cells in either 

subpopulation is determined by 𝑓𝑟, the fraction of drug-resistant cells. After the subsequent doses (𝑖 =

2,3, … , 𝑛𝑑), we assume that a fraction 𝑓𝑟 of the drug-resistant cells survive the treatment, while a fraction 

(1 − 𝑓𝑟) induces a new subpopulation of sensitive cells (𝑆𝑖), such that the total number of tumor cells is 

𝑁 =  𝑅 + 𝑆1  +  𝑆2+ . . . + 𝑆𝑛𝑑 for times 𝑡 > 𝑡𝐷𝑜𝑥
𝑛𝑑 . This Figure was created using BioRender.com. 
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Figure 2. Representative fits of the single-dose model for varying concentrations of doxorubicin. Data 

and model fittings are shown for a representative replicate treated with 10 to 300 nM doxorubicin 

concentrations (Experiment 1, Table 1). Experimental data are shown in gray circles. The number of total 

cells, resistant cells, and sensitive cells obtained with the fitted single-dose model are shown in black, red, 

and blue solid lines, respectively. The time of doxorubicin delivery is represented with a vertical grey 

dashed line.  As doxorubicin concentration is increased, we observe a decrease in the growth rate of drug-

resistant cells and a faster transition from growth to treatment-induced death in the drug-sensitive cells. 

These drug-induced effects ultimately translate into a longer delay (or even suppression) of tumor growth 

post-treatment and lower total tumor cell count for higher doxorubicin concentrations, indicating superior 

tumor control overall. The median and range of the quality of fit metrics across all replicates in Experiment 

1 (Table 1) are NRMSE: 3.33 [0.80, 12.43], 𝑅2: >0.99 [0.96, >0.99], PCC: >0.99 [0.98, >0.99], and CCC: 

0.99 [0.97, >0.99].  
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Figure 3. Empirical parameter formulas for varying doxorubicin concentrations. The proposed 

empirical formulas indicated at the top of each panel (a-e) were fit to the median of the corresponding 

parameter distributions obtained from fitting the single-dose model to the varying concentration datasets 

from Experiment 1 (Table 1). 𝐷 denotes doxorubicin concentration in nM, while 𝛼𝑖 (𝑖 = 1,2, …) are 

empirical parameters. The distributions of the single-dose model parameters are represented with black 

boxplots, in which outliers are represented as black circles. The resulting curves from fitting the empirical 

parameter formulas are shown as purple solid lines, and their corresponding 95% confidence intervals are 

plotted as purple dashed lines. Panel (a) shows the parameter formula for the fraction of resistant cells (𝑓𝑟). 

Panel (b) shows the parameter formula for the proliferation rate of drug-resistant tumor cells (𝑔𝑟). Panel (c) 

shows the parameter formula for the proliferation rate of drug-sensitive tumor cells (𝑔𝑠). In panels (a) – (c), 

we observe that as the drug concentration increases, the corresponding single-dose model parameter values 

decrease exponentially. Panel (d) shows the parameter formula for the doxorubicin-induced death rate in 

drug-sensitive cells (𝑘𝑑), which we approximated with an equation based on a Morse-potential relationship. 

Panel (e) shows the parameter formula for the doxorubicin-induced death delay rate of drug-sensitive cells 

(𝛾𝑑), which increases and then plateaus as the drug concentration increases. Median and range of quality of 

fit metrics are NRMSE: 17.65 [5.45, 153.6], 𝑅2: 0.91 [0.73, 0.98], PCC: 0.95 [0.86, 0.99], and CCC: 0.85 

[0.76, 0.88].    
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Figure 4. Comparison of simulated tumor growth based on empirical parameter formulas with 

respect to experimental data for varying doxorubicin concentrations. We sampled the 95% confidence 

intervals for the fitted empirical parameter formulas in Figure 3 using Latin hypercube sampling to obtain 

200 parameter combinations for each doxorubicin concentration, with which we carried out corresponding 

simulations with the single-dose model. The median and range of the model simulations are plotted with 

the median and range of the experimental data from Experiment 1 (Table 1) for comparison. The median 

of the experimental data is shown with gray circles, and the range of the experimental data is represented 

with gray shaded regions. The median of the model simulations is plotted as a pink solid line, and the range 

of the simulations is shown as pink shaded regions. The time of doxorubicin delivery is represented with a 

vertical grey dashed line. We observe that our fitted parameter formulas from Figure 3 can reproduce a 

wide range of tumor cell dynamics, including the tumor cell growth observed in the varying concentration 

datasets (Experiment 1, Table 1).    
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Figure 5. Comparison of fitting the experimental data for varying inter-treatment intervals with the 

multiple-dose model with constant versus varying parameters. For each inter-treatment interval tested 

in Experiment 2 (Table 1), we compared the normalized root mean squared error (NRMSE) calculated from 

the fittings using the multiple-dose model with constant parameters (yellow boxplots) with the NRMSE 

calculated from the fittings using the multiple-dose model with varying 𝑓𝑟 and  𝛾𝑑 (green boxplots). Outliers 

are represented with circles. At inter-treatment intervals of 8, 10, 12, 14, and 16 days, there is a significantly 

lower NRMSE when the model with varying 𝑓𝑟 and  𝛾𝑑 is used (𝑝: 0.0043, 0.0017, 2.46 × 10−4, 

5.92× 10−4, 3.66 × 10−5, respectively).  Additionally, we observe that, with an inter-treatment interval of 

2 days, there is a significantly lower NRMSE when the model with constant parameters is used (𝑝 =

 0.0024). An asterisk (*) indicates 𝑝 < 0.05 (two-sided Wilcoxon rank sum test). 
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Figure 6. Representative fits of the multiple-dose model for varying inter-treatment intervals. Data 

and model fittings are shown for a representative replicate exposed to two doses of 75 nM doxorubicin 

delivered at inter-treatment intervals ranging from 0 to 16 days (Experiment 2, Table 1). Experimental data 

are shown in gray circles. The number of total cells, resistant cells, and sensitive cells obtained with the 

fitted multiple-dose model are shown in black, red, and blue solid lines, respectively. The times of 

doxorubicin delivery are represented with vertical grey dashed lines. For inter-treatment intervals of 0 to 6 

days, the multiple-dose model with constant parameters was used for data fitting. For inter-treatment 

intervals of 8 to 16 days, we used the multiple-dose model with varying 𝑓𝑟 and  𝛾𝑑. As the inter-treatment 

interval is lengthened, we observe an increase in the growth rate of drug-resistant cells and a slower 

transition from growth to treatment-induced death in the drug-sensitive cells. These drug-induced effects 

ultimately lead to a tumor relapse after the second dose for inter-treatment intervals of 6 days or longer in 

most replicates, as well as tumor regrowth after the first dose for inter-treatment intervals of 12 days or 

longer. These observations suggest increasingly poor tumor control as the two doses of 75 nM of 
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doxorubicin are spaced further out in time.  The median and range of the quality of fit metrics across all 

datasets in Experiment 2 (Table 1) are NRMSE: 4.64 [2.74, 14.3], 𝑅2: 0.99 [0.80, >0.99], PCC: >0.99 [0.91, 

>0.99], and CCC: 0.99 [0.90, >0.99].  
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Figure 7. Comparison of the 𝒇𝒓 and  𝜸𝒅 distributions obtained from fitting the multiple-dose model 

to the experimental data for varying inter-treatment intervals. The parameter distributions are 

represented as boxplots and were obtained from fitting the multiple-dose model to the varying inter-

treatment interval datasets from Experiment 2 (Table 1). Outliers are represented with circles. Panel (a) 

shows the distributions for the fraction of resistant cells (𝑓𝑟). Panel (b) shows the distributions for the 

doxorubicin-induced death delay rate in drug-sensitive tumor cells (𝛾𝑑). For 0 to 6 day inter-treatment 

intervals, 𝑓𝑟 and 𝛾𝑑 are kept constant in the model (yellow boxplots); whereas, for 8 to 16 day inter-

treatment intervals, we vary 𝑓𝑟 and 𝛾𝑑with each doxorubicin dose (𝑓𝑟
1, 𝛾𝑑

1: light green boxplots, 𝑓𝑟
2, 𝛾𝑑

2: dark 

green boxplots). As the inter-treatment interval is lengthened from 0 to 6 days, the constant 𝑓𝑟 and  𝛾𝑑 show 

a trend towards higher resistant fractions and slower transitions to doxorubicin-induced death, suggesting 

increasingly poorer tumor control. When 𝑓𝑟 and  𝛾𝑑 are varied with each dose, we observe that the second 

𝑓𝑟 values correspond to significantly higher resistant fractions for 8-, 10-, 12-, 14-, and 16- day inter-

treatment intervals (𝑝: 4.7 × 10−5, 3.7 × 10−5,  3.7 × 10−5, 3.7 × 10−5 , and 3.7 × 10−5, respectively) 

and that the second 𝛾𝑑 values represent significantly slower transitions to treatment-induced death for 10-, 

12-, 14-, and 16- day inter-treatment intervals (𝑝: 0.0141, 3.7 × 10−5 , 6.0 × 10−5, and 9.7 ×

10−5,  respectively). These changes in  𝑓𝑟 and  𝛾𝑑 after the second dose also suggest an increasingly poorer 

tumor control after the second dose with a longer inter-treatment interval. An asterisk (*) indicates 𝑝 < 0.05 

(two-sided Wilcoxon rank sum test). 
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Figure 8. Representative fits of the multiple-dose model for a varying number of doxorubicin doses. 

Data and model results are shown for a representative replicate treated with 1 to 5 doses of 75 nM 

doxorubicin delivered at either 2-day or 2-week inter-treatment intervals (Experiment 3, Table 1).  

Experimental data are shown in gray circles. The number of total cells, resistant cells, and sensitive cells 

obtained with the fitted multiple-dose model are shown in black, red, and blue solid lines, respectively. The 

times at which doxorubicin is delivered are represented with vertical grey dashed lines. Panel (a) shows 

fittings for 1 to 5 doxorubicin doses delivered at 2-day inter-treatment intervals obtained with the model 
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with constant parameters. The median and range of the quality of fit metrics across all replicates for this 

Experiment 3 subgroup (Table 1) are NRMSE: 12.2 [2.72,19.1], 𝑅2: 0.99 [0.87,>0.99], PCC: 0.99 

[0.93,>0.99], CCC: 0.99 [0.93,>0.99]. Panel (b) shows fittings for 1 to 5 doxorubicin doses delivered at 2-

week inter-treatment intervals obtained with the model with varying 𝑓𝑟 and  𝛾𝑑. The median and range of 

the quality of fit metrics across all replicates for this Experiment 3 subgroup (Table 1) are NRMSE: 3.21 

[1.91,8.57], 𝑅2: >0.99 [0.93,>0.99], PCC: >0.99 [0.97, >0.99], CCC: 0.99 [0.96,>0.99]. Overall, we 

observe that there is superior tumor control with an increased number of doses, which is further improved 

when the doses are delivered at shorter inter-treatment intervals. As the inter-treatment interval is 

lengthened from 2 days to 2 weeks, we observe that the growth rate and number of the drug-resistant cells 

increase, while the drug-sensitive cells exhibit a slower transition from proliferation to treatment-induced 

death. 
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Figure 9. Distributions of 𝒇𝒓 and  𝜸𝒅 obtained from fitting the multiple-dose model to the 

experimental data for a varying number of doses with a 2-week inter-treatment interval. The 

parameter distributions are represented as boxplots and were obtained from fitting the multiple-dose model 

to the 2-week inter-treatment interval datasets from Experiment 3 (Table 1), in which the model with 

varying 𝑓𝑟 and  𝛾𝑑 was used. Outliers are represented as circles. Panel (a) shows the distributions of the 

fraction of resistant cells, such that a new value for 𝑓𝑟 is defined for each drug dose (𝑓𝑟
1, 𝑓𝑟

2, … , 𝑓𝑟
5). We 

observe an increasing trend in the first four 𝑓𝑟 parameters, which suggests an increasing chemoresistance 

with each dose. However, 𝑓𝑟
5 takes on significantly lower values than 𝑓𝑟

4 (𝑝 = 0.0015), which suggests 

that adding more doses may limit the trend towards chemoresistance. Panel (b) shows the distributions of 

the doxorubicin-induced death delay rate of drug-sensitive cells, such that a new value of 𝛾𝑑 is defined for 

each drug dose (𝛾𝑑
1, 𝛾𝑑

2,…, 𝛾𝑑
5 ). The values for 𝛾𝑑

2 are significantly lower than those of 𝛾𝑑
1 (𝑝 =

5.6 × 10−19). Hence, the second sensitive subpopulation shows a slower transition to treatment-induced 

death. However, the subsequent doxorubicin doses induce drug-sensitive subpopulations exhibiting an 

increasing 𝛾𝑑, with 𝛾𝑑
5 being significantly larger than 𝛾𝑑

4 (𝑝 = 0.0093). This observation further suggests 

that past a certain number of doses, initial chemoresistance appears to be reverted. An asterisk (*) indicates 

𝑝 < 0.05 (two-sided Wilcoxon rank sum test). 
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