## 1 SARS-CoV-2 wildlife surveillance in Ontario and Québec, Canada

- 2 Janet E. Greenhorn<sup>1</sup> and Jonathon D. Kotwa<sup>2</sup>, Jeff Bowman<sup>1</sup>, Laura Bruce<sup>1</sup>, Tore Buchanan<sup>1</sup>,
- 3 Peter A. Buck<sup>3</sup>, Antonia Dibernardo<sup>4</sup>, Logan Flockhart<sup>3</sup>, Marianne Gagnier<sup>5</sup>, Aaron Hou<sup>2</sup>, Claire
- 4 M. Jardine<sup>6</sup>, Stephane Lair<sup>7</sup>, L. Robbin Lindsay<sup>4</sup>, Ariane Masse<sup>5</sup>, Pia K. Muchaal<sup>3</sup>, Larissa A.
- 5 Nituch<sup>1</sup>, Angelo Sotto<sup>2</sup>, Brian Stevens<sup>6</sup>, Lily Yip<sup>2</sup>, Samira Mubareka<sup>2,8</sup>
- 6 1. Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, 7 Mines, Natural Resources and Forestry, Peterborough, ON 8 2. Sunnybrook Research Institute, Toronto, ON 9 3. Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health 10 Agency of Canada 11 4. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB 12 5. Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC 13 6. Canadian Wildlife Health Cooperative, Ontario-Nunavut, Department of Pathobiology, 14 University of Guelph, Guelph, ON 15 7. Canadian Wildlife Health Cooperative, Québec, Sainte-Hyacinthe, QC 16 8. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, 17 ON
- 18
- 19

## 20 Abstract

## 21 Background

22 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the

23 COVID-19 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close

24 contact with humans are at an increased risk of SARS-CoV-2 exposure and if infected have the

25 potential to become a reservoir for the pathogen, making control and management more

26 difficult.

### 27 Objective

- 28 To conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Québec, Canada,
- 29 increasing our knowledge of the epidemiology of the virus and our chances of detecting
- 30 spillover from humans into wildlife.

#### 31 Methods

- 32 Using a One Health approach, we leveraged activities of existing research, surveillance, and
- 33 rehabilitation programs among multiple agencies to collect samples from 776 animals from 17
- 34 different wildlife species between June 2020 and May 2021. Samples from all animals were
- 35 tested for the presence of SARS-CoV-2 viral RNA, and a subset of samples from 219 animals
- 36 across 3 species (raccoons, *Procyon lotor*; striped skunks, *Mephitis mephitis*; and mink,
- 37 *Neovison vison*) were also tested for the presence of neutralizing antibodies.

#### 38 Results

No evidence of SARS-CoV-2 viral RNA or neutralizing antibodies was detected in any of thetested samples.

#### 41 Conclusion

Although we were unable to identify positive SARS-CoV-2 cases in wildlife, continued research
and surveillance activities are critical to better understand the rapidly changing landscape of
susceptible animal species. Collaboration between academic, public and animal health sectors
should include experts from relevant fields to build coordinated surveillance and response
capacity.

## 47 Introduction

| 48 | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global      |
|----|-----------------------------------------------------------------------------------------------------|
| 49 | COVID-19 pandemic and has been maintained through human-to-human transmission.                      |
| 50 | However, humans are not the only species susceptible to infection. Over the course of the           |
| 51 | current pandemic, a range of domestic and wild animal species have been reported to either be       |
| 52 | naturally infected with SARS-CoV-2 or susceptible to the virus in experimental infections (1, 2,    |
| 53 | 3). Others have been identified as potential hosts based on sequence analysis of the host cell      |
| 54 | receptor of SARS-CoV-2, angiotensin 1 converting enzyme 2 (ACE2), and predicted binding             |
| 55 | affinity (4, 5).                                                                                    |
| 56 | Many wild animal species thrive in the ecological overlap with humans and are thus at an            |
| 57 | increased risk of being exposed to SARS-CoV-2 (6). Several of these peri-domestic species have      |
| 58 | been experimentally shown to become infected with and shed SARS-CoV-2 (7, 8). SARS-CoV-2            |
| 59 | infection has also been reported in wild or free-ranging animals that have been naturally           |
| 60 | exposed, including American mink ( <i>Neovison vison</i> ; 9) and, more recently, white-tailed deer |
| 61 | (Odocoileus virginianus; 10, 11).                                                                   |
| 62 | The concept of One Health recognizes that human health and animal health are interdependent         |
| 63 | (12). The spillover of virus from humans or domestic animals into wildlife is concerning not only   |
| 64 | due to the possible deleterious effects on wildlife, but because these wild populations have the    |

- 65 potential to act as reservoirs for SARS-CoV-2. Diseases that have an animal reservoir are
- 66 inherently much more difficult to control and the spread of SARS-CoV-2 through animal
- 67 populations could further contribute to the development of variants of concern (VoCs),

68 potentially undermining the efficacy of medical countermeasures such as antivirals and 69 vaccines (13, 14). Additionally, people who have close contact with wildlife, such as biologists, 70 wildlife rehabilitators, and hunters and trappers, may be at higher risk of being exposed to the 71 virus and of facilitating its spread among wildlife. The impact of SARS-CoV-2 infection on 72 wildlife health is not fully understood. Early detection of any spillover is therefore critical to 73 preventing and addressing these concerns. 74 Given the risk of reverse-zoonotic SARS-CoV-2 transmission and our lack of knowledge of the 75 virus in local wildlife, there was an urgent need to elucidate the epidemiology of the virus at the 76 human-wildlife interface to help wildlife management and public health officials better 77 communicate risk and plan management strategies. We therefore conducted SARS-CoV-2 78 surveillance in wildlife across Ontario and Québec, Canada, with a major focus on the southern 79 regions of both provinces. These areas have high human population densities and include 80 major urban centres such as Toronto and Montréal. Incidences of COVID-19 peaked in 81 Montréal and the surrounding regions in early January 2021, with rates exceeding 400 cases per 100,000 population in Montréal and Laval (15). Incidences in Toronto and the surrounding 82 83 regions peaked in April 2021, with case rates in the City of Toronto and Peel also exceeding 400 84 per 100,000 population (15).

#### 85 Methods

Many experts have recommended a One Health approach for animal SARS-CoV-2 testing, which
balances concerns for both human and animal health and is based on knowledge of experts in
both fields (16, 17). As such, our work was conducted through consultation and cooperation

| 89 | among a wide variety of agencies: the Public Health Agency of Canada (PHAC), the Ontario          |
|----|---------------------------------------------------------------------------------------------------|
| 90 | Ministry of Northern Development, Mines, Natural Resources and Forestry (NDMNRF), le              |
| 91 | Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), the Canadian Wildlife Health     |
| 92 | Cooperative (CWHC), the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), the    |
| 93 | Canadian Food Inspection Agency (CFIA), the Western College of Veterinary Medicine, the           |
| 94 | Granby Zoo, the National Microbiology Laboratory (NML) of PHAC, and Sunnybrook Research           |
| 95 | Institute (SRI). We focussed our surveillance primarily on animals from urban areas or those      |
| 96 | with a case history of close contact with people since these animals would be at the highest risk |
| 97 | of exposure to people infected with SARS-CoV-2. All samples for testing were collected            |
| 98 | between June 2020 and May 2021 through pre-existing partnerships or over the course of            |
| 99 | other research, surveillance, or rehabilitation work (Table 1).                                   |
|    |                                                                                                   |

#### 100 Raccoons and skunks

101 Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) are peri-domestic species that 102 are good candidates for reverse-zoonotic disease surveillance due to their high density in urban 103 areas and their frequent close contact with people, pets, and refuse. They are also subject to 104 ongoing rabies surveillance operations in both Ontario and Québec, making them easy to 105 sample. In Ontario, wildlife rabies surveillance and testing are conducted by the NDMNRF on 106 roadkill, animals found dead for other reasons, and deceased sick or strangely acting wildlife. 107 Submissions are received mainly from southwestern Ontario, and most animals received by the 108 program and subsequently sampled and tested for SARS-CoV-2 came from urban centres within 109 this region (Figure 1). In Québec, a similar wildlife rabies surveillance program is coordinated

| 110                      | by the MFFP and testing and other post-mortem examinations are performed by the Québec                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111                      | CWHC. As was the case in Ontario, animals sampled by the Québec CWHC for SARS-CoV-2                                                                                                                                                                                                                                                                                    |
| 112                      | testing came mainly from urban areas (Figure 1). The Ontario CWHC laboratory also                                                                                                                                                                                                                                                                                      |
| 113                      | contributed a small number of raccoon and skunk samples from animals submitted to them for                                                                                                                                                                                                                                                                             |
| 114                      | post-mortem examination. Carcasses were sampled using a combination of oral, nasal, and                                                                                                                                                                                                                                                                                |
| 115                      | rectal swabs, respiratory tissue, and intestinal tissue (Table 1). Swabs were stored in individual                                                                                                                                                                                                                                                                     |
| 116                      | 2 mL tubes with ~1 mL of universal transport medium (UTM; Sunnybrook Research Institute)                                                                                                                                                                                                                                                                               |
| 117                      | and 30-60 mg tissue samples were stored dry in tubes.                                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                        |
| 118                      | Additionally, samples were collected from live raccoons and skunks during an annual                                                                                                                                                                                                                                                                                    |
| 118<br>119               | Additionally, samples were collected from live raccoons and skunks during an annual seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the                                                                                                                                                                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                        |
| 119                      | seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the                                                                                                                                                                                                                                                                                        |
| 119<br>120               | seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the effectiveness of rabies vaccine baiting (NDMNRF Wildlife Animal Care Committee Protocol                                                                                                                                                                                                |
| 119<br>120<br>121        | seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the effectiveness of rabies vaccine baiting (NDMNRF Wildlife Animal Care Committee Protocol #358). Animals were captured in live traps and transported to a central processing station                                                                                                     |
| 119<br>120<br>121<br>122 | seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the<br>effectiveness of rabies vaccine baiting (NDMNRF Wildlife Animal Care Committee Protocol<br>#358). Animals were captured in live traps and transported to a central processing station<br>where they were anaesthetized. Oral and rectal swabs were collected for PCR testing. Blood |

## 126 Mink

127 Instances of SARS-CoV-2 infection in mink have already been identified in multiple countries,
128 including Canada, and infected farmed mink have proven capable of passing the virus to naïve
129 conspecifics, humans, and domestic and feral companion animals (18, 19, 20, 21, 22). At the
130 time of writing no mink farm outbreaks have been reported in Ontario or Québec, but mink

farms in Ontario have previously been shown to act as points of infection for other viruses (e.g.

132 Aleutian Mink Disease), which can spread to wild mink populations (23).

The majority of mink carcasses we sampled for SARS-CoV-2 were submitted to the NDMNRF by
licensed fur harvesters through a collaboration with the Ontario Fur Managers Federation. The
NDMNRF staff collected oral and rectal swabs, lung tissue, and intestinal tissue from the
carcasses, as well as cardiac blood samples via cardiac puncture for antibody testing. If blood
could not be obtained from the heart, fluid was collected from the chest cavity on a Nobuto
filter strip (Advantec MFS, Inc, Dublin, CA, USA). Nobuto strips were allowed to air dry, then
placed in individual coin envelopes.

## 140 Big brown bats

Bats are known carriers of coronaviruses (24, 25, 26). As such, concerns have been raised over the possible susceptibility of North American bats to SARS-CoV-2 (27). Species such as the big brown bat (*Eptesicus fuscus*) frequently roost in buildings, which brings them into close contact with people and increases the likelihood of SARS-CoV-2 exposure. Big brown bat oral swabs and guano samples for SARS-CoV-2 PCR testing were collected by staff at the Granby Zoo, which runs a rehabilitation program over the winter to care for bats that have been disturbed during their hibernation. Guano samples were stored dry in 2 mL tubes.

#### 148 Other species

149 Other samples for SARS-CoV-2 PCR testing were obtained opportunistically through the Ontario

and Québec regional CWHC laboratories, which receive a wide variety of wildlife species for

151 post-mortem examination (Table 1). Animals were selected for sampling based on potential for 152 SARS-CoV-2 infection. This could be due to urban habitat, human contact, or to predicted 153 species susceptibility based on prior research. The number and type of samples collected 154 varied by carcass and depended on carcass condition (Table 1). 155 **RNA Extraction** 156 RNA extraction and PCR testing were performed at the SRI in Toronto, Ontario. All swab, tissue, 157 and guano samples were stored at -80 °C prior to testing. For oral, rectal, or nasal swab 158 samples, RNA extractions were performed using 140 µL of sample via the QIAmp viral RNA mini 159 kit (Qiagen, Mississauga, ON, Canada) or the Nuclisens EasyMag using Generic Protocol 2.0.1 160 (bioMérieux Canada Inc., St-Laurent, QC, Canada) according to manufacturer's instructions; 161 RNA was eluted in 50 µL. RNA from 80 mg of guano samples were extracted via the QIAmp viral 162 RNA mini kit and eluted in 40  $\mu$ L. Tissue samples were thawed, weighed, minced with a scalpel, 163 and homogenized in 600 µL of lysis buffer using the Next Advance Bullet Blender (Next 164 Advance, Troy, NY, USA) and a 5 mm stainless steel bead at 5 m/s for 3 minutes. RNA from 30 165 mg tissue samples was extracted via the the RNeasy Plus Mini kit (Qiagen, Mississauga, ON, 166 Canada) or the Nuclisens EasyMag using Specific Protocol B 2.0.1; RNA was eluted in 50 µL. All 167 extractions were performed with a negative control. 168 SARS-CoV-2 PCR analysis

169 Reverse-transcription polymerase chain reaction (RT-PCR) was performed using the Luna
170 Universal Probe One-Step RT-qPCR kit (NEB). Two gene targets were used for SARS-CoV-2 RNA
171 detection: the 5' untranslated region (UTR) and the envelope (E) gene. The cycling conditions

were: 1 cycle of denaturation at 60 °C for 10 minutes then 95 °C for 2 minutes followed by 44
amplification cycles of 95°C for 10 seconds and 60°C for 15 seconds. Quantstudio 3 software
(Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to determine cycle thresholds (Ct).
All samples were run in duplicate and samples with Cts <40 for both gene targets in at least one</li>
replicate were considered positive.

#### 177 Antibody testing

178 Antibody testing was performed on cardiac blood, chest cavity fluid and serum samples at the 179 NML in Winnipeg, Manitoba. All samples were stored at -20 °C prior to testing. Cardiac blood 180 samples were collected onto Nobuto filter strips (Advantec MFS, Inc, Dublin, CA, USA; Fisher 181 Scientific, Waltham, MA, USA) by saturating the length of the strip with 100  $\mu$ l of blood. To 182 obtain the 1:9 dilution required for testing, saturated Nobuto strips were cut into 4-5 pieces 183 and placed into a 2 mL tube containing 360  $\mu$ l phosphate buffered saline (PBS) pH 7.4 containing 0.05% Tween 20 and eluted overnight at 4 °C. Nobuto strips collected from chest 184 185 cavity fluid were processed in the same way, whereas serum samples were diluted 1:9 with 186 Sample Dilution Buffer. Samples were mixed by vortexing and tested using the GenScript 187 cPass<sup>™</sup> SARS-CoV-2 Neutralization Antibody Detection Kit (GenScript USA, Inc. Piscataway, NJ, 188 USA) according to the manufacturer's protocol.

Briefly, 60 µl of a sample was added to 60 µl HRP-conjugated RBD solution and incubated at 37
 °C for 30 minutes. A 100 µl aliquot of the mixture was transferred to the ELISA microwell test
 plate and incubated at 37 °C for 15 minutes. Microwells were washed 4 times with 260 µl wash
 buffer then 100 µl TMB substrate was added to each well. Following a 20 minute incubation in

| 193 | the dark at room temperature, 50 $\mu$ l of Stop Solution was added to each well. Absorbance was   |
|-----|----------------------------------------------------------------------------------------------------|
| 194 | read immediately at 450 nm.                                                                        |
| 195 | Each assay plate included positive and negative controls that met required quality control         |
| 196 | parameters. Percentage inhibition was calculated for each sample using the following equation:     |
| 197 | Percent Inhibition = (1- Optical Density Sample/Optical Density Negative Control) x100%            |
| 198 | Samples with greater than or equal to 30% inhibition were considered positive for SARS-CoV-2       |
| 199 | neutralizing antibodies.                                                                           |
| 200 | Results                                                                                            |
| 201 | We tested 776 individual animals from 17 different wildlife species for SARS-CoV-2. These          |
| 202 | animals were collected primarily from urban areas in southern Ontario and Québec between           |
| 203 | June 2020 and May 2021 (Table 1). We found no evidence of SARS-CoV-2 viral RNA in any of           |
| 204 | the tested samples and no evidence of neutralizing antibodies in a subset of 219 individuals       |
| 205 | (141 raccoons, 36 striped skunks, 42 mink).                                                        |
| 206 | Discussion                                                                                         |
| 207 | Our study did not detect any spillover of SARS-CoV-2 to wildlife in Ontario and Québec.            |
| 208 | Raccoons and skunks were the most commonly tested species. Results from experimental               |
| 209 | studies have suggested these species may be susceptible to SARS-CoV-2, but the lack of and low     |
| 210 | quantity of infectious virus from raccoons and skunks, respectively, suggest they are an unlikely  |
| 211 | reservoir for SARS-CoV-2 in the absence of viral adaptations (7, 8). Similarly, a recent challenge |

study with big brown bats found that they are resistant to SARS-CoV-2 infection and do not

| 213 | shed infectious virus (28). Conversely, mink are susceptible to SARS-CoV-2 infection, but we did     |
|-----|------------------------------------------------------------------------------------------------------|
| 214 | not detect evidence of SARS-CoV-2 in any of the mink sampled. While this could be attributed         |
| 215 | to our low effective sample size, to date SARS-CoV-2 has been infrequently detected in wild          |
| 216 | mink populations globally. It should be noted, however, that the abovementioned experimental         |
| 217 | studies on raccoons, skunks, and big brown bats were conducted using parental SARS-CoV-2.            |
| 218 | The susceptibility of these species to VoCs is presently not known and may differ from               |
| 219 | susceptibility to the parental strain (29). Additionally, challenge studies assessing susceptibility |
| 220 | tend to be conducted on small numbers of young, healthy individuals, so results may not be           |
| 221 | reflective of the full range of possible responses to infection in the wild.                         |
| 222 | As the pandemic progresses, new evidence is emerging on susceptible wildlife that may act as         |
| 223 | competent reservoirs for the virus. For example, white-tailed deer are now considered a highly       |
| 224 | relevant species for SARS-CoV-2 surveillance in light of their experimentally determined             |
| 225 | susceptibility as well as evidence of widespread exposure to the virus via antibody and PCR          |
| 226 | testing across the northeastern USA (10, 11, 30). Continued surveillance efforts should be           |
| 227 | adaptive and include targeted testing of highly relevant species as they are identified. In          |
| 228 | Ontario and Québec, these would include mink, white-tailed deer, and deer mice (Peromyscus           |
| 229 | maniculatus; 7, 31). Continuing to include less susceptible species remains important given          |
| 230 | ongoing viral genomic plasticity and changing host range of VoCs.                                    |

## 231 Limitations

There are several limitations for this study that need to be acknowledged. First, the majority of
our SARS-CoV-2 testing was done by RT-PCR, which is only capable of detecting active infection.

| 234 | Antibody testing, which identifies resolved infection or exposure, is more likely to find evidence |
|-----|----------------------------------------------------------------------------------------------------|
| 235 | of SARS-CoV-2 in surveillance studies since results are less dependent on timing of sample         |
| 236 | collection. Antibody testing typically requires samples from live animals or fresh carcasses,      |
| 237 | which limited our ability to use it. However, the testing performed allowed for test validation in |
| 238 | raccoons, skunks, and mink which may facilitate more antibody testing in future. Second, the       |
| 239 | type of samples we collected may also have limited our ability to detect SARS-CoV-2 infection.     |
| 240 | Viral replication can vary among tissue types and therefore some tissues are more optimal for      |
| 241 | viral RNA detection than others (1). In the present work, animals were sampled                     |
| 242 | opportunistically as a part of pre-existing surveillance efforts, research, and rehabilitation     |
| 243 | programs and we were not able to consistently collect the same sample sets from all animals.       |
| 244 | Additionally, the sample types were from live animals and carcasses and not optimized; certain     |
| 245 | sample types were sometimes unavailable (e.g. tissue samples from live animals) or were not        |
| 246 | sufficient for collection.                                                                         |

#### 247 Conclusion

A One Health approach is critical to understanding and managing the risks of an emerging

249 zoonotic pathogen such as SARS-CoV-2. We leveraged activities of existing surveillance,

250 research, and rehabilitation programs and expertise from multiple fields to efficiently collect

and test 1,690 individual wildlife samples. The absence of SARS-CoV-2-positive wildlife samples

- does not exclude spillover from humans to Canadian wildlife, given the limitations cited above.
- 253 Continued research in this area is both important and pressing, particularly as novel VoCs
- emerge. Public and animal health sectors should continue to work collaboratively with

- academic and government partners to help prevent the spread of SARS-CoV-2 from people to
- 256 wildlife, monitor for spillover, and address any issues should they arise. There is an urgent
- 257 need for a coordinated wildlife surveillance program for SARS-CoV-2 in Canada. This approach
- will help protect the health of both Canadians and wildlife, now and in the future.

#### 259 Author's Statement

- 260 JEG, JDK, JB, TB, PAB, LF, MG, CMJ, AM, PKM, LAN, SM conceptualization
- 261 JEG, LB, MG, CMJ, SL, AM, BS sample collection and coordination
- 262 JDK, AD, AH, LRL, AS, LY, SM sample testing
- 263 JEG, JDK resources
- 264 JEG, JDK, AD, LF writing, original draft
- 265 JEG, JDK, JB, LB, TB, PAB, AD, LF, MG, AH, CMJ, SL, LRL, AM, PKM, LAN, AS, BS, LY, SM writing,
- 266 review and editing
- 267 JB, TB, PAB, PKM funding acquisition
- 268 JEG and JDK contributed equally to this work.
- 269 **Competing Interests**
- 270 None.

#### 271 Acknowledgements

- 272 The authors wish to thank B. Pickering and J. Tataryn for facilitating the inter-agency
- 273 partnerships that made this work possible, and for their thoughtful review and comments on
- the manuscript. We also wish to acknowledge B. Pickering for helping to arrange antibody

|  | 275 | testing, and N. P. L. | Toledo for | performing the antibody | v testing. \ | We are grateful for the wor | k of |
|--|-----|-----------------------|------------|-------------------------|--------------|-----------------------------|------|
|--|-----|-----------------------|------------|-------------------------|--------------|-----------------------------|------|

- 276 D. Bulir in developing the PCR testing assay used in this study. We wish to thank L. Lazure and
- the staff of the Granby Zoo, the technicians of the Québec rabies surveillance program, and V.
- 278 Casaubon and J. Viau of the CWHC Québec for their help with sample collection. We are also
- 279 grateful for the sample collection assistance of N. Pulham, S. Konieczka, J. Adams, G. McCoy, T.
- 280 McGee, L. Pollock, and K. Bennett at the Wildlife Research and Monitoring Section of the
- 281 NDMNRF and L. Dougherty, L. Shirose, and M. Alexandrou at the CWHC Ontario. Finally, we
- wish to thank the licensed fur harvesters who submitted mink for testing.

### 283 Funding

- 284 This work was supported by the Public Health Agency of Canada, with in-kind contributions
- 285 provided by all collaborating partners.

# 287 References

| 288 | 1 | Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y, Liu   |
|-----|---|--------------------------------------------------------------------------------------------|
| 289 |   | P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z. Susceptibility of   |
| 290 |   | ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science         |
| 291 |   | 2020;368:1016-1020. <u>https://doi.org/10.1126/science.abb7015</u>                         |
| 292 | 2 | Hobbs EC, Reid TJ. Animals and SARS-CoV-2: species susceptibility and viral transmission   |
| 293 |   | in experimental and natural conditions, and the potential implications for community       |
| 294 |   | transmission. Transbound Emerg Dis 2020;00:1-18. <u>https://doi.org/10.1111/tbed.13885</u> |
| 295 | 3 | Bonilla-Aldana DK, García-Barco A, Jimenez-Diaz SD, Bonilla-Aldana JL, Cardona-Trujillo    |
| 296 |   | MC, Muñoz-Lara F, Zambrano LI, Salas-Matta LA, Rodriguez-Morales AJ. SARS-CoV-2            |
| 297 |   | natural infection in animals: a systematic review of studies and case reports and series.  |
| 298 |   | Vet Quart 2021;41:250-267. https://doi.org/10.1080/01652176.2021.1970280                   |
| 299 | 4 | Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli K-P,      |
| 300 |   | Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT,             |
| 301 |   | Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2          |
| 302 |   | predicted by comparative and structural analysis of ACE2 in vertebrates. PNAS              |
| 303 |   | 2020;117:22311-22322. <u>https://doi.org/10.1073/pnas.2010146117</u>                       |
| 304 | 5 | Alexander MR, Schoeder CT, Brown JA, Smart CD, Moth C, Wikswo JP, Capra JA, Meiler J,      |
| 305 |   | Chen W, Madhur MS. Predicting susceptibility to SARS-CoV-2 infection based on              |
| 306 |   | structural differences in ACE2 across species. FASEB J 2020;34:15946-15960.                |
| 307 |   | https://doi.org/10.1096/fj.202001808R                                                      |
| 308 | 6 | Franklin AB, Bevins AN. Spillover of SARS-CoV-2 into novel wild hosts in North America: a  |
| 309 |   | conceptual model for perpetuation of the pathogen. Sci Total Environ 2020;733.             |
| 310 |   | https://doi.org/10.1016/j.scitotenv.2020.139358                                            |
| 311 | 7 | Bosco-Lauth AM, Root JJ, Porter SM, Walker AE, Guilbert L, Hawvermale D, Pepper A,         |
| 312 |   | Maison RM, Hartwig AE, Gordy P, Bielefeldt-Ohmann H, Bowen RA. Survey of                   |
| 313 |   | peridomestic mammal susceptibility to SARS-CoV-2 infection. bioRxiv 2021.                  |
| 314 |   | https://doi.org/10.1101/2021.01.21.427629                                                  |
| 315 | 8 | Francisco R, Hernandez SM, Mead DG, Adcock KG, Burke SC, Nemeth NM, Yabsley MJ.            |
| 316 |   | Experimental susceptibility of North American raccoons (Procyon lotor) and striped         |
| 317 |   | skunks (Mephitis mephitis) to SARS-CoV-2. bioRxiv 2021.                                    |
| 318 |   | https://doi.org/10.1101/2021.03.06.434226                                                  |
| 319 | 9 | Aguiló-Gisbert J, Padilla-Blanco M, Lizana V, Maiques E, Muñoz-Baquero M, Chillida-        |
| 320 |   | Martínez E, Cardells J, Rubio-Guerri C. First description of SARS-CoV-2 infection in two   |
| 321 |   | feral American mink (Neovison vison) caught in the wild. Animals 2021;11:1422.             |
| 322 |   | https://doi.org/10.3390/ani11051422                                                        |

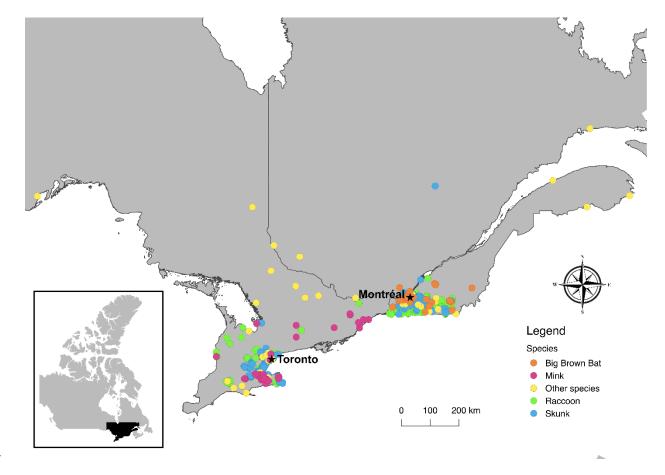
| 323 | 10 | Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, Root JJ, Lenoch JB,  |
|-----|----|---------------------------------------------------------------------------------------------|
| 324 |    | Robbe-Austerman S, DeLiberto TJ, Gidlewski T, Torchetti MK, Shriner SA. SARS-CoV-2          |
| 325 |    | exposure in wild white-tailed deer (Odocoileus virginianus). bioRxiv 2021.                  |
| 326 |    | https://doi.org/10.1101/2021.07.29.454326                                                   |
| 327 | 11 | Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, Ehrlich M, Grieser J,         |
| 328 |    | Winston J, Lombardi D, Gibson S, Saif L, Killian ML, Lantz K, Tell R, Torchetti M, Robbe-   |
| 329 |    | Austerman S, Nelson MI, Faith SA, Bowman AS. SARS-CoV-2 infection in free-ranging           |
| 330 |    | white-tailed deer (Odocoileus virginianus). bioRxiv 2021.                                   |
| 331 |    | https://doi.org/10.1101/2021.11.04.467308                                                   |
| 332 | 12 | World Organization for Animal Health (OIE). One Health. 2021.                               |
| 333 |    | https://www.oie.int/en/what-we-do/global-initiatives/one-health/                            |
| 334 | 13 | Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, Urth TR,              |
| 335 |    | Rasmussen M, Lassaunière R, Rasmussen TB, Strandbygaard B, Lohse L, Chaine M,               |
| 336 |    | Møller KL, Berthelsen AN, Nørgaard SK, Sönksen UW, Boklund AE, Hammer AS, Belsham           |
| 337 |    | GJ, Krause TG, Mortensen S, Bøtner A, Fomsgaard A, Mølbak K. Preliminary report of an       |
| 338 |    | outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread,           |
| 339 |    | Denmark, June to November 2020. Euro Surveill 2021;26. <u>https://doi.org/10.2807/1560-</u> |
| 340 |    | 7917.ES.2021.26.5.210009                                                                    |
| 341 | 14 | Bashor L, Gagne RB, Bosco-Lauth A, Bowen R, Stenglein M, VandeWoude S. SARS-CoV-2           |
| 342 |    | evolution in animals suggestions mechanisms for rapid variant selection. bioRxiv 2021.      |
| 343 |    | https://doi.org/10.1101/2021.03.05.434135                                                   |
| 344 | 15 | Government of Canada. COVID-19 daily epidemiology update: current situation.                |
| 345 |    | https://health-infobase.canada.ca/covid-19/epidemiological-summary-covid-19-                |
| 346 |    | cases.html?stat=rate&measure=total_last7↦=hr#a2                                             |
| 347 | 16 | World Organization for Animal Health (OIE). Considerations for sampling, testing, and       |
| 348 |    | reporting of SARS-CoV-2 in animals. 2020.                                                   |
| 349 |    | https://www.oie.int/fileadmin/Home/MM/A Sampling Testing and Reporting of SAR               |
| 350 |    | S-CoV-2 in animals 3 July 2020.pdf                                                          |
| 351 | 17 | Delahay RJ, de la Fuente J, Smith GC, Sharun K, Snary EL, Flores Girón L, Nziza J, Fooks    |
| 352 |    | AR, Brookes SM, Lean FZX, Breed AC, Gortazar C. Assessing the risks of SARS-CoV-2 in        |
| 353 |    | wildlife. One Health Outlook 2021;3:7. https://doi.org/10.1186/s42522-021-00039-6           |
| 354 | 18 | Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der               |
| 355 |    | Honing, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MGJ, de Rooij MMT,             |
| 356 |    | Weesendorp E, Engelsma MY, Bruschke CJM, Smit LAM, Koopmans M, van der Poel                 |
| 357 |    | WHM, Stegeman A. SARS-CoV-2 infection in farmed minks, Netherlands, April and May           |
| 358 |    | 2020. Euro Surveill 2020;25:23. <u>https://doi.org/10.2807/1560-</u>                        |
| 359 |    | 7917.ES.2020.25.23.2001005                                                                  |
|     |    |                                                                                             |

| 360 | 19 | ProMED. PRO/AH/EDR> COVID-19 update (531): animal, Canada (BC) mink, OIE. 2020.                                                 |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------|
| 361 |    | https://promedmail.org/promed-post/?id=8008864                                                                                  |
| 362 | 20 | Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, Lohse                                                  |
| 363 |    | L, Strandbygaard B, Jørgensen CS, Alfaro-Núñez A, Rosenstierne MW, Boklund A, Halasa                                            |
| 364 |    | T, Fomsgaard A, Belsham GJ, Bøtner A. SARS-CoV-2 transmission between mink                                                      |
| 365 |    | (Neovison vison) and humans, Denmark. Emerg Infect Dis 2021;27:547-551.                                                         |
| 366 |    | https://doi.org/10.3201/eid2702.203794                                                                                          |
| 367 | 21 | Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp                                                 |
| 368 |    | R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders                                              |
| 369 |    | F, Hakze-van der Honing R, Wegdam-Blans MCA, Bouwstra RJ, GuertsvanKessel C, van                                                |
| 370 |    | der Eijk AA, Velkers FC, Smit LAM, Stegeman A, van der Poel WHM, Koopmans MPG.                                                  |
| 371 |    | Transmission of SARS-CoV-2 on mink farms between humans and mink and back to                                                    |
| 372 |    | humans. Science 2021;371:172-177. <a href="https://doi.org/10.1126/science.abe5901">https://doi.org/10.1126/science.abe5901</a> |
| 373 | 22 | van Aart AE, Velkers FC, Fischer EAJ, Broens EM, Egberink H, Zhao S, Engelsma M, Hakze-                                         |
| 374 |    | van der Honing RW, Harders F, de Rooij MMT, Radstake C, Meijer PA, Oude Munnink BB,                                             |
| 375 |    | de Rond J, Sikkema RS, van der Spek AN, Spierenburg M, Wolters WJ, Molernaar R-J,                                               |
| 376 |    | Koopmans MPG, van der Poel WHM, Stegeman A, Smit LAM. SARS-CoV-2 infection in                                                   |
| 377 |    | cats and dogs in infected mink farms. Transbound Emerg Dis 2021;1:1-7.                                                          |
| 378 |    | https://doi.org/10.1111/tbed.14173                                                                                              |
| 379 | 23 | Nituch LA, Bowman J, Beauclerc KB, Schulte-Hostedde AI. Mink farms predict Aleutian                                             |
| 380 |    | disease exposure in wild American mink. PLoS ONE 2011;6:e21693.                                                                 |
| 381 |    | https://doi.org/10.1371/journal.pone.0021693                                                                                    |
| 382 | 24 | Dominguez SR, O'Shea TJ, Oko LM, Holmes KV. Detection of group 1 coronaviruses in                                               |
| 383 |    | bats in North America. Emerg Infect Dis 2007;13:1295-1300.                                                                      |
| 384 |    | https://doi.org/10.3201/eid1309.070491                                                                                          |
| 385 | 25 | Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandeler A,                                               |
| 386 |    | Lindsay R, Artsob H. Detection of polyoma and corona viruses in bats of Canada. J Gen                                           |
| 387 |    | Virol 2009;90:2015-2022. http://doi.org/10.1099/vir.0.010694-0                                                                  |
| 388 | 26 | Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C,                                           |
| 389 |    | Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL.                                         |
| 390 |    | Isolation and characterization of a bat SARS-like coronavirus that uses the ACE-2                                               |
| 391 |    | receptor. Nature 2013;503:535-538. <u>https://doi.org/10.1038/nature12711</u>                                                   |
| 392 | 27 | Olival KJ, Cryan PM, Amman BR, Baric RS, Blehert DS, Brook CE, Calisher CH, Castle KT,                                          |
| 393 |    | Coleman JTH, Daszak P, Epstein JH, Field H, Frick WF, Gilbert AT, Hayman DTS, Ip HS,                                            |
| 394 |    | Karesh WB, Johnson CK, Kading RC, Kingston T, Lorch JM, Mendenhall IH, Peel AJ, Phelps                                          |
| 395 |    | KL, Plowright RK, Reeder DM, Reichard JD, Sleeman JM, Streicker DG, Towner JS, Wang                                             |
| 396 |    | LF. Possibility for reverse-zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a                                     |
|     |    |                                                                                                                                 |

| 397 |    | case study of bats. PLoS Pathog 2020;16:e1008758.                                         |
|-----|----|-------------------------------------------------------------------------------------------|
| 398 |    | https://doi.org/10.1371/journal.ppat.1008758                                              |
| 399 | 28 | Hall JS, Knowles S, Nashold SW, Ip HS, Leon AE, Rocke T, Keller S, Carossino M,           |
| 400 |    | Balasuriya U, Hofmeister E. Experimental challenge of a North American bat species, big   |
| 401 |    | brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound Emerg Dis 2020;00:1-10.         |
| 402 |    | https://doi.org/10.1111/tbed.13949                                                        |
| 403 | 29 | Montagutelli X, Prot M, Levillayer L, Baquero Salazar E, Jouvion G, Conquet L, Donati F,  |
| 404 |    | Albert M, Gambaro F, Behillil S, Enouf V, Rousset D, Jaubert J, Rey F, van der Werf S,    |
| 405 |    | Simon-Loriere E. The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice.        |
| 406 |    | bioRxiv 2021. https://doi.org/10.1101/2021.03.18.436013                                   |
| 407 | 30 | Palmer MV, Martins M, Falkenberg S, Buckley A, Caserta LC, Mitchell PK, Cassman ED,       |
| 408 |    | Rollins A, Zylich NC, Renshaw RW, Guarino C, Wagner B, Lager K, Diel DG. Susceptibility   |
| 409 |    | of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J Virol 2021;95:e00083-21.   |
| 410 |    | https://doi.org/10.1128/JVI.00083-21.                                                     |
| 411 | 31 | Griffin BD, Chan M, Tailor N, Mendoza EJ, Leung A, Warner BM, Duggan AT, Moffat E, He     |
| 412 |    | S, Garnett L, Tran KN, Banadyga L, Albietz A, Tierney K, Audet J, Bello A, Vendramelli R, |
| 413 |    | Boese AS, Fernando L, Lindsay LR, Jardine CM, Wood H, Poliquin G, Strong JE, Drebot M,    |
| 414 |    | Safronetz D, Embury-Hyatt C, Kobasa D. SARS-CoV-2 infection and transmission in the       |
| 415 |    | North American deer mouse. Nat Commun 2021;12:3612.                                       |
| 416 |    | https://doi.org/10.1038/s41467-021-23848-9                                                |

## 417 Table 1: Metadata for 776 animals from Ontario and Québec screened for SARS-CoV-2

| Species                         | Sampling<br>agency | Sample source                                                       | Sample<br>location(s)                                                        | Dates of collection       | Number of<br>individuals<br>sampled | Types of<br>samples<br>tested                                              | Test<br>performed | Testing centre |
|---------------------------------|--------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|-------------------------------------|----------------------------------------------------------------------------|-------------------|----------------|
| Raccoon<br>(Procyon<br>lotor)   | СѠНС               | Rabies<br>surveillance<br>(Québec<br>samples), post-<br>mortem exam | Southern<br>Ontario,<br>Southern<br>Québec                                   | Aug 2020-<br>Feb 2021     | 11                                  | Respiratory<br>tissue                                                      | PCR               | SRI            |
|                                 |                    |                                                                     | Southern<br>Québec                                                           | Nov-Dec<br>2020           | 68                                  | Respiratory<br>tissue,<br>rectal swab                                      | -                 |                |
|                                 |                    |                                                                     | Southern<br>Ontario,<br>Southern<br>Québec                                   | Oct 2020-<br>June 2021    | 15                                  | Respiratory<br>and<br>intestinal<br>tissue                                 | -                 |                |
|                                 |                    |                                                                     | Southwestern<br>Québec                                                       | Jan 2021                  | 3                                   | Nasal swab                                                                 | -                 |                |
|                                 |                    |                                                                     | Southern<br>Québec                                                           | Jan-June<br>2021          | 54                                  | Nasal and<br>rectal<br>swabs                                               |                   |                |
|                                 | NDMNRF<br>and CWHC | Rabies<br>surveillance,<br>post-mortem<br>exam                      | Hamilton,<br>Ontario                                                         | Dec 2020                  | 1                                   | Oral and<br>rectal<br>swabs,<br>respiratory<br>and<br>intestinal<br>tissue |                   |                |
|                                 | NDMNRF             | Rabies<br>surveillance                                              | Southwestern<br>Ontario                                                      | June 2020-<br>Jan 2021    | 100                                 | Oral and<br>rectal<br>swabs                                                | -                 |                |
|                                 |                    | Rabies<br>seroprevalence<br>study                                   | Oakville,<br>Ontario                                                         | Sept-Oct<br>2020          | 141                                 | Oral and<br>rectal<br>swabs                                                |                   |                |
|                                 | ONS SAMPLED        |                                                                     |                                                                              |                           | 393                                 | Sera                                                                       | Antibody          | NML            |
| Striped<br>Skunk                | CWHC               | Rabies<br>surveillance                                              | Southern<br>Québec                                                           | Jan-June<br>2021          | 66                                  | Nasal swab                                                                 | PCR               | SRI            |
| (Mephitis<br>mephitis)          |                    | (Québec<br>samples), post-<br>mortem exam                           | Southern<br>Ontario,<br>Southern<br>Québec                                   | July-Dec<br>2020          | 55                                  | Respiratory<br>tissue                                                      |                   |                |
|                                 |                    |                                                                     | Southern<br>Ontario,<br>Southwestern<br>Québec,<br>Saint-Félicien,<br>Québec | Oct 2020-<br>Apr 2021     | 9                                   | Respiratory<br>and<br>intestinal<br>tissue                                 |                   |                |
|                                 | NDMNRF             | Rabies<br>surveillance,<br>rabies<br>seroprevalence<br>study        | Southwestern<br>Ontario                                                      | Sept 2020-<br>May 2021    | 104                                 | Oral and<br>rectal<br>swabs                                                |                   |                |
|                                 |                    | Rabies<br>seroprevalence<br>study                                   | Oakville,<br>Ontario                                                         | Sept-Oct<br>2020          | 36                                  | Oral and<br>rectal<br>swabs                                                |                   |                |
| TOTAL CHURN                     | (C CANAD! 50       |                                                                     |                                                                              |                           | 270                                 | Sera                                                                       | Antibody          | NML            |
| TOTAL SKUNK<br>American<br>Mink | CWHC               | Post-mortem<br>exam                                                 | Thornhill,<br>Ontario                                                        | July 2020                 | 270<br>1                            | Respiratory<br>tissue                                                      | PCR               | SRI            |
| (Neovision<br>vison)            | NDMNRF             | Registered fur<br>harvesters,<br>roadkill, rabies<br>surveillance   | Southern<br>Ontario                                                          | Fall 2020-<br>Spring 2021 | <b>42</b> <sup>a</sup>              | Oral and<br>rectal<br>swabs, lung<br>and                                   |                   |                |


|                                                    |               |                        |                                          |                       |    | intestinal                                        |          |     |
|----------------------------------------------------|---------------|------------------------|------------------------------------------|-----------------------|----|---------------------------------------------------|----------|-----|
|                                                    |               |                        |                                          |                       |    | tissue<br>Cardiac<br>blood or<br>Nobuto<br>strips | Antibody | NML |
|                                                    |               |                        |                                          |                       |    |                                                   |          |     |
| TOTAL MINK SA                                      | MPLED         |                        |                                          |                       | 43 | 50105                                             |          |     |
| Big brown<br>bat                                   | Granby Zoo    | Rehabilitation program | Southwestern<br>Québec                   | Nov 2020-<br>Mar 2021 | 15 | Oral swabs                                        | PCR      | SRI |
| (Eptesicus<br>fuscus)                              |               |                        |                                          |                       | 2  | Guano                                             | _        |     |
|                                                    |               |                        |                                          |                       | 15 | Oral swabs<br>and guano                           |          |     |
| TOTAL BIG BRO                                      | WN BATS SAM   | IPLED                  |                                          |                       | 32 |                                                   |          |     |
| Hoary bat<br>( <i>Lasiurus</i><br><i>cinerus</i> ) | CWHC          | Post-mortem<br>exam    | Etobicoke,<br>Ontario                    | Dec 2020              | 1  | Respiratory<br>and<br>intestinal<br>tissue        | PCR      | SRI |
| American                                           | CWHC          | Post-mortem            | Sainte-Anne-                             | Nov 2020              | 1  | Respiratory                                       | PCR      | SRI |
| marten<br>( <i>Martes</i>                          |               | exam                   | de-Bellevue,<br>Québec                   |                       |    | and<br>intestinal                                 |          |     |
| americana)                                         |               |                        |                                          |                       |    | tissue                                            |          |     |
| Fisher<br>( <i>Pekania</i>                         | CWHC          | Post-mortem<br>exam    | Western<br>Québec                        | May 2021              | 2  | Respiratory<br>and                                | PCR      | SRI |
| pennanti)                                          |               |                        |                                          |                       |    | intestinal<br>tissue                              |          |     |
| American<br>black bear                             | CWHC          | Post-mortem<br>exam    | Northern<br>Ontario                      | Sept 2020             | 2  | Respiratory                                       | PCR      | SRI |
| (Ursus                                             |               | exam                   | Killaloe,                                | Oct 2020              | 1  | Respiratory                                       | -        |     |
| americanus)                                        |               |                        | Ontario                                  |                       |    | and<br>intestinal                                 |          |     |
|                                                    |               |                        |                                          |                       | -  | tissue                                            |          |     |
| TOTAL BLACK B                                      |               |                        | Carlata                                  | lune 2024             | 3  | late - P I                                        | DCD      | CDI |
| Atlantic<br>white-sided                            | CWHC          | Post-mortem<br>exam    | Carleton-sur-<br>Mer, Québec             | June 2021             | 1  | Intestinal<br>tissue                              | PCR      | SRI |
| dolphin<br>( <i>Lagenorhync</i>                    |               |                        | Sept-Îles,<br>Québec                     | March<br>2021         | 1  | Respiratory<br>and                                |          |     |
| hus actus)                                         |               |                        |                                          |                       |    | intestinal<br>tissue                              |          |     |
| TOTAL ATLANT                                       | IC WHITE-SIDE | D DOLPHINS SAMP        | LED                                      |                       | 2  |                                                   |          |     |
| Harbour<br>porpoise                                | CWHC          | Post-mortem<br>exam    | La Montée,<br>Québec                     | Dec 2020              | 1  | Respiratory<br>and                                | PCR      | SRI |
| (Phocoena<br>phocoena)                             |               |                        |                                          |                       |    | intestinal<br>tissue                              |          |     |
| Harbour seal<br>(Phoca                             | CWHC          | Post-mortem            | Matane,<br>Québec                        | Dec 2020              | 1  | Respiratory<br>and                                | PCR      | SRI |
| vitulina)                                          |               | exam                   | QUEDEL                                   |                       |    | intestinal                                        |          |     |
| Coyote (Canis                                      | CWHC          | Post-mortem            | Saint-                                   | April 2021            | 1  | tissue<br>Respiratory                             | PCR      | SRI |
| latrans)                                           |               | exam                   | Alexandre-                               | p 2021                | -  | and                                               | ,        |     |
|                                                    |               |                        | d'Iberville,<br>Québec                   |                       |    | intestinal<br>tissue                              |          |     |
| Eastern wolf<br>(Canus lupus<br>lycaon)            | CWHC          | Post-mortem<br>exam    | Algonquin<br>Provincial<br>Park, Ontario | Oct 2020              | 1  | Respiratory<br>tissue                             | PCR      | SRI |
|                                                    |               |                        | Southern and central                     |                       | 4  | Respiratory<br>and                                | -        |     |
|                                                    |               |                        | Ontario                                  |                       |    | intestinal                                        |          |     |
| TOTAL EASTER                                       | N WOLVES SAM  | 1PLED                  |                                          |                       | 5  | tissue                                            |          |     |
| Grey Fox                                           | CWHC          | Post-mortem            | Châteauguay,                             | Dec 2020              | 1  | Respiratory                                       | PCR      | SRI |
| (Urocyon<br>cinereoargen                           |               | exam                   | Québec                                   |                       |    | and<br>intestinal                                 |          |     |

| Red fox      | CWHC        | Post-mortem | Mercier,       | Jan 2021  | 1  | Nasal and   | PCR | SRI |
|--------------|-------------|-------------|----------------|-----------|----|-------------|-----|-----|
| (Vulpes      |             | exam        | Québec         |           |    | rectal      |     |     |
| vulpes)      |             |             |                |           |    | swabs       | -   |     |
|              |             |             | Southwestern   | Nov-Dec   | 4  | Respiratory |     |     |
|              |             |             | Québec         | 2020      |    | tissue,     |     |     |
|              |             |             |                |           |    | rectal      |     |     |
|              |             |             |                |           |    | swabs       | _   |     |
|              |             |             | Southern,      | July-Oct  | 5  | Respiratory |     |     |
|              |             |             | Ontario        | 2020      |    | tissue      | _   |     |
|              |             |             | Dunham,        | Dec 2020  | 1  | Respiratory |     |     |
|              |             |             | Québec         |           |    | and         |     |     |
|              |             |             |                |           |    | intestinal  |     |     |
|              |             |             |                |           |    | tissue      |     |     |
| TOTAL RED FC | XES SAMPLED | )           |                |           | 11 |             |     |     |
| Virginia     | CWHC        | Post-mortem | Bolton-Est,    | June 2021 | 1  | Nasal and   | PCR | SRI |
| opossum      |             | exam        | Québec         |           |    | rectal      |     |     |
| (Didelphis   |             |             |                |           |    | swabs       | _   |     |
| virginiana)  |             |             | Southern       | July-Oct  | 2  | Respiratory |     |     |
|              |             |             | Ontario        | 2020      |    | tissue      |     |     |
|              |             |             | Southwestern   | Oct 2020, | 3  | Respiratory | -   |     |
|              |             |             | Ontario,       | March     |    | and         |     |     |
|              |             |             | Saint-Jean-    | 2021      |    | intestinal  |     |     |
|              |             |             | sur-Richelieu, |           |    | tissue      |     |     |
|              |             |             | Québec         |           |    |             |     |     |
| TOTAL VIRGIN | IA OPOSSUM  | S SAMPLED   |                |           | 6  |             |     |     |
| White-tailed | CWHC        | Post-mortem | London,        | Oct-Dec   | 3  | Respiratory | PCR | SRI |
| deer         |             | exam        | Ontario,       | 2020      |    | and         |     |     |
| (Odocoileus  |             |             | Southwestern   |           |    | intestinal  |     |     |
| virginianus) |             |             | Québec         |           |    | tissue      |     |     |

418 419 420

 a) due to the condition of the carcass, we were unable to collect lung tissue or cardiac blood from 1 individual, cardiac blood from a further 2 individuals, and rectal swabs from 2 individuals. In cases where we could not collect cardiac blood, we instead submitted a Nobuto strip soaked in fluid from the chest cavity for antibody testing

422



## 423 Figure 1: Original locations of animals submitted for SARS-CoV-2 testing (N=776)