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Genomic architecture controls spatial structuring in Amazonian birds

Gregory  Thom1*,  Lucas  Rocha  Moreira2,3,  Romina  Batista4,5,  Marcelo  Gehara6,  Alexandre

Aleixo7,8, Brian Tilston Smith1 

1Department of Ornithology, American Museum of Natural History, New York, United States.

2Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical

School, Worcester, MA, USA.

3Broad Institute of MIT and Harvard, Cambridge, MA, USA.

4Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.

5Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.

6Department of Earth and Environmental Sciences, Rutgers University, Newark, United States.

7 Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.

8 Instituto Tecnológico Vale, Belém, Brazil.

*Corresponding author: gthomesilva@amnh.org

Abstract 

Large rivers are ubiquitously invoked to explain the distributional limits and speciation of the

Amazon Basin’s  mega-diversity.  However,  inferences  on the spatial  and temporal  origins  of

Amazonian species have narrowly focused on evolutionary neutral models, ignoring the potential

role  of  natural  selection  and intrinsic  genomic  processes  known to produce heterogeneity  in
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differentiation  across  the  genome.  To  test  how  these  factors  may  influence  evolutionary

inferences  across  multiple  taxa,  we sequenced whole  genomes  of  populations  for  three  bird

species that co-occur in southeastern Amazonian and exhibit  different life histories linked to

their  propensity  to  maintain  gene  flow  across  the  landscape.  We  found  that  phylogenetic

relationships within species and demographic parameters varied across the genome in predictable

ways.  Genetic  diversity  was  positively  associated  with  recombination  rate  and  negatively

associated with the species tree topology weight. Gene flow was less pervasive in regions of low

recombination, making these windows more suitable for commonly used phylogenetic methods

that  assume  a  bifurcating-branching  model.  To  corroborate  that  these  associations  were

attributable to selection, we modeled the signature of adaptive alleles across the genome taking

demographic history into account, and found that on average 31.6 % of the genome showed high

probability for patterns consistent with selective sweeps and linked selection directly affecting

the estimation of evolutionary parameters. By implementing a comparative genomic approach

we were able to disentangle the effects of intrinsic genomic characteristics and selection from the

neutral processes and show how speciation hypotheses are sensitive to genomic architecture. 

Introduction

Across the Amazon Basin, large rivers delimit the distribution of hundreds of rainforest

taxa  (Cracraft 1985; Bates et al. 1998; da Silva et al. 2005). The spatial patterns that underlie

these  distributions  have  been  central  for  understanding  how  diversity  originates  in  the

hyperdiverse Neotropics (Haffer 1969; Haffer 2008; Ribas et al. 2012; Smith et al. 2014; Silva et

al. 2019). The species isolated by large rivers show complex and highly variable relationships

that span millions of years, with limited congruence in spatial  patterns of diversification and
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historical demography (Smith et al. 2014; Silva et al. 2019). Reduced genomic approaches have

revealed  that  factors  such  as  gene  flow  may  hinder  inferences  on  the  origins  of  species

distributed across Amazonian rivers  (Weir et al. 2015; Barrera-Guzmán et al. 2018; Ferreira et

al. 2018; Berv et al. 2021; Del-Rio et al. 2021; Luna et al. 2021; Musher et al. 2021). In addition

to gene flow, intrinsic  (e.g.,  recombination  rate)  and extrinsic  (e.g.,  selection)  processes that

influence  the  landscape  of  genomic  diversity  and  differentiation  may  further  obfuscate

biogeographic  inferences  by  affecting  the  estimation  of  phylogenetic  and  demographic

parameters (Li et al. 2019; Martin et al. 2019; Johri 2021). Elucidating the relationships between

the processes driving genomic evolution may yield more accurate inferences on the spatial and

temporal  history  of  species,  providing  a  new  perspective  into  the  hotly  debated  origins  of

Amazonian biodiversity. 

The  genomic  landscape  of  genetic  diversity  is  ubiquitous  across  taxonomic  groups

indicating that evolutionary signal is dependent on which portions of the genome are examined

(Delmore et al. 2018; Li et al. 2019; Martin et al. 2019; Manthey et al. 2021; Johri et al. 2021) .

Components of genomic architecture, such as chromosome inheritance, meiotic recombination,

the  density  of  targets  of  selection,  biased  gene  conversion,  and  mutation  rate  operate

simultaneously and heterogeneously across the genome, resulting in highly variable levels of

genetic diversity and divergence at both intra- and interspecific scales (Meunier and Duret 2004;

Garrigan et al.  2012; Cruickshank and Hahn 2014; Roux et al.  2014; Seehausen et al.  2014;

Fontaine et al. 2015; Wolf and Ellegren 2017; Smith et al. 2018; Edelman et al. 2019; Martin et

al. 2019; Johri et al.). For instance, recent evidence indicates that phylogenetic signal (e.g., the

support for a particular topology) is associated with chromosome size and recombination rate,

with larger chromosomes having slower rates that yield higher support for inferred species trees
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(Martin et  al.  2019). However,  most methods used in phylogenomics do not account for the

multiple  processes  that  shape  the  genomic  landscape,  which  may  confound  estimation  of

evolutionary histories  (Ewing and Jensen 2016; Schrider et al.  2016; Li et al.  2019). This is

critical given that modern biogeography relies heavily on phylogenetic and population genetic

approaches  to  explore  the  spatial  history  and  demography  of  populations  (Knowles  2009;

Edwards et al. 2021). Understanding how genomic architecture may affect inferences of spatial

diversification histories will provide a clearer picture on the relative roles of intrinsic genomic

characteristics, natural selection, and neutral processes on speciation (Pouyet et al. 2018; Johri et

al. 2020).

Linked selection can have a large impact on genome-wide variation, but its effects on

phylogenetic signal and demographic history of species are only starting to be explored (Li et al.

2019; Martin et al. 2019). The indirect influence of positive and background selection on linked

neutral  sites  can  reduce  genetic  diversity  around  target  regions,  decreasing  local  effective

population size (Ne) and leading to faster fixation of alleles  (Charlesworth 1998; Cruickshank

and Hahn 2014; Burri et al. 2015). The intensity of linked selection on neutral sites is predicted

by the interplay between the local density of targets under selection and the recombination rate,

with more pronounced reductions in genetic diversity occurring in genomic regions with stronger

selection and lower recombination  (Smith and Haigh 1974; Charlesworth et al. 1993; Hudson

and Kaplan 1995; Gillespie 2000; Zeng 2013). Areas of low recombination should also be more

resistant to the confounding effects of gene flow and function as hotspots of phylogenetic signal

(Martin  et  al.  2019;  Chase  et  al.  2021).  In  these  regions,  linkage  is  maintained  between

introgressed  variants  and  large  genomic  blocks  may  be  removed  from  the  population  if

deleterious alleles are present  (Brandvain et al.  2014; Schumer et al.  2018; Mořkovský et al.
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2018).  The reduced impact  of  gene  flow in regions  of  low recombination  indicates  that  the

phylogenetic signal is more likely to follow a bifurcating tree model, fitting the assumptions of

most phylogenetic methods (Li et al. 2019; Martin et al. 2019). However, linked selection on low

recombination areas violates neutral models of evolution and affects genome-wide estimations of

demographic parameters (Schrider et al. 2016; Johri et al. 2020). A growing number of studies

have reported associations between recombination, levels of genetic diversity, and phylogenetic

relationships,  both within and between chromosomes  (Cutter  and Payseur  2013;  Burri  et  al.

2015; Dutoit, Burri, et al. 2017; Tigano et al. 2021). 

Although recent  studies show that  linked selection impacts  a larger  proportion of the

genome than previously thought  (Kern and Hahn 2018; Pouyet et al. 2018), the degree of this

impact  varies  between  species  (Jensen  et  al.  2019;  Tigano  et  al.  2021).  For  instance,  the

divergence between populations with high rates of gene flow might be restricted to small areas of

the genome, maintained by strong divergent selection whereas the vast majority of the genome

might show reduced differentiation due to widespread introgression  (Ellegren et al.  2012). In

contrast, genomic differentiation in allopatric populations, or under reduced levels of gene flow,

tends to be more widespread, given the higher contribution of genetic  drift  sorting alleles in

isolated populations. This latter scenario should produce a stronger association between genomic

architecture and levels of genetic differentiation across the genome. 

In  this  study,  we  model  the  impact  of  genomic  architecture  on  patterns  of  genetic

diversity  and  spatial  differentiation  of  three  bird  species  that  co-occur  in  southeastern

Amazonian. These taxa have different propensities to move across space that are linked to their

life histories, resulting in landscapes of genomic differentiation impacted by distinct levels of

gene flow. We hypothesize that if linked selection led to congruent patterns of genetic diversity
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across  the genome,  then metrics  associated  with species  differentiation  and genetic  diversity

should  be  correlated  with  recombination  rate,  the  density  of  targets  under  selection,  and

chromosome size. Alternatively,  species could have idiosyncratic patterns of association with

genomic architecture,  driven by other factors such as historical  demography and the level  of

differentiation across rivers. We demonstrate that the interplay between recombination, selection,

and gene flow lead to a highly variable landscape of genetic diversity and differentiation within

and between species, and impact biogeographic inference under different population histories. 

Results

Population genetics summary statistics and genomic features vary between species and across

the genome

We  generated  95  whole-genome  sequences  for  three  species  of  birds,  Phlegopsis

nigromaculata (n=31), Xiphorhynchus spixii (n=31), and Lipaugus vociferans (n=26) that are co-

distributed across three Amazonian areas of endemism, the Tapajos, Xingu, and Belem (Figure

1; Table S1). We recovered a mean coverage of 10x across all species. On average, 88% of the

pseudo-chromosome reference genomes were recovered with coverage above 5x per individual

(Table  S1).  Benchmarking  Universal  Single-Copy Orthologs  analyses  performed  in  BUSCO

v2.0.1 (Waterhouse et al. 2018) identified a high proportion of targeted genes on the references

used for P. nigromaculata (89.3%), X. spixii (89.1%), and L. vociferans (93.4%; Table S2). The

number  of  segregating  sites  were of  a  similar  magnitude  but  varied:  P. nigromaculata  (n =

20,838,931), X. spixii  (n = 26,583,784), and L. vociferans (n = 21,769,167). The proportion of

missing sites per individual was on average 18% (Table S1). Summary statistics estimated from

100kb non-overlapping sliding windows and mean values per chromosome showed that levels of
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genetic  diversity  varied  substantially  across  species  and  within  and  between  chromosomes

(Figure 2). Populations from species with higher putative dispersal abilities (L. vociferans and X.

spixii) had substantially more nucleotide diversity (Figure 3; Tables S3-S5). We observed higher

nucleotide diversity on smaller chromosomes in  P. nigromaculata  (Pearson’s correlation R = -

0.6; p-value = 0.002; n = 26) and X. spixii (Pearson’s correlation R = -0.36; p-value 0.047; n =

32) but not in L. vociferans (Pearson’s correlation R = -0.01; p-value = 0.94 ; n = 32; Figure S1-

S6; Table S6-S11). We also found similar associations with  Dxy, number of segregation sites,

and Tajima’s D (Figure S1-S6; Table S6-S11). These results support a highly heterogeneous

landscape of genetic diversity across the genome of the three studied species. 
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Figure  1: Contrasting  patterns  of  genomic  differentiation  and  spatial  relationships  between

populations  of  three  species  of  birds  occurring  in  southeastern  Amazonia.  Geographic

distribution of genomic samples for each species  (A). Triangles, stars, and circles are sampled

localities  for  Phlegopsis  nigromaculata,  Xiphorhynchus  spixii,  and  Lipaugus  vociferans,

respectively. Each colored polygon in the map represents a major Amazonian interfluve (area of

endemism):  Tapajos  (Green),  Xingu  (Blue),  and  Belem  (Yellow).  (B) Patterns  of  genetic

structure across the genome were obtained with local PCAs based on 10kb windows. Left: plots

for the first and second multidimensional coordinates, where each point represents a genomic

window. Gray points represent corners clustering the 10% of the windows closer to the three

further  points in  the graph. Right:  PCA plots for the first  and second principal  components,

combining  the  windows of  each  corner. (C)  Supermatrix  phylogenetic  estimations  based  on

concatenated SNPs. Numbers on the nodes represent bootstrap support for major nodes in the

tree. Color bars next to terminals represent geographic location following the map (A).

Figure  2:  Phylogenetic  signal  for  the  species  tree  was  higher  on  central  portions  of
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chromosomes and was associated with genomic architecture. (A) Example of how phylogenetic

signal  and  summary  statistics  are  distributed  across  a  chromosome.  Shown  are  pseudo-

chromosome 6 of P. nigromaculata. On the top graph, colored bars represent the weight for the

three  alternative  topologies  shown in  (B) for  the  relationship  between  Tapajos,  Belem,  and

Xingu areas of endemism. On the three bottom graphs, the magenta color represents the overlap

between  the  orange  (y-axis  on  the  left)  and  blue  (y-axis  on  the  right)  tones.  Estimates  of

nucleotide diversity, recombination rate, and Tajima’s D were based on the Tapajos population.

ABBA represents the number of sites supporting Topology 2 assuming Topology 1 as the species

tree. 

Figure  3: Nucleotide  diversity  varied  within  and  between  pseudo-chromosomes  and  across
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species.  (A) Distribution of nucleotide diversity (π) across chromosomes for the three studied) across chromosomes for the three studied

species.  (B) Scatterplot and regression line with 95% confidence interval models with average

nucleotide diversity as a function of chromosome size.  Phlegopsis nigromaculata  - Pearson’s

correlation R = -0.6; p-value = 0.002; n = 26; Xiphorhynchus spixii - Pearson’s correlation R = -

0.36;  p-value  0.047;  n  =  32;  Lipaugus  vociferans -  Pearson’s  correlation  R  =  -0.01;  p-

value=0.94 ; n = 32.

We found that  genomic regions with a  reduced meiotic  recombination  rate  were less

impacted by gene flow, and had stronger signatures of linked selection,  with greater  genetic

differentiation.  To test for associations between recombination rate and genetic metrics while

accounting  for historical  demography,  we estimated the per-base recombination  rate  (r)  with

ReLERNN (Adrion et al. 2020). Recombination rate varied considerably across the genome of

P. nigromaculata  (mean r = 2.103e-9; SD = 4.413e-10),  X. spixii  (mean r = 1.234e-9; SD =

7.190e-10), and L. vociferans (mean r = 1.776e-9; SD = 4.025e-10; Figure S7) but in predictable

ways. We found that regions with higher recombination rates were often in chromosome ends

(Figure S7) and smaller chromosomes (Figure S4-S6), and were positively correlated with gene

density and nucleotide diversity in all three species (Figure S8; Table S12). Loess models with

recombination rate and gene density as covariate predictors explained a large proportion of the

variation  in  genetic  diversity  in  P. nigromaculata  (R2  = 0.33),  X. spixii  (R2 = 0.65),  and  L.

vociferans  (R2 =  0.41;  Figure  S8,  S9).  These  results  suggest  a  significant  effect  of  linked

selection driving genomic patterns of diversity.

Genome-wide  levels  of  differentiation  between  species  match  the  evolutionary

expectations  associated  with  their  life  history.  The  least  dispersive  species  that  inhabit  the

understory, P. nigromaculata, had the most pronounced levels of genetic structure across rivers,
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followed by X. spixii which occupies the midstory, and the most dispersive, canopy species, L.

vociferans,  had  the  shallowest  structure.  To  visualize  patterns  of  genetic  structure  based  on

independently  evolving  sets  of  SNPs  (linkage  disequilibrium  R2 <  0.2),  we  used  Principal

Component Analysis (PCA). In P. nigromaculata, three isolated clusters of individuals supported

strong  geographic  structure,  consistent  with  previous  studies  based  on  mtDNA,  spatially

matching areas of endemism (Aleixo et al. 2009; Silva et al. 2019; Figure 1, S10). In X. spixii,

the  PCA  supported  strong  differentiation  between  the  Tapajos  from  Belem  and  Xingu

populations,  which had a substantial  overlap in PC2 (5.0% of the explained variance; Figure

S10). For L. vociferans, all samples clustered together, indicating a lack of spatial structure in the

genetic variation (Figure S10). In agreement with these results, average Fst between populations

was considerably higher in P. nigromaculata (mean Fst = 0.1262; SD = 0.09) than in X. spixii

(mean Fst = 0.059; SD = 0.046, and L. vociferans (mean Fst = 0.008; SD = 0.019). Pairwise Fst

between populations was, in general, negatively correlated with genetic diversity metrics in all

three species, and it was negatively correlated with recombination rate in P. nigromaculata and

X. spixii (Figure S1-S6; Table S6-S11). 

Levels  of genetic  structure varied substantially  across the genome, indicating that the

support for alternative spatial  patterns of differentiation was directly associated with intrinsic

genomic processes. To explore the genome-wide variation in genetic structure, we used local

PCAs across sliding windows using lostruct v0.0.0.9 (Li and Ralph 2019). Local PCAs showed

that distinct parts of the genome support different clustering patterns in P. nigromaculata and X.

spixii, likely reflecting distinct evolutionary relationships between populations (Figure 1). In L.

vociferans,  we observed a  gradient  between Tapajos,  Xingu, and Belem individuals,  without

clear  structuring,  consistent  with  the  low  Fst  estimates  reported  for  this  species  (Figure  1).

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470789doi: bioRxiv preprint 

https://paperpile.com/c/oJUljg/Dn83
https://paperpile.com/c/oJUljg/mFdv+Xydm
https://doi.org/10.1101/2021.12.01.470789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic structure, as described by the first two MDS axes obtained with lostruct, was associated

with  recombination  in  P. nigromaculata (MDS1: R2 = -0.04,  p-value  < 0.0001,  n  = 20,143

windows) and X spixii (MDS1: R2 = 0.017, p-value < 0.0001, n = 28,803 windows; MDS2: R2 =

-0.15, p-value < 0.0001, n = 28,803 windows) but not in L. vociferans (R2 < 0.001 for all MDSs,

n = 25,007 windows), indicating that for the species with marked genetic structure across rivers,

recombination was a key predictor  of spatial  differentiation.  These results  highlight  the high

variation  in  patterns  of  genetic  structure across  the genome as well  as  the contrast  between

patterns of diversification of sympatric species distributed across Amazonian rivers.

Although the association between recombination rate and genetic diversity supports the

effect of linked selection, it does not indicate which portions of the genome are directly impacted

by this process. To further explore the extent of linked selection across the genome, we used a

machine  learning approach implemented on diploS/HIC  (Kern and Schrider  2018) to  predict

which 20kb genomic windows were evolving under neutrality  or had signatures  of selective

sweeps and linked selection (i.e., background selection;  Charlesworth et al. 1993). We initially

simulated  genomic  windows  under  distinct  selective  regimes  accounting  for  historical

oscillations in effective population size and uncertainty in demographic parameters using discoal

(Kern and Schrider 2016). To account for the historical demography of the analyzed populations

we estimated population size changes occurring in the last 300,000 years with SMC++ (Terhorst

et  al.  2017) and  included  these  estimates  in  the  discoal  simulations  (Figure  S11).  The

convolutional neural network used in this  approach produced an average accuracy for model

classification of 0.69 and a false positive rate of 0.27 among species (Table S13). In all three

species, a significant proportion of the genome was estimated to have signatures of selective

sweeps or linked selection (mean = 43.3%). In P. nigromaculata, 30.29% of tested windows had
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a high probability (>0.70) for models including the direct or indirect effect of selection (Figure

4).  For  X. spixii  (44.83%) and  L. vociferans  (54.77%), we obtained even higher proportions

(Figure 4). By accounting for the estimated false positive rate on average 31.6% of the genomes

we analyzed had signatures of selective sweeps or linked selection.

Figure 4: Signature of selection across the genomes of the studied species. Vertical bars

represent the model with the highest probability for 20 kb genomic windows. On the right is the

percentage of windows assigned to each of the five models with high probability (>0.70): hard

sweep,  linked  to  hard  sweep,  soft  sweep,  linked  to  soft  sweep,  and neutral.  In  Bold  is  the

proportion of windows with low probability for model classification. 

Phylogenetic signal was associated with genomic architecture.

We explored how evolutionary relationships were distributed across the genome of the
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co-occurring  species  to  test  which  aspects  of  the  genomic  architecture  best  predicted

phylogenetic  signal.  First,  we  estimated  topologies  for  each  species  in  IQTREE-2  v2.1.5

(Nguyen et al. 2015) by concatenating SNPs and controlling for ascertainment bias (Figure 1).

We found substantial variation in topology between species, with clades matching the three areas

of endemism only in P. nigromaculata. In X. spixii, Belem individuals were nested within Xingu

despite forming a monophyletic group. In  L. vociferans, the clustering of individuals matched

their spatial distribution. 

The support for alternative species tree topologies varied with recombination rate and

genetic  diversity  (Figure 5).  To explore how phylogenetic  relationships varied with genomic

characteristics  and population  genetics  summary statistics,  we estimated  gene  trees  for  non-

overlapping genomic windows and calculated species trees for subsets of the genome. For  P.

nigromaculata we did not obtain high support for any topology when estimating the species tree

from genome-wide loci, but the topology with the highest probability (posterior probability =

0.81)  matched  the concatenated  SNP tree (Figure  5).  The topology estimated  from genomic

regions  with  high  recombination  matched  the  concatenated  tree,  but  regions  of  low

recombination placed Tapajos and Xingu as sisters (Figure 5). A similar pattern was observed

when filtering  gene  trees  based  on π) across chromosomes for the three studied  and  Dxy.  The  phylogenetic  signal  in  X.  spixii and  L.

vociferans were more stable, with widespread support for the same topology across the genome

but with substantially higher weight for that topology in areas with lower recombination and

lower  genetic  diversity.  Phylogenetic  signal  also  co-varied  with  chromosome  size  in  P.

nigromaculata but not in X. spixii and L. vociferans. In P. nigromaculata, macro chromosomes

supported  the  topology  found  in  low  recombination  areas  (Topology  1),  while

microchromosomes  (<50MB)  supported  the  concatenated  tree  (Topology  2;  S12-S14).  Our
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results suggest that support for the species tree was higher in regions with reduced diversity and

recombination rates.

Figure 5: Species tree and topology weights vary accordingly to recombination rate and genetic

diversity.  (A)  Alternative topologies for the relationship between the three areas of endemism

and the outgroup;  (B)  posterior probabilities for the three topologies for windows across the

whole-genome and for distinct subsets of genomic windows that were selected based on upper
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and lower thresholds for summary statistics; and (C) weights for three topologies for windows

across the whole-genome and for distinct subsets of genomic windows that were selected based

on upper and lower thresholds for summary statistics.  r -  Recombination rate;  Fst -  Fixation

index; π - Nucleotide diversity; Dxy - Genetic distance; Fdm - Introgression proportion. 

Figure  6: Chromosome  size  was  associated  with  topology  weight  across  the  genome  of

Phlegopsis nigromaculata (Topology 2 - R2 = 0.31, p-value = 0.003; Topologies 1 and 2 p-value

> 0.05, n= 26) but not in Xiphorhynchus spixii (p-value > 0.05 for all three topologies, n = 32) ,

and L. vociferans (p-value > 0.05 for all three topologies, n = 32). Scatterplot and regression line

with  95%  confidence  interval  showing  the  relationship  between  topology  weights  and

chromosome size. We tested three alternative unrooted topologies for the relationship between

the three areas of endemism (Tapajos, Xingu, and Belem): Topology 1 (outgroup, Belem (Xingu,

Tapajos)), Topology 2 (outgroup, Tapajos (Xingu, Belem)), and Topology 3 (outgroup, Xingu

(Belem, Tapajos)).

The  weight  for  alternative  topologies  varied  considerably  across  windows  and  was

associated with genomic architecture. To test how the probability of alternative topologies varied
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across the genome, we calculated topology weights using Twisst  (Martin and Van Belleghem

2017) independently for each species. This analysis was performed on genomic windows with

100 SNPs and assumed the three possible unrooted trees representing the relationship between

the three areas of endemism plus an outgroup. From hereafter we refer to these three unrooted

topologies as Topology 1 (outgroup, Belem (Xingu, Tapajos)), Topology 2 (outgroup, Tapajos

(Xingu, Belem)), and Topology 3 (outgroup, Xingu (Belem, Tapajos)). When averaging weights

for genome-wide windows of  P. nigromaculata  we observed a higher weight for Topology 2,

followed closely by Topology 1. When considering distinct subsets of genomic windows based

on upper and lower thresholds for summary statistics, for P. nigromaculata, there was substantial

variation in which topology had the highest average weight,  consistent with our species tree

approach (Figure 5). For the other two species, we found less variation along the genome for the

topology with the highest average weight.  The topology with the highest  weight also varied

across chromosomes of different sizes. In P. nigromaculata, smaller chromosomes had a higher

weight for Topology 2, putatively derived from gene flow (Figure 6). In X. spixii we observed a

progressive increase in  the weight  for the species  tree (Topology 2) in  larger  chromosomes,

despite a non-significant correlation. In  L. vociferans all three topologies had a similar weight

across  chromosomes.  In  summary,  these  results  reinforced  the  view  that  intrinsic  genomic

features directly shape the distribution of the phylogenetic signal. 

The conflicting phylogenetic pattern observed for  P. nigromaculata could be driven by

gene flow increasing the signal for the topology where introgressing populations are sisters. To

explore how topology weight varied according to gene flow and intralocus recombination, we

performed coalescent simulations with demographic parameters similar to those estimated for P.

nigromaculata, and we calculated topology weights using the approach mentioned above. Our
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simulations suggested that in the absence of gene flow, the frequency of alternative topologies

was similar  (Figure S15).  The presence of  gene flow between non-sister  species  produces  a

deviation from this pattern, increasing the average weight for the topology with introgressing

populations  as  sisters.  This  relationship  was  further  intensified  by  intralocus  recombination

(Figure S15). Although our simulations corroborate that recombination rate by itself does not

affect levels of genetic diversity (Hudson 1983), it does affect levels of ILS between populations,

particularly when gene flow was present by increasing the variance of topology weights across

the genome (Figure S15). When comparing the results obtained with this simulation approach

with the genome-wide topology weights obtained for P. nigromaculata, our results suggest that

gene flow between non-sister taxa was likely increasing the weights for one of the two best

topologies. 

Gene flow affected phylogenetic inference

When modeling  gene flow,  our results  indicated  that  the  topology recovered for  low

recombination areas was the best genome-wide tree. To estimate the probability for alternative

topologies  and demographic parameters for the entire genome explicitly  accounting for gene

flow  we  used  a  multiclass  neural  network  approach  with  Keras  v2.3

(https://github.com/rstudio/keras)  in  R.  We  simulated  genetic  data  under  the  three  possible

unrooted topologies for the relationship between areas of endemism using uniform priors for Ne,

gene flow between geographically adjacent populations, and divergence times. We selected one

10kb window every 100kb to reduce the effect of linkage between windows, excluding windows

with missing data. This procedure yielded a total of 7,213, 9,140, and 9,693 windows for  P.

nigromaculata, X. spixii,  and L. vociferans,  respectively.  Finally, we randomly selected 5,000
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windows per species. Genomic windows were converted into feature vectors representing the

mean and variance of commonly used population genetics summary statistics. On average, this

approach produced highly accurate model classification probabilities (neural network accuracy =

0.93; categorical cross-entropy = 0.17) and a high correlation between observed and estimated

parameters  for  testing  data  sets  with  low mean absolute  errors  (Table  S14-S16).  PCAs and

goodness-of-fit analyses showed that simulated models matched observed values of summary

statistics.  In  P. nigromaculata,  we obtained a high probability  for Topology 1 (probability  =

0.86), conflicting with the concatenated and species tree topology (Topology 2; probability =

0.12) but agreeing with the topology of low recombination areas (Table S17). Divergence times

were highly variable between species. In P. nigromaculata the initial divergence between Belem

and the ancestor of the Tapajos and Xingu lineages, diverged at 149,836ya (SD = 15,272; MAE

= 36,576; Table S14), followed by the divergence between the later populations at 77,866ya (SD

= 17,849; MAE = 37,810). In  X. spixii  (Topology 2; probability = 0.99), the first divergence

event was estimated at 218,858ya (SD = 12,095; MAE = 30,668), followed by a more recent

divergence  event  at  40,303ya (SD = 16,236;  MAE = 32,798; Table  S15).  For  L. vociferans

(Topology 1; probability = 0.54) divergence times were the most recent, occurring within the last

40,000 years, reflecting the lack of population structure in this species (Table S16). Our data

indicated that gene flow among  P. nigromaculata  populations (2Nm) was negligible between

Tapajos and Xingu (migration between Tapajos and Xingu = 0.002; SD = 0.005; MAE = 0.161)

and low between the non-sisters in Xingu and Belem (migration between Xingu and Belem =

0.484; SD = 0.486; MAE = 0.138; Table S14). In X. spixii, we inferred moderate rates of gene

flow between populations, which was highest between the recently diverged Xingu and Belem

populations (migration between Xingu and Belem = 2.075; SD = 0.144; MAE = 0.139; Table
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S15).  In  L.  vociferans  we  also  estimated  moderate  to  high  gene  flow  among  populations

(migration between Tapajos and Xingu = 2.347; MAE = 0.175; migration between Xingu and

Belem = 1.827;  MAE = 0.205;  Table  S16).  Although the phylogenetic  conflict  found in  P.

nigromaculata was attributed to introgression, we found relatively reduced levels of gene flow

between populations, indicating that ancestral gene flow might be the source of the conflict. 

Selection biases estimates of demographic parameters

Given the considerable proportion of the genome with signatures of selective sweeps and

background selection in all three species, we explored how selection might impact estimates of

demographic parameters. We estimated parameters from subsets of genomic windows classified

under  distinct  selection  regimes  with  diploS/HIC using  our  machine  learning  approach.  We

selected up to 1,000 windows assigned to each of the five models tested in diploS/HIC with a

probability  >  0.70,  and  estimated  demographic  parameters  based  on  the  topology  with  the

highest probability considering all genomic windows (Topology 1 for P. nigromaculata and L.

vociferans, and Topology 2 for  X. spixii). We found that genome-wide windows yielded more

similar  estimates for  Ne and gene flow from regions inferred to be subject  to selection than

neutral regions (Figure 7). Our approach supported higher Ne and gene flow in neutral areas of

the genome than areas under selection with little to no overlap of standard error distributions

(Figure 7). 
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Figure 7: Genomic regions inferred to be evolving neutrally had larger effective population sizes

and higher gene flow than areas with signatures of selection. Demographic parameter estimation

for the three studied species of Amazonian Birds. Ne - Effective population size of the Tapajos

population. TMRCA - Time to the most recent common ancestor of the most recent divergence

event; Gene flow - Gene flow rate between Tapajos and Xingu populations. Classes on the x-axis

represent genome-wide windows ( Whole Genome), and subsets of genomic windows assigned

with high probability  to distinct models tested with diploS/HIC. Neutral  - neutrally evolving

windows; Linked Soft -  windows linked to a soft  sweep; Soft  - windows assigned to a soft
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sweep; Linked Hard - windows linked to a hard sweep; Hard - windows assigned to a hard

sweep. 

Demographic  parameters  varied  considerably  across  the  genome  and  were  strongly

associated with the recombination  rate  (Figure S16;  Table S18).  To explore the associations

between  demographic  parameter  estimation  and  genomic  architecture,  we  calculated  the

probability of alternative topologies and estimated demographic parameters for 100kb genomic

windows,  taking  into  account  intralocus  recombination.  To  increase  model  classification

accuracy, we only tested the two most likely topologies based on the spatial distribution of the

populations. This approach yielded a high accuracy in model classification (accuracy = 0.9314;

categorical cross-entropy = 0.18). We also recovered high correlations between simulated and

pseudo observed data indicating good accuracy in parameter estimation for  Ne (average R2  =

0.94; average MAE = 73,099 individuals)  and divergence times (average R2  = 0.87; average

MAE = 39,172ya) but not for gene flow (average R2  = 0.54; average MAE = 0.19 migrants per

generation). Effective population sizes and divergence times varied over one order of magnitude,

and gene flow over two orders of magnitude across the genome. The substantial variation in Ne

and gene flow across the genome was associated with recombination rate in all three species,

except gene flow in L. vociferans (Figure S16; Table S18). Variation in divergence time was not

associated with recombination rate in any of the species (Table S18).

To further explore the signal for gene flow across the genome, we estimated D and fdm

statistics using window-based ABBA-BABA tests in 100kb non-overlapping sliding windows.

We found little evidence for gene flow between populations of all three species, except between

Belem and Xingu populations of  P. nigromaculata.  The gene flow inferred between these two

populations of P. nigromaculata was associated with recombination rate (Figure 2, S1, S4). For
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L. vociferans despite the lack of genetic structure, the D statistics failed to find any significant

levels of introgression, likely due to the high levels of gene flow among all three populations,

violating the ABBA-BABA model. 

Discussion

Biogeographic patterns of Amazonian taxa exhibit a wide array of temporal and spatial

divergences in a dynamic landscape  (Smith et al. 2014; Lynch Alfaro et al. 2015; Penz et al.

2015; de Oliveira et al. 2016; Byrne et al. 2018; Dagosta and De Pinna 2019; Silva et al. 2019).

We found that  genomic  architecture  adds  an  underappreciated  layer  of  complexity  that  can

obscure inferring the origins of the extraordinary Amazonian diversity by directly impacting the

estimation of patterns of differentiation. Our study indicates that the interplay of selection, gene

flow, and recombination shaped the genomic landscape of genetic diversity and in turn produced

varying levels of phylogenetic signals across the genome. By exploring the effects of genomic

architecture on phylogenetic and demographic parameter estimation across species with differing

degrees  of  gene  flow,  we  showed  that  accounting  for  the  processes  that  produce  an

heterogeneous genomic landscape helps clarify interpretations on the geographic differentiation

of Amazonian taxa.

Applying genomic-architecture aware approaches to Amazonian biogeography

We  found  that  introgression,  even  if  ancestral,  can  produce  a  highly  heterogeneous

landscape of phylogenetic conflict compromising biogeographic inference across Amazonia. For

example, in P. nigromaculata, gene flow between non-sister taxa, as estimated with our model-

based approach, was positively associated with support for an alternative topology (topology 2)
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and  recombination  rate.  This  pattern  likely  affected  genome-wide  species  tree  and topology

weight analyses. In contrast, the topology reflecting the most probable species tree (topology 1)

was considerably more frequent in windows with low recombination rates. The phylogenetic

conflict between alternative topologies has practical biogeographical implications. Support for

topology 2 for P. nigromaculata would indicate the taxa diverged via a stepping-stone process

from the west through the Tapajos,  Xingu, and Belem regions,  consistent  with the Moisture

Gradient Hypothesis (Silva et al. 2019). In contrast, if topology 1 reflects the population history

of  P. nigromaculata,  it  would indicate  an opposite  scenario,  with an ancestral  population in

southeastern Amazonia, which could be linked to physiographic changes in the landscape (Albert

et al. 2018; Musher et al. 2021). The results we obtained here are in agreement with simulations

and empirical studies suggesting that in the presence of gene flow, low recombination areas are

more prone to maintain the ancient branching signal (Li et al. 2019; Tigano et al. 2021). The

strong linkage in low recombination regions should lead to the more effective removal of alleles

introduced by hybridization that are more likely to be deleterious (Nachman and Payseur 2012;

Schumer et al. 2018). Although the phylogenetic signal were more stable across the genomes of

X.  spixii  and  L.  vociferans,  it  was  also  predicted  by  recombination  rate  and  gene  flow.

Interestingly, in L. vociferans, we found substantially higher weights for the putative species-tree

topology in  regions  of  low recombination  despite  the  lack  of  genetic  structure  across  rivers

(Figure 5), suggesting that spatial diffusion of alleles in a continuous population was also driven

by  genomic  architecture.  Collectively,  these  results  indicate  that  genome-wide  estimates  of

biogeographically relevant parameters might not recapitulate the effects of historical landscape

changes on the genome.

We did not find any association between divergence time and recombination rate in our
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model-based  approach.  This  finding  suggests  that,  by  modeling  gene  flow  and  intra-locus

recombination, we were able to obtain relatively stable estimates for divergence time across the

genome. Simulation studies have reported that clades with a history of introgression will show

extensive branch length distortion in bifurcating phylogenetic methods, depending on the age,

direction, and intensity of gene flow (Leaché et al. 2014). We found that not accounting for gene

flow and genomic architecture  will  likely impact  divergence  times estimates  in phylogenetic

approaches. Gene flow was considerably skewed towards lower values by selection and varied

accordingly with the recombination rate. In this sense, even methods designed to incorporate

gene flow into phylogenetic estimations such as phylogenetic network approaches (Solís-Lemus

and Ané 2016; Wen et al. 2018), might lead to misleading results when considering genome-

wide markers. Although phylogenetic networks are an ideal way to track the presence of gene

flow, it might be difficult to disentangle the processes driving phylogenetic conflict, given that

estimated  introgression  proportions  might  be  biased  by  the  genomic  landscape.  The  pattern

reported  here  might  be  common  across  the  thousands  of  lineages  isolated  by  Amazonian

tributaries, given that multiple recent studies have been suggesting extensive introgression across

rivers (Weir et al. 2015; Barrera-Guzmán et al. 2018; Ferreira et al. 2018; Berv et al. 2021; Del-

Rio et al. 2021; Musher et al. 2021). By exploring the landscape of genomic differentiation in a

comparative framework,  we were able  to directly  elucidate  the impact  of varying gene flow

regimes on inferring evolutionary relationships across Amazonia.

Our genome-wide estimates of  Ne and gene flow were more similar to estimates from

regions with signatures of selection versus regions deemed to be evolving neutrally. For instance,

areas  of  the  genome  estimated  to  be  evolving  neutrally  had  up  to  13%  larger  Ne in  P.

nigromaculata and 64% higher gene flow in X. spixii than estimates based on genome-wide loci
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(Figure 7). These results are in agreement with studies indicating that demographic parameter

estimation can be severely affected by positive and background selection (Schrider et al. 2016;

Johri et al. 2021; Johri et al.). Natural selection can skew levels of genetic variation in a similar

way  to  certain  non-equilibrium  demographic  histories,  often  leading  to  overestimates  of

population  bottlenecks  and  the  rate  of  demographic  expansions  (Ewing  and  Jensen  2016;

Schrider et  al.  2016). For example,  positive selection leading to fixation of large haplotypes

linked to the target of selection may mimic population bottlenecks (Wayne and Simonsen 1998),

and the recovery from these sweeps, might inflate the proportion of rare variants, resembling

recent population expansions  (Schrider et al. 2016). Although we did not model demographic

changes, summary statistics that are indicative of demographic oscillations such as Tajima’s D,

varied  considerably  across  the  genome,  with  more  negative  values  in  regions  of  low

recombination (Figure 2). Predictions for the historical demography of populations are explicitly

linked to commonly tested Amazonian diversification hypotheses [e.g., the refugia hypothesis

(Haffer 1969)], and understanding how drift and selection have shaped different regions of the

genome will be key to building more nuanced biogeographic models. Our examination of three

codistributed species showed that the effect of selection on demographic analyses was a general

phenomenon that can have a profound effect on modeling biogeographic dynamics.

Our data show pervasive signatures of selection across the genome of three co-occurring

species. We estimated that on average 31.6% (accounting for false positives) of the genome of

focal species had a high probability (>0.70) for models with selective sweeps or linked selection.

Recent estimations for birds and mammals show substantial variation in the proportion of the

genome subject to selection, with estimates ranging above 50% (McVicker et al. 2009; Pouyet et

al.  2018;  Brand  et  al.  2021;  Manthey  et  al.  2021).  Although  our  data  indicate  that  regions
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potentially affected by linked selection had a better fit to a bifurcating phylogenetic model, these

regions were not suitable for population-level analyses (Schrider et al. 2016; Pouyet et al. 2018).

Hence,  reconciling  phylogenetic  inference  and  demographic  parameter  estimations  in

phylogenomic  approaches  might  demand  recombination  and  selection-aware  approaches

(Charlesworth and Jensen 2021). By characterizing the genomic landscape, the effect of selection

in demographic parameter estimations can be mitigated by targeting genomic regions as distant

as possible from potential targets of selection such as genes and functional elements, as well as

avoiding areas of low recombination or affected by biased gene conversion (Pouyet et al. 2018).

A key problem with selecting loci with distinct characteristics is that current methods designed to

estimate recombination and selection across the genome achieve optimal performance when the

demographic history of a population is known  (Dapper and Payseur 2018; Harris et al. 2018;

Rousselle et al. 2018; Johri et al. 2020). On the other hand, demographic parameters may be

heavily biased when recombination and selection are neglected (Ewing and Jensen 2016; Pouyet

et  al.  2018).  This  conundrum indicates  that  methods designed to simultaneously  account  for

multiple genomic processes, such as recombination, selection, drift, and mutation  (Johri et al.

2020; Barroso and Dutheil 2021; Johri et al. 2021), associated with simulation studies (Tigano et

al. 2021) might be necessary to unbiasedly estimate evolutionary parameters from genome-wide

variation. 

Heterogeneous genomic landscapes within and between species

The genomic landscapes of our focal species were highly heterogeneous and presented

some  key  differences  between  species.  Chromosome  size  was  a  good  predictor  of  genetic

diversity, recombination rate, and phylogenetic signal in two of the species (P. nigromaculata
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and X. spixii). The lack of association between chromosome size and genomic characteristics in

L. vociferans was unexpected given that, during meiosis, chromosome segregation often requires

at least one recombination event per homologous chromosome pair  (Fledel-Alon et al. 2009),

leading to higher recombination rates in shorter chromosomes (Kaback et al. 1992; Farré et al.

2012; Kawakami et al. 2014; Haenel et al. 2018; Manthey et al. 2021). This lack of association

has also been observed in other species of birds and mammals (Pessia et al. 2012; Dutoit, Burri,

et  al.  2017;  Kartje  et  al.  2020) and  could  be  explained  by  a  reduced  synteny  between  our

references and the zebra finch genome, or the historical demography of the species, which in

some cases can reverse the expected associations between recombination, genetic diversity, and

chromosome size (Van Belleghem et al. 2018; Tigano et al. 2021). However, the former scenario

was less likely due to the relative stability of chromosomes across avian species (Ellegren 2010). 

The concordant patterns of genetic diversity and differentiation across the genomes of

isolated populations within species indicated that genomic architecture was likely conserved over

the population history of our focal taxa, as observed in other systems (Dutoit, Vijay, et al. 2017;

Van Doren et al. 2017; Vijay et al. 2017; Delmore et al. 2018; Tigano et al. 2021). For example,

consistent variation in Fst values across the genome of population pairs of the same species was

likely  reflecting  the  genomic  landscape  of  the  ancestral  population.  Regions  of  low

recombination and  Ne in the parent  population would promote faster differentiation  between

daughter  populations  after  isolation.  These  results  agree  with  the  idea  that  in  birds,

recombination  hotspots  are  associated  with  gene  promoters,  which  might  help  maintain  a

conserved landscape of recombination across lineages that span for millions of years (Singhal et

al. 2015). 

Identifying the driving forces shaping patterns  of diversity along the genome of non-
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model organisms is a major endeavor in modern genomics and is critical  to understand how

theoretical  models  and  patterns  observed  in  model  organisms  extend  to  natural  systems

(Comeron 2014; Elyashiv et al. 2016; Stankowski et al. 2019; Barroso and Dutheil 2021). In this

study,  we demonstrate  that  the  interplay  between  recombination  and  selection  had  a  strong

impact  on  phylogenetic  inference  and  demographic  parameter  estimates.  However,  other

genomic processes might be contributing to this pattern. For instance, levels of polymorphism

across the genome could be derived from variation in mutation rate (Jónsson et al. 2018; Smith et

al. 2018; Besenbacher et al. 2019; Barroso and Dutheil 2021). Non-crossover gene conversion

(Korunes and Noor 2017), where DNA strands break during meiosis and are repaired based on

homologous sequences without crossing-over, and crossover events could be mutagenic, leading

to higher mutation rates in areas of higher recombination (Arbeithuber et al. 2015; Korunes and

Noor 2017). Simulation studies have rejected gene conversion as a process driving genome-wide

patterns of genomic diversity in relatively recent divergence events  (Tigano et al.  2021) and

empirical studies suggest that mutations associated with crossover events occur at relatively low

frequencies  (Halldorsson et  al.  2019).  Although differential  mutation  rate  across the genome

might not explain the strong association between genetic diversity and genomic architecture, the

majority  of  the  variation  in  genetic  diversity  in  our  focal  species  was  not  explained  by

recombination. This suggests that variation in mutation rate, not associated with recombination,

could be playing a role in the genomic landscape of genetic diversity. It is important to note that

irrespective  of the processes driving the heterogeneous levels of genetic  variation across the

genome,  these  biases  on  genome-wide phylogenetic  and population  genetics  inferences  may

remain unless the multitude of parameters varying across the genome are modeled in a unifying

approach  (Johri  et  al.  2021).  Until  then,  genomic-architecture-aware  approaches  might  be
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essential to disentangle the effects of intrinsic genomic characteristics and selection from neutral

processes. 

Conclusions 

We present  comparative  empirical  evidence  of  systematic  biases  in  estimating  genome-wide

evolutionary parameters in one of the most well-studied biogeographic models on earth.  The

interplay  between  recombination,  selection,  and gene  flow produced a  highly  heterogeneous

landscape of genetic diversity and differentiation within and between species, where typically

used  methods  might  fail  to  recapitulate  the  effects  of  landscape  evolution  on  the  genome.

Phylogenetic approaches and demographic parameter estimation are essential to test alternative

hypotheses  of  diversification  (Knowles  2009)  and  have  been  extensively  used  in

phylogeographic  studies  across  Amazonia  (Aleixo  2004;  Fernandes  et  al.  2012;  Ribas  et  al.

2012;  Capurucho  et  al.  2013;  Fernandes  et  al.  2013;  Thom  and  Aleixo  2015).  Allopatric

differentiation and secondary contact are potentially the most common modes of speciation in

Amazonia producing widespread differentiation across the genome due to the effects of genetic

drift  and  within-population  selection.  These  processes  lead  to  a  background  pattern  of

differentiation that was likely to be associated with genomic architecture (Manthey et al. 2021),

however, patterns of association might not be concordant between species. Comparative studies

in  biogeography  often  report  idiosyncratic  patterns  across  multiple  levels  of  populations

histories,  with  heterogeneous  patterns  of  differentiation  and  contrasting  divergence  times

associated with the same geographic barrier (Smith et al. 2014; Naka and Brumfield 2018; Silva

et al. 2019; Provost et al. 2021), and idiosyncratic population size changes over time (Bai et al.

2018; Thom et al. 2020; Carvalho et al.  2021). Our results suggest that genomic architecture
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should be considered as another level of complexity that is also subject to idiosyncrasies between

species.

Material and methods

Studied species, sampling design and whole-genome sequencing

We selected three species with populations occurring in southeastern Amazonia occurring

in distinct  forest  strata  of upland forest  habitats:  1)  Phlegopsis nigromaculata,  an obligatory

army-ant follower restricted to the understory, with three distinct subspecies isolated by Xingu

and Tocantins rivers with considerable levels of genetic differentiation (A. Aleixo et al. 2009); 2)

Xiphorhynchus spixii,  which occupies the midstory of eastern Amazonian forests, and has two

structured  populations  divided by the Xingu River  (Aleixo  2004);  3)  Lipaugus vociferans,  a

widespread canopy species, without genetic structure reported across rivers.

To optimize the spatial representation of our samples, we selected a single individual per

locality targeting approximately 10 individuals per interfluve per species (Tapajos, Xingu, and

Belem), yielding a total of 31, 31, and 26 samples for P. nigromaculata, L. vociferans, and X.

spixii,  respectively  (Table  S1;  Figure  1).  We  isolated  genomic  DNA  from  muscle  tissue

preserved  in  alcohol  (65  samples)  and  skin  from  the  toe  pads  of  museum  specimens  (31

samples).  All  samples  were loaned from the Museu Paraense Emilio  Goeldi  (MPEG).  From

tissues,  we extracted  DNA with Qiagen high molecular  weight DNA kit  (MagAttract  HMW

DNA Kit  -  Qiagen).  For the toe  pads,  we performed a protocol  specific  for degraded DNA

consisting of additional steps for washing the samples with H2O and EtOH prior to extracting

and extra time for digestion. We modified the DNeasy extraction protocol (DNeasy Blood &

Tissue Kits - Qiagen) by replacing the standard spin columns with the QIAquick PCR filter
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columns (QIAquick PCR Purification Kit - Qiagen), selecting for smaller fragments of DNA,

typically found in degraded samples. Toe pad extractions were conducted on a dedicated lab for

working with historical samples at the American Museum of Natural History (AMNH) to reduce

contamination risk. We quantified DNA extracts using a Qubit 2.0 Fluorometer (Thermo Fisher

Scientific).  Illumina  libraries  with  variable  insert  sizes  were  generated  and  samples  were

sequenced by Rapid genomics (Gainesville, Florida) to ~10x coverage using 3.5 lanes of paired-

end (2x150 bp) Illumina S4 NovaSeq 6000. Raw reads were initially trimmed and filtered using

trimmomatic v0.36 (Bolger et al. 2014). 

Genomic reference, gene annotation and outgroups

We obtained reference genomes from closely related species. For P. nigromaculata, we used as

reference  the  genome of  Rhegmatorhina melanosticta (Coelho et  al.  2019) with  TMRCA =

9.60Ma  (Harvey  et  al.  2020).  For  X.  spixii,  we  used  the  genome  of  X.  elegans

(GCA_013401175.1 ASM1340117v1; NCBI genome ID: 92877; Feng et al. 2020) with TMRCA

= 2.36Ma  (Harvey et al. 2020), and for  L. vociferans we used the genome of  Cephalopterus

ornatus (GCA_013396775.1  ASM1339677v1;  NCBI  genome  ID:  92752;  Feng  et  al.

2020) with TMRCA =15.10Ma (Harvey et al. 2020). Given that bird chromosomes are known to

have high synteny and evolutionary stasis between distantly related species (Ellegren 2010), we

produced a pseudo-chromosome reference genome for X. elegans and C. ornatus by ordering and

orienting their scaffolds to the 35 chromosomes of the Zebra Finch (Taeniopygia guttata; version

taeGut3.2.4) with chromosemble in satsuma v3.1.0 (Grabherr et al. 2010). For R. melanosticta,

we used the chromosome assignment conducted in a previous study  (Coelho et al.  2019). To

check  the  completeness  of  our  pseudo-chromosome  references,  we  used  Busco  v2.0.1
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(Waterhouse  et  al.  2018) to  search for  a  set  of  single-copy avian  ortholog loci.  To transfer

genome annotations from the scaffold assemblies to the pseudo chromosome reference genomes,

we mapped the genomic coordinates of each annotated feature using gmap (Wu and Watanabe

2005). For R. melanosticta we used the annotation performed by Mikkelsen and Weir (2020) and

for X. elegans and L. vociferans,  we used the annotations performed by  Feng et al.  (2020). A

total of 98.90% (15,195), 97.46% (14,834 genes), and 98.92% (15,599 genes) of all annotated

genes in  R. melanosticta, X. elegans,  and C. ornatus were successfully mapped to the pseudo-

chromosome reference, respectively. 

We downloaded  raw reads  from additional  closely  related  species  that  were  used  as

outgroups  in  phylogenetic  analyses.  For  P.  nigromaculata, we  included  R.  melanosticta,

Sakesphorus luctuosus (GCA_013396695.1 ASM1339669v1; NCBI genome ID: 92896; Feng et

al.  2020)  and  X.  elegans as  outgroups.  For  X.  spixii, we included  X.  elegans,  S.  luctuosus,

Campylorhamphus  procurvoides (GCA_013396655.1  ASM1339665v1;  NCBI  genome  ID:

92894; Feng et al.  2020), and  Furnarius figulus (GCA_013397465.1 ASM1339746v1; NCBI

genome ID: 92763; Feng et al. 2020). For L. vociferans, we included C. ornatus, Pachyramphus

minor  (GCA_013397135.1 ASM1339713v1; NCBI genome ID: 92755; Feng et al. 2020), and

Tyrannus savana (GCA_013399735.1 ASM1339973v1; NCBI genome ID: 92814; Feng et al.

2020).

Read alignment, variant calling and filtering

Trimmed  and filtered  reads  were  aligned  to  the  references  in  BWA v0.7.17  (Li  and

Durbin 2009) using default  parameters.  We used Picard v.2.0.1 (Broad Institute,  Cambridge,

MA; http://broadinstitute.github.io/picard/) to 1) sort sam files with SortSam; 2) reassign reads to
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groups with AddOrReplaceReadGroups;  3) identify duplicated reads with Markduplicates;  4)

calculate summary statistics with CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics,

and CollectRawWgsMetrics; and 5) create indexes with BuildBamIndex. All Picard functions

were run with default  parameters.  We used the standard GATK v3.8  (McKenna et al.  2010)

pipeline  to  1)  call  SNPs  and Indels  for  each  individual  separately  with  HaplotypeCaller;  2)

perform genotyping with GenotypeGVCFs, assuming a value of 0.05 for the --heterozygosity

flag; 3) flag and filter variants with VariantFiltration. Given the lack of a high confidence SNP

panel,  we  implemented  hard  filtering  options  recommended  by  the  Broad  Institute's  Best

Practices (https://gatk.broadinstitute.org/). We filtered SNPs with quality by depth below 2 (QD

< 2.0), SNPs where reads containing the alternative allele were considerably shorter than reads

with the reference allele (ReadPosRankSum < -8), SNPs with root mean square of the mapping

quality lower than 40 (MQ < 40.0), SNPs with evidence of strand bias (FS > 60.0 and SOR >

3.0), and SNPs where the read with the alternative allele had a lower mapping quality than the

reference allele (MQRankSumTest < − 12.5). Lastly, we filtered raw VCF files by keeping only

bi-allelic sites, with no more than 50% of missing information, with a minimum read depth of 4

and maximum of 30, and read quality score > Q20 using VCFTOOLS v0.1.15 (Danecek et al.

2011). We phased the genotypes in our genomic vcf files using BEAGLE v5.1 (Browning and

Browning 2007; Browning et al.) in sliding windows of 10kb and overlap between windows of

1kb. 

Recombination, window-based summary statistics, and genetic structure 

To estimate recombination rate (r = recombination rate per base pair per generation) from

population level data for each of the species complexes we used ReLERNN (Adrion et al. 2020).
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This approach estimates the genomic landscape of recombination by leveraging recurrent neural

networks using the raw genotype matrix as a feature vector, avoiding the need to convert the data

into  summary statistics.  ReLERNN calculates  r  by simulating  data  matching  the  θW of theW of  the

observed DNA sequences. Simulations are then used to train and test a recurrent neural network

model designed to predict the per base recombination rate across sliding windows of the genome.

Given that genetic structure could potentially influence ReLERNN estimates  (Mezmouk et al.

2011; Mangin et al. 2012), we restricted our analyses to the individuals of the Tapajos interfluve,

that  was  composed  exclusively  of  recent  tissue  samples,  and  we  did  not  find  any  sign  of

population substructure in the three lineages (see below). Although we did not estimate r for all

populations, the landscape of recombination across bird lineages is considered conserved, and

variation between recently diverged populations should be minimal  (Singhal et al.  2015). To

account for the historical demography of the populations, we provided to ReLERNN the output

of our SMC++ analyses (see below) with the --demographicHistory option. We considered a

mutation rate of 2.42 x 10-9 mutations per generation and one year generation time (Jarvis et al.

2014; Zhang et al. 2014). 

We calculated population genomics summary statistics for sliding windows using scripts

available at https://github.com/simonhmartin/genomics_general. We initially converted vcf files

per  species  into  geno  format,  using  parseVCF.py.  Fst,  Dxy,  and  π) across chromosomes for the three studied  were  calculated  for  the

different populations in each of three interfluves using popgenWindows.py. We estimated the D

statistics in sliding windows using the ABBABABAwindows.py. We used species tree topology

with the highest probability  from our species tree analyses (see  Phylogenomic analyses, and

topology weighting)treating the Tapajos, Xingu and Belem populations as the terminals. For all

summary statistics, we used phased vcf files, setting the window size to 10kb (-w option) without
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overlap between windows and the minimum number of sites without missing information per

window to 500 (-m option).  To obtain GC content  estimates  across 100kb windows for our

reference genomes, we used sequir v4.2  (Charif and Lobry 2007) in R. We fit general linear

regressions  and Pearson’s  correlation  index  between  population  genetics  summary  statistics,

phylogenetic weights, and genomic architecture estimates in R. To account for the potential non-

linearity of these relationships, we also fit a LOESS model using the R package caret (Kuhn

2008). Models were trained using leave-one-out cross-validation of 80% of the total data.

To  explore  the  genome-wide  pattern  of  genetic  structure,  we  performed  Principal

Component Analysis (PCA) and individuals relatedness analyses based on identity-by-descent

using SNPRelate v1.20.1  (Zheng et al. 2012) in R. In order to minimize the effect of missing

genotypes in the PCA, we filtered our vcf files to keep SNPs present in at least  70% of the

individuals.  We  also  used  SNPRelate  to  perform an  identity-by-state  (IBS)  analysis  among

individuals  for  each  species.  To  avoid  the  influence  of  SNP clusters  in  our  PCA and  IBS

analysis, we pruned SNPs in approximate linkage equilibrium (LD>0.2) with each other.

Specific regions of the genome might be differently affected by selection and gene flow,

exhibiting different levels of genetic diversity and differentiation between populations (Ellegren

et al. 2012; Langley et al. 2012; Li et al. 2019). To explore the genomic variation in genetic

structure we used lostruct  (Li and Ralph 2019). This approach 1) summarizes the relatedness

between individuals across genomic windows using PCA, 2) calculates the pairwise dissimilarity

in  relatedness  among  window,  3)  uses  multidimensional  scaling  (MDS)  to  produce  a

visualization of how variable patterns of relatedness are across the genome, and 4) allows the

user to combine regions by similarity to inspect contrasting patterns of genetic structure across

the  genome.  We  ran  lostruct  for  windows  with  1000  SNPs,  allowing  for  30% of  missing
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genotypes.  To visualize the results,  we selected the 10% of the windows closer to the three

further  points  on the  two first  MDS coordinates  and performed individual  PCA analysis  on

clustered windows. 

Historical demography, selective sweeps, and linked selection

We  estimated  variations  on  effective  population  sizes  through  time  using  unphased

genomes in SMC++ v1.15.3 (Terhorst et al. 2017). Our goal with this approach was to estimate

past fluctuations in Ne to be included in ReLERNN (Adrion et al. 2020) and DiploS/HIC (Kern

and Schrider 2018) models to account for historical demography. We ran SMC++ exclusively for

the Tapajos population of each species assuming a mutation rate of 2.42 x 10-9 mutations per

generation and one year generation time  (Jarvis et al. 2014; Zhang et al. 2014). We explored

historical demography of populations within a time window between the present and 300,000ya. 

To  detect  signatures  of  selection  across  the  genome we  used  a  Supervised  Machine

Learning (SML) approach implemented in diploS/HIC (Kern and Schrider 2018). This approach

used  coalescent  simulations  of  genomic  windows  to  train  and  test  a  Convolutional  Neural

Network (CNN) designed to predict hard and soft selective sweeps and genetic variation linked

to selective sweeps across sliding windows of the genome. Genomic windows were simulated

using discoal  (Kern  and Schrider  2016) according  to  five  distinct  models:  1)  hard  selective

sweep; 2) soft selective sweep; 3) neutral  variation linked to soft selective sweep; 4) neutral

variation linked to hard selective sweep; and 5) neutral genetic variation. We performed 5,000

simulations per model using 220kb genomic windows divided into 11 subwindows. To account

for  the  neutral  demography  of  the  populations,  which  is  essential  to  obtain  robust  model

classification  between  windows  (Harris  et  al.  2018),  we  added  demographic  parameters
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estimated  with  SMC++  into  discoal  simulations.  To  account  for  uncertainty  in  simulated

parameters, we followed the approach of Manthey et al. (2021) by allowing current Ne to vary

between  ⅓ to  3x  the  estimated  value  obtained  with  SMC++ within  a  uniform distribution.

Population scaled recombination rate (rho=4Ner; where r is the recombination rate estimated

with ReLERNN) priors were set based on the minimum and maximum values obtained across

windows  with  ReLERNN.  We  set  a  uniform  prior  for  selection  coefficients  ranging  from

0.00025  to  0.025,  and  we  conditioned  sweep  completion  between  the  present  and  10,000

generations  ago.  We used a uniform prior between 0.01 and 0.2 for the initial  frequency of

adaptive  variants  in  soft  sweep  models.  Simulations  were  converted  into  feature  vectors

consisting of population genetics summary statistics, taking into account the observed amount of

missing data by using a genomic mask. We estimated the probability of alternative models for

observed  windows  of  20kb.  We ran  CNNs for  1000 epochs,  stopping  the  run  if  validation

accuracy did not improve for 50 consecutive epochs. We ran five independent runs and predicted

observed data with the run that provided the highest accuracy on testing data.  To assess the

classification  power  of  the CNNs,  we inspected  the  overall  accuracy,  the false  positive  rate

(FPR), recall (the number of correct positive predictions made out of all positive predictions that

could have been made), and area under the curve (AUC). To acknowledge the uncertainty in

model  selection,  we only assigned a model  with a probability  higher  than 0.7 to a genomic

window.

Phylogenomic analyses, and topology weighting

To  estimate  phylogenetic  relationship  between  individuals,  we  estimated  supermatrix

trees concatenating all SNPs using IQTree2 (Minh et al. 2020). We converted vcf files to phylip
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format  using  vcf2phylip.py  (Ortiz  2019),  randomly  resolving  heterozygous  genotypes,  and

keeping SNPs present in at least  80% of the individuals.  In IQTree2 we ran a total  of 1000

bootstrap replicates and controlled for ascertainment bias assuming a GTR+ASC substitution

model. To estimate phylogenetic trees based on sliding windows of phased vcf files, we used

PHYML v3.0  (Guindon et al. 2010) following  (Martin and Van Belleghem 2017). We tested

windows with different amounts of information content, selecting regions with 50, 100, 500 and

1000 SNPs. We conducted 100 bootstrap replicates per window. To estimate unrooted topology

weight for each window across the genome, we used Twisst (Martin and Van Belleghem 2017).

This  approach  allowed  us  to  quantify  the  relationships  among  taxa  that  are  not  necessarily

monophyletic, providing an assessment of the most likely topology for a given genomic region.

Given that windows with different information content yielded similar results for the topology

weights across the genome, we only present the results for 100 SNPs windows (average window

size of 14,503 bp, 15,637 bp, and 5,821 bp for  P. nigromaculata, X. spixii, and  L. vociferans,

respectively) in subsequent analyses. 

To estimate the posterior probability of unrooted species trees, we used Astral-III v5.1.1

(Zhang et al. 2018; Rabiee et al. 2019), using the gene trees produced with phyml as inputs. We

used Astral to score unrooted trees (-q option), estimating their quartet score, branch lengths, and

branch support. We set as our main topology (outgroup,Belem(Xingu,Tapajos), and used the -t 2

option to calculate the same metrics for the first alternative and second alternative topologies.

Given we only have four terminals per lineage (3 populations + outgroup), three are only three

possible unrooted trees. Therefore, this approach allowed us to calculate the posterior probability

of all possible topologies. We conducted this approach for the whole set of gene trees and also

for subsets of the data, based on specific characteristics of each window. To assess how support
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for a specific topology varies based on thresholds for specific summary statistics, we selected

windows across the genome with the upper and lower 10% tile for recombination rate, Fst, π) across chromosomes for the three studied,

Dxy and D statistics. 

Model based approach to account for recombination and selection. 

In  order  to  explicitly  account  for  gene  flow  while  testing  for  alternative  topologies  and

estimating demographic parameters of genomic windows, we used a combination of coalescent

simulations  and  supervised  machine  learning.  We  simulated  data  under  three  alternative

topologies, matching the unrooted trees tested in our phylogenetic approach: topology 1) (out,

(Belem,(Xingu,Tapajos))); topology 2) (out,(Tapajos,(Xingu,Belem))); topology 3) (out,(Xingu,

(Tapajos,Belem))). We allowed for constant gene flow after the divergence between Xingu and

Belem, and Xingu and Tapajos populations. We did not allow gene flow between Belem and

Tapajos due to the geographic disjunction between these populations. We simulated 5,000 loci of

10kb, using uniform and wide priors for all parameters (Table S19), and performed 1 million

simulations per model. We assumed a fixed mutation rate of 2.42 x 10-9 mutations per generation

and one year generation time (Jarvis et al. 2014; Zhang et al. 2014). Genetic data for each model

was  simulated  in  PipeMaster  (Gehara  et  al.  2017) which  allows  for  a  user-friendly

implementation of msABC (Pavlidis et al. 2010). We summarized genetic variation of observed

and  simulated  data  in  a  feature  vector  composed of  population  genetics  summary  statistics,

including mean and variance across loci: number of segregating sites per population and summed

across  populations,  nucleotide  diversity  per  population  and  for  all  populations  combined,

Watterson’s theta  (Watterson 1975) per population and for all populations combined, pairwise

Fst  between populations,  number  of  shared  alleles  between pairs  of  populations,  number  of

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470789doi: bioRxiv preprint 

https://paperpile.com/c/oJUljg/7RPt
https://paperpile.com/c/oJUljg/liAF
https://paperpile.com/c/oJUljg/WcGG
https://paperpile.com/c/oJUljg/UsKO+1LCw
https://doi.org/10.1101/2021.12.01.470789
http://creativecommons.org/licenses/by-nc-nd/4.0/


private alleles per population and between pairs of populations, and number of fixed alleles per

population and between pairs of populations. To align loci across individuals, phased vcf files

per  population  were  split  every  10kb windows  and  converted  into  a  fasta  format  including

monomorphic  sites  using  bcftools  (Li  2011).  Fasta  alignments  were  converted  into  feature

vectors with PipeMaster which uses PopGenome (Pfeifer et al. 2014) in R. To obtain a genome-

wide estimate of demographic parameters, we selected one 10kb genomic window every 100kb

to reduce the effect of linkage between windows, and we subsampled 5,000 windows from this

data set. We explored how simulated models fitted the observed data PCAs by plotting the first

four PCs of simulated statistics vs observed. We also generated goodness-of-fit plots using the

gfit function of abc v2.1 (Csilléry et al. 2012) in R.

To classify observed datasets into our three models, we used a Neural Network (nnet)

implemented in Keras v2.3 (https://github.com/rstudio/keras) in R. After an initial exploration

for the best architecture for our nnet, we conducted our final analyses using three hidden layers

with 32 internal nodes and a “relu” activation function. The output layer was composed of three

nodes and a “softmax” activation function. 25% of the simulations were used as testing data. We

ran the training step for 1000 epochs using “adam” optimizer and a batch size of 20,000. 5% of

the  training  data  set  was  used  for  validation,  and  we  used  accuray  and  a

sparse_categorical_crossentropy  for  the  loss  function  to  track  improvements  in  model

classification. For the most probable model considering genome-wide windows per species, we

estimated demographic parameters with a nnet with a similar architecture but designed to predict

continuous variables.  For this step, we used an output layer with a single node and a “relu”

activation.  In  the  training  step,  we  used  the  mean  absolute  percentage  error  (MAE)  as  an

optimizer, training the nnet for 3000 epochs with batch size of 10,000 and a validation split of
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0.1. We ran this procedure 10 times for each demographic parameter and summarized the results

by  calculating  the  mean  across  estimates.  To  additionally  assess  the  accuracy  of  parameter

estimation  we calculated  the coefficient  of  correlation  between estimated  and true simulated

values of the testing data set. To explore how genome-wide parameter estimation differs from

regions  with distinct  signature of selection  and under neutrality,  we created subsets of 10kb

windows that were assigned with high probability (> 0.70) to one of the five distinct models

implemented in diploS/HIC. For each species, we estimated parameters based on the best model

(topology) considering genome-wide windows. We selected up to 1000 windows for each of the

five selection classes and performed the same approach as described above.

To obtain window-based model probability  and demographic parameter  estimates,  we

used a  similar  approach as  described above but  simulating  100kb window size and using a

modified  version of PipeMaster  (Gehara et  al.  2017) that  allowed us to  simulate  intra  locus

recombination.  By selecting  a  larger  window size we increased  the  information  content  and

resolution of summary statistics of single genomic windows. We performed 100,000 simulations

per  model,  and used the same uniform priors  for  all  parameters  as implemented  above.  For

intralocus recombination, we set a uniform prior ranging from 0 to the higher estimated value

with  ReLERNN per  species  (P.  nigromaculata  = 3.021 x  10-9;  X.  spixii =  2.475 x 10-9;  L.

vociferans = 2.171 x 10-9). 

Lastly,  to explore how recombination rate and gene flow impact topology weight, we

performed  coalescent  simulations  based  on  demographic  parameters  estimated  for  P.

nigromaculata, and  calculated  topology  weights  using  Twisst  (Martin  and  Van  Belleghem

2017). We simulated 1,000 windows of 10kb for four models varying the presence of intra-locus

recombination and gene flow between Xingu and Belem, assuming topology 1 (three ingroups

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470789doi: bioRxiv preprint 

https://paperpile.com/c/oJUljg/XHr4
https://paperpile.com/c/oJUljg/XHr4
https://paperpile.com/c/oJUljg/WcGG
https://doi.org/10.1101/2021.12.01.470789
http://creativecommons.org/licenses/by-nc-nd/4.0/


plus  one  outgroup).  Simulated  parameters  are  available  on  Table  S20.  Simulations  were

performed with PipeMaster, and we converted the ms output to phylip format with PopGenome.

We ran trees for each 10 kb window with IQTREE-2 using default parameters and ran Twisst on

this estimated set of trees (Figure S15).
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