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Abstract: 27 

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in 28 

genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, 29 

phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic 30 

inference, in which all data are collected before any analysis is performed and the phylogeny is inferred 31 

once from scratch. SARS-CoV-2 datasets do not fit this mould. There are currently over 10 million 32 

sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added 33 

every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites 34 

an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees 35 

every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between 36 

likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) methods are 37 

more accurate when there are multiple changes at a single site on a single branch, but this accuracy 38 

comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that 39 

these instances will be extremely rare because each internal branch is expected to be extremely short. 40 

Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for 41 

reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much 42 

larger datasets. Here, we evaluate the performance of de novo and online phylogenetic approaches, and 43 

ML and MP frameworks, for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that 44 

online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that 45 

MP optimizations produce more accurate SARS-CoV-2 phylogenies than do ML optimizations. Since MP 46 

is thousands of times faster than presently available implementations of ML and online phylogenetics is 47 

faster than de novo, we therefore propose that, in the context of comprehensive genomic epidemiology 48 

of SARS-CoV-2, MP online phylogenetics approaches should be favored. 49 

 50 
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Introduction: 54 

 55 

The widespread availability and extreme abundance of pathogen genome sequencing has made 56 

phylogenetics central to combatting the pandemic. Communities worldwide have begun implementing 57 

genomic surveillance by systematically sequencing the genomes of a percentage of local cases (Deng et 58 

al. 2020; Lu et al. 2020a; Meredith et al. 2020; Park et al. 2021). This has been invaluable in tracing local 59 

transmission chains (Bluhm et al. 2020; Lam 2020), understanding the genetic makeup of viral 60 

populations within local communities (Gonzalez-Reiche et al. 2020; Franceschi et al. 2021; Thornlow et 61 

al. 2021a), uncovering the means by which viral lineages have been introduced to new areas (Castillo et 62 

al. 2020), and measuring the relative spread of specific variants (Skidmore et al. 2021; Umair et al. 63 

2021). Phylogenetic approaches for better understanding the proximate evolutionary origins of the virus 64 

(Li et al. 2020), as well as to identify recombination events (Jackson et al. 2021; Turakhia et al. 2021b) 65 

and instances of convergent evolution (Kalantar et al. 2020; Peng et al. 2021) have greatly informed our 66 

understanding of the virus. Phylogenetic visualization software including Auspice (Hadfield et al. 2018) 67 

and Taxonium (Sanderson 2021a) have also become widely used for public health purposes. 68 

 A comprehensive, up-to-date phylogenetic tree of SARS-CoV-2 is important for public health 69 

officials and researchers. A tree containing all available sequences can sometimes facilitate identification 70 

of epidemiological links between samples that might otherwise be obscured in subsampled phylogenies. 71 

Conversely, these approaches can often rule out otherwise plausible transmission histories. Such 72 

information can also help to identify the likely sources of new viral strains in a given area (Moreno et al. 73 

2020; Tang et al. 2021). Additionally, using up-to-date information enables us to find and track quickly 74 

growing clades and novel variants of concern (Annavajhala et al. 2021; Tegally et al. 2021), as well as to 75 

measure the spread of known variants at both global and community scales. Furthermore, 76 

comprehensive phylogenies can facilitate identification of recombinant viral genomes (Turakhia et al. 77 

2021b), natural selection at homoplasious positions (van Dorp et al. 2020), variation in mutation rates 78 

(De Maio et al. 2021a), and systematic recurrent errors (Turakhia et al. 2020). This also facilitates 79 
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naming lineages of interest, which has been especially important in tracking variants of concern during 80 

the pandemic (e.g. B.1.1.7 or "Alpha" and B.1.617.2 or "Delta") (Rambaut et al. 2020). 81 

SARS-CoV-2 presents a unique set of phylogenetic challenges. First, the unprecedented pace 82 

and scale of whole-genome sequence data has forced the phylogenetics community to place runtime 83 

and scalability at the center of every inference strategy. More than 10 million SARS-CoV-2 genome 84 

sequences are currently available, with tens of thousands being added each day. Prior to the pandemic, 85 

de novo phylogenetics, or approaches that infer phylogenies from scratch, have been the standard, as 86 

there has rarely been a need to re-infer or improve pre-existing phylogenies on a daily basis. Re-inferring 87 

a tree of more than 10 million samples daily, however, is extremely costly, and has brought a renewed 88 

focus on methods for adding new samples to existing phylogenetic trees (Matsen et al. 2010; Berger et 89 

al. 2011; Izquierdo-Carrasco et al. 2014; Fourment et al. 2018; Barbera et al. 2019). This approach has 90 

been called "online phylogenetics" (Gill et al. 2020), and has important advantages in the context of the 91 

pandemic and beyond. Online phylogenetics is appealing for the genomic surveillance of any pathogen, 92 

because iterative optimization should decrease computational expense, allowing good estimates of 93 

phylogenies to be made readily available.  94 

Second, SARS-CoV-2 genomes are much more closely related than sequences in most other 95 

phylogenetic analyses. Because the advantages of maximum likelihood methods decrease for closely 96 

related samples and long branches are relatively rare in the densely sampled SARS-CoV-2 phylogeny 97 

(Felsenstein 1978; Hendy and Penny 1989; Philippe et al. 2005), this suggests that phylogenetic 98 

inferences based on maximum parsimony, a much faster and simpler phylogenetic inference method, 99 

could be better suited for online phylogenetic analyses of SARS-CoV-2 genomes (Wertheim et al. 2021). 100 

The principle of maximum parsimony is that the tree with the fewest mutations should be favored, and it 101 

is sometimes described as a non-parametric phylogenetic inference method (Sullivan and Swofford 102 

2001; Kolaczkowski and Thornton 2004). Additionally, because parsimony-based tree optimization does 103 

not require estimation of ancestral character state uncertainty at all positions in the phylogeny like ML 104 

optimization does, parsimony uses much less memory. 105 
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Here, we evaluate approaches that would enable one to maintain a fully up-to-date and 106 

comprehensive global phylogeny of SARS-CoV-2 genome sequences (McBroome et al. 2021). 107 

Specifically, we investigate tradeoffs between online and de novo phylogenetics and between maximum 108 

parsimony and maximum likelihood approaches when the aim is for an analysis to scale to millions of 109 

sequences, with tens of thousands of new sequences being added daily. We chose to compare 110 

maximum parsimony and maximum likelihood (and omit other approaches like neighbor-joining) because 111 

they were the most effective methods at inferring large SARS-CoV-2 phylogenies based on previous 112 

analyses (Lanfear and Mansfield 2020), and because the most efficient distance-based methods are 113 

quadratic in memory usage so cannot scale to estimating trees from datasets of more than a few 114 

hundred thousand sequences (Wang et al. 2022). We mimic the time-course of the pandemic by 115 

introducing increasingly large numbers of SARS-CoV-2 genome sequences proportionately to their 116 

reported sampling dates. 117 

We evaluate potential online phylogenetics approaches by iteratively adding samples to existing 118 

trees and optimizing the augmented phylogeny with different tools that have been proposed for this 119 

purpose during the pandemic. In particular, we evaluate matOptimize, IQ-TREE 2, and FastTree 2. 120 

Between each optimization step, we use UShER (Turakhia et al. 2021a) to add samples to trees by 121 

maximum parsimony. matOptimize is a parsimony optimization approach that uses subtree pruning and 122 

regrafting (SPR) moves to minimize the total mutations in the final tree topology (Ye et al. 2022) . IQ-123 

TREE 2 uses nearest neighbor interchange (NNI) to find the tree with the highest likelihood given an 124 

input multiple sequence alignment (Minh et al. 2020). FastTree 2 uses a pseudo-likelihood approach that 125 

employs minimum-evolution SPR and/or NNI moves and maximum-likelihood NNI moves while using 126 

several heuristics to reduce the search space (Price et al. 2010). The likelihood-based approaches 127 

evaluated here report branch lengths in substitutions per site. Parsimony-based matOptimize reports 128 

branch lengths in total substitutions, which can be converted to the latter by dividing by the genome 129 

length. These branch lengths may be interpreted as is or used as an initial estimate for other distance 130 

measures, for example in the construction of time trees (Sanderson 2021b). 131 
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Results from our comparisons demonstrate that for the purposes of SARS-CoV-2 phylogenetics, 132 

in which samples are numerous and closely related and inference speed is of high significance, 133 

parsimony-based online phylogenetics applications are clearly most favorable and are also the only 134 

immediately available methods capable of producing daily phylogenetic estimates of all available SARS-135 

CoV-2 genomes (Turakhia et al. 2021a). We note that matOptimize is used to maintain such a phylogeny 136 

comprising over 9 million genomes as of April 2022 (McBroome et al. 2021). As similarly vast datasets 137 

will soon be available for many species and pathogens, we expect that online approaches using 138 

parsimony or pseudo-likelihood optimization will become increasingly central to phylogenetic inference. 139 

 140 

Results and Discussion: 141 

 142 

Online phylogenetics is an alternative to de novo phylogenetics for ongoing studies. 143 

 144 

 The vast majority of phylogenetics during the pandemic has consisted of de novo phylogenetics 145 

approaches (Hadfield et al. 2018; Li et al. 2020; Lu et al. 2020a, 2020b; Meredith et al. 2020), in which 146 

each phylogeny is inferred using only genetic variation data, and without a guide tree (Fig. 1). This 147 

strategy for phylogenetic inference has long been the default, as in most instances in the past, data are 148 

collected just once for a project, and more relevant data are rarely going to be made available in the near 149 

future. This process is well characterized and has been foundational for many phylogenetics studies 150 

(Hug et al. 2016; Parks et al. 2018; Lu et al. 2020b), and most phylogenetics software is developed with 151 

de novo phylogenetics as the primary intended usage. 152 

 A challenging aspect of pandemic phylogenetics is the need to keep up with the pace of data 153 

generation as genome sequences continuously become available. To evaluate phylogenetics 154 

applications in the pandemic (Fig. 1), we split 233,326 samples dated from December 23, 2019 through 155 

January 11, 2021 into 50 batches according to their date of collection. Each batch contains roughly 5,000 156 

samples. Samples in each batch were collected within a few days of each other, except in the first 157 

months of the pandemic when sample collection was more sparse. We also constructed a dataset of 158 
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otherwise similar data simulated from a known phylogeny (see Methods). The intent of this scheme is to 159 

roughly approximate the data generation and deposition that occurred during the pandemic. All datasets 160 

are available from the repository associated with this project (Thornlow et al. 2021b), for reproducibility 161 

and so that future methods developers can directly compare their outputs to our results. We performed 162 

online and de novo phylogenetics using a range of inference and optimization approaches. Since 163 

thousands of new sequences are added to public sequence repositories each day, we terminated any 164 

phylogenetic inference approaches that took more than 24 hours, because such phylogenies would be 165 

obsolete for some public health applications by the time they were inferred.  166 

 167 

 168 

Figure 1: Phylogenies may be optimized from scratch using de novo phylogenetics or iteratively 169 

using online phylogenetics. In de novo phylogenetics (top), trees are repeatedly re-inferred from 170 

scratch. Conversely, online phylogenetics (bottom) involves placement of new samples as they are 171 

collected. Intermittent optimization steps (not depicted) after new samples are placed can help overcome 172 
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errors from previous iterations. Online phylogenetics is expected to be much faster and require less 173 

memory than de novo phylogenetics. 174 

 175 

Analyses using simulated data suggest that online phylogenetics is more accurate for SARS-176 

CoV-2. 177 

 178 

 We first compared matOptimize (commit 66ca5ff, conda version 0.4.8) (Ye et al. 2022), IQ-TREE 179 

2 (Minh et al. 2020), and FastTree 2 (Price et al. 2010) using both online and de novo phylogenetics 180 

strategies using simulated data that we designed to closely mimic real SARS-CoV-2 datasets. All online 181 

phylogenomics workflows used UShER (Turakhia et al. 2021a) to add new sequences to the previous 182 

tree (see Methods) as to our knowledge it is the only software package that is fast enough to perform 183 

under real time constraints. We chose these three tools based on their widespread usage among SARS-184 

CoV-2 phylogenetics applications (e.g. matOptimize is part of the UShER suite (Turakhia et al. 2021a), 185 

IQ-TREE 2 is used by (COVID-19 Genomics UK (COG-UK) Consortium 2020; Lanfear and Mansfield 186 

2020) and FastTree 2 is used by (Hadfield et al. 2018)) as well as to cover several different 187 

methodologies.  188 

Simulating an alignment based on a known tree ensures that there is a ground truth for 189 

comparison to definitively assess each optimization method. We used an inferred global phylogeny as a 190 

template to simulate a complete multiple sequence alignment using phastSim (De Maio et al. 2021b). We 191 

subsampled this simulated alignment into 50 progressively larger sets of samples, ranging in number of 192 

samples from 4,676 to 233,326 (see Methods), to examine each of the three optimization methods in 193 

both online and de novo phylogenetics. We then computed the Robinson-Foulds distance for unrooted 194 

trees of each iteration, after condensing identical samples and collapsing very short branches, to the 195 

global mutation-annotated tree on which the simulation was based, pruned to contain only the relevant 196 

samples, and normalized by the maximum possible Robinson-Foulds distance between the trees (Fig. 2, 197 

Fig. S3) (Steel and Penny 1993). 198 
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All online phylogenetics methods noticeably outperformed their de novo counterparts. Overall, 199 

online matOptimize produced phylogenies with the lowest Robinson-Foulds distance to the ground truth 200 

for the majority of iterations (Fig. 2). Online IQ-TREE 2 performed similarly, but was able to complete 201 

only 25 of the 50 iterations due to its extreme computational resource requirements. For example, for the 202 

14th phylogeny of 60,571 sequences, which was the last phylogeny produced using under 200 GB of 203 

RAM in under 24 hours by all six methods, we found Robinson-Foulds distances of 1696, 2590, and 204 

2130 for de novo UShER+matOptimize, FastTree 2, and IQ-TREE 2 respectively, and distances of 1557, 205 

2111, and 1618 for online matOptimize, FastTree 2, and IQ-TREE 2, respectively. 206 

There are several possible explanations for the improved performance of online phylogenetics 207 

relative to de novo approaches. First, the radius for SPR moves when optimizing a large tree is 208 

insufficiently large to find improvements that are more readily applied when the tree contains fewer 209 

samples as in early rounds of online phylogenetics. In online phylogenetics, these improvements carry 210 

over to subsequent trees, while in de novo, they do not. The radius is defined as the phylogenetic 211 

distance of the search space when moving a node to a more optimal position. As the phylogeny 212 

increases in size, the distance from a node to its optimal position is likely to also increase, necessitating 213 

a larger SPR move radius to make equivalent improvements in larger trees. Second, large clades 214 

consisting primarily of samples with branch length zero might further reduce the ability of optimization 215 

methods to find improvements by indirectly limiting search space due to the increased number of edges 216 

when represented internally as a bifurcating tree. It may sometimes be possible to explore moves across 217 

such tree regions during online phylogenetics in early iterations when the polytomy is relatively small. 218 

Third, online phylogenetics facilitates tree optimization by providing an exceptionally good initial tree that 219 

has already been heavily optimized in previous iterations. We expect that this approach will typically 220 

outperform parsimony and neighbor-joining initial trees that are used in most de novo phylogenetic 221 

inference approaches. Finally, because each online experiment began with a small tree inferred de novo 222 

by stepwise sample addition with UShER, it is possible that these initial trees are more optimal than initial 223 

trees produced during de novo inference by the other software we evaluated, perhaps because UShER 224 

prefers the reference nucleotide in cases of ambiguous internal character states. 225 
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 226 

 227 

Figure 2: Online matOptimize produces phylogenies most similar to ground truth on simulated 228 

data. For each batch of samples, we calculated the Robinson-Foulds distance between the tree 229 

produced by a given optimization software and the ground truth tree pruned to contain only the relevant 230 

samples. We then normalized these values by the maximum possible Robinson-Foulds distance 231 

between the two trees (see Figure S3), which is equal to 2n-6 where n equals the number of samples in 232 

each tree (Steel and Penny 1993). We terminated FastTree and IQ-TREE after the first phylogeny that 233 

took more than 24 hours to optimize. 234 

 235 

 236 
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Analyses using real data suggest that online phylogenetics is more efficient than de novo and 237 

produces similarly optimal phylogenies. 238 

 239 

While analyses using simulated data offer the ability to compare to a known ground truth, 240 

assessing the performance of each method on real SARS-CoV-2 data may more accurately reflect 241 

practical use of each method. Therefore, we also tested each optimization strategy on 50 progressively 242 

larger sets of real SARS-CoV-2 samples and calculated the parsimony score and likelihood of each 243 

optimized tree, as well as the run-time and peak RAM usage of each software package used (Fig. 3). To 244 

accomplish this, we subsampled our global phylogeny, which was produced using stringent quality 245 

control steps (see Methods), as before, to mimic the continuous accumulation of samples over the 246 

course of the pandemic.  247 

Online optimizations are generally much faster than de novo phylogenetic inference. For 248 

example, IQ-TREE 2 achieves a roughly four-fold faster run-time for online optimizations compared to 249 

inferring the tree de novo (Fig. 3c). The 11th iteration, which has 47,819 sequences and was the last to 250 

be completed by both online and de novo IQ-TREE 2, took 22 hours 50 minutes for de novo IQ-TREE 2 251 

but only 5 hours 26 minutes for online IQ-TREE 2. De novo UShER+matOptimize was the only de novo 252 

method to finish all trees in fewer than 24 hours, but its speed for each daily update pales in comparison 253 

to online matOptimize. Online matOptimize is several orders of magnitude faster than its de novo 254 

counterpart, and its optimizations for the largest phylogenies take roughly 30 seconds, while de novo tree 255 

inference with UShER can take several hours for trees consisting of more than 100,000 samples (Fig. 256 

3c). However, whether a software package is used for online or de novo phylogenetics does not strongly 257 

affect its peak memory usage.  258 

We also found that online phylogenetics strategies produce trees very similar in both parsimony 259 

score and likelihood to their de novo counterparts, with differences of less than 1% in all cases (Fig. 3a-260 

b). For example, in the 11th iteration containing 47,819 sequences, online IQ-TREE 2 produces a tree 261 

with a parsimony score of 32,005, whereas de novo IQ-TREE 2 produces a tree with parsimony score 262 

32,149. Our results suggest that in addition to the computational savings that allow online phylogenetics 263 
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approaches to continuously stay up-to-date, online phylogenetics approaches also produce trees with 264 

similar parsimony scores and likelihoods to their de novo counterparts. 265 

 266 

Under pandemic time constraints, parsimony-based optimization methods have favorable metrics 267 

compared to ML methods for SARS-CoV-2 phylogenies. 268 

 269 

 In the case of both de novo and online phylogenetics, the parsimony-based matOptimize 270 

outperforms both FastTree 2 and IQ-TREE 2 in runtime and peak memory usage. For the sixth iteration 271 

(26,486 samples), which was the largest phylogeny inferred by all online methods in under 24 hours and 272 

using under 200 GB of RAM, online FastTree 2 required nearly 24 hours and 30.3 GB of RAM, and 273 

online IQ-TREE 2 required 1 hour 45 minutes and 72 GB of RAM. By contrast, matOptimize used only 6 274 

seconds and 0.15 GB of RAM. This iteration contained roughly 10% as many samples as the 50th and 275 

final iteration (233,326 total samples), which online matOptimize completed in 32 seconds using 1.41 GB 276 

of RAM at peak usage. Even this largest tree represents only a very small fraction of the more than 10 277 

million currently available SARS-CoV-2 genomes, indicating that, among the approaches we evaluated, 278 

matOptimize is the only viable option for maintaining a comprehensive SARS-CoV-2 phylogeny via 279 

online phylogenetics. 280 

 In addition to its scalability, matOptimize outperforms ML optimization methods under 24-hour 281 

time constraints in both the parsimony and likelihood scores of the trees that it infers. For the sixth 282 

iteration (26,486 samples), we found parsimony scores of 16,130, 16,179, and 16,290 for online 283 

matOptimize, IQ-TREE 2, and FastTree 2 respectively. While all methods produce phylogenies with 284 

parsimony scores within 1% of each other, matOptimize is consistently the lowest. However, 285 

matOptimize was developed to optimize by parsimony, while the other methods were developed for ML 286 

optimizations. Unexpectedly, we found log-likelihood scores of -233,414.277, -233,945.528, and -287 

235,177.396 for matOptimize, IQ-TREE 2, and FastTree 2 respectively, indicating that matOptimize 288 

produces preferable phylogenies based on likelihood as well. We used a Jukes-Cantor (JC) model to 289 

calculate likelihoods due to time constraints in calculation for more complex substitution models, but a 290 
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Generalised Time Reversible (GTR) model with specified rate parameters produced strongly correlated 291 

likelihoods (Fig. S1). Specifically, we fit a generalized linear model using a Gamma family (inverse link 292 

function) to predict the likelihood of the tree under the JC model using the iteration of tree construction 293 

and the GTR likelihood as predictors. We examined the six trees from the first and second iteration (12 in 294 

total). We found that the GTR likelihood was significantly correlated with the JC likelihood (p < 2.27×10-295 

5). 296 

 297 

Parsimony optimization produces comparable or more favorable SARS-CoV-2 trees than the most 298 

thorough maximum likelihood methods. 299 

 300 

 We also compared the performance of de novo inference with UShER+matOptimize to state-of-301 

the-art methods without a 24-hour limit on runtime. In three iterations of increasing size (~4.5k, ~8.9k, 302 

and ~13.2k samples), we inferred trees from real and simulated data using UShER+matOptimize, IQ-303 

TREE 2 with stochastic search enabled, and RAxML-NG. With the parameters used here, IQ-TREE 2 304 

performs stochastic NNI moves in addition to hill-climbing NNI. RAxML-NG is a maximum likelihood 305 

approach that uses SPR moves to search tree-space for higher likelihood phylogenies (Kozlov et al. 306 

2019).  We allowed each experiment to run for up to two weeks. All programs completed successfully on 307 

the first iteration. RAxML-NG did not terminate within two weeks for the second and third iterations. On 308 

real data, we found that UShER+matOptimize produced trees with higher log-likelihoods than IQ-TREE 2 309 

and RAxML-NG across all three iterations (Fig. 4A). Under the substitution model parameters estimated 310 

by IQ-TREE 2, the log-likelihoods for the first iteration were -73780.756, -73828.271, and -73782.289 for 311 

UShER+matOptimize, IQ-TREE 2, and RAxML-NG respectively. Under the parameters estimated by 312 

RAxML-NG, the log-likelihoods for the first iteration were -73754.894, -73801.935, and -73756.246 for 313 

UShER+matOptimize, IQ-TREE 2, and RAxML-NG respectively. On simulated data, 314 

UShER+matOptimize produced trees closer to the ground truth than the other methods when measured 315 

by quartet distance across all three iterations (Fig. 4B). By RF distance, the UShER+matOptimize trees 316 

were closest to the ground truth for the second and third iterations, but the RAxML-NG tree was closest 317 
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to ground truth in the first iteration (Fig. 4C). We therefore conclude that parsimony-based tree inference 318 

can perform equivalently or better than state of the art maximum likelihood approaches but do this in a 319 

tiny fraction of the time, making it by far the most suitable approach for pandemic-scale phylogenetics of 320 

SARS-CoV-2.   321 

 322 

 323 
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Figure 3: In practice, optimization by parsimony is more effective for SARS-CoV-2 data than 324 

optimization by ML. We calculated (A) the parsimony score for each tree using matUtils, (B) the log-325 

likelihood of each tree using IQ-TREE 2, (C) runtime and (D) peak memory usage of each optimization. 326 

(A) and (B) are normalized by the value obtained for the matOptimize online approach such that all other 327 

methods are expressed as a ratio. Strategies that surpassed 24 hours (C) or the allowable RAM usage 328 

(D) were terminated prior. In most cases, with the notable exception of FastTree 2, online phylogenetics 329 

(solid lines) perform better than de novo phylogenetics (dashed lines). We ran all matOptimize analyses 330 

using an instance with 15 CPUs and 117.2 GB of RAM, and we ran all IQ-TREE 2 and FastTree 2 331 

analyses on an instance with 31 CPUs and 244.1 GB of RAM, but limited each command to 15 threads 332 

for equivalence with matOptimize.  333 

  334 

 335 

Figure 4: de novo matOptimize produces similar or more favorable trees compared to the most 336 

thorough maximum-likelihood inference programs. We ran these methods for up to two weeks each 337 

to infer trees de novo from the three smallest iterations of real and simulated data. For real data (A), log-338 

likelihoods were computed under the model parameters estimated by IQ-TREE 2 at each iteration. 339 

Values are normalized by the value of the matOptimize approach such that all other methods are 340 

expressed as a ratio. For simulated data (B, C), the reported quartet distances (B) are similarly 341 

normalized by the value of the matOptimize approach such that other methods are expressed as a ratio. 342 

RF distances (C) are normalized by the maximum possible RF distance of 2n-6, where n is the number 343 

of leaves in each tree. For all panels, the second and third iterations of RAxML-NG (which did not 344 

terminate within two weeks) are omitted. 345 
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 346 

Parsimony and likelihood are strongly correlated when optimizing large SARS-CoV-2 347 

phylogenies. 348 

 349 

While our comparisons of online and de novo as well as parsimony-based and ML optimizations 350 

of cumulative pandemic-style data demonstrated practical performance, the largest trees completed by 351 

all methods in these experiments represent only a small fraction of available SARS-CoV-2 data. It is also 352 

crucial that we identify the optimal ways to produce a large phylogeny from already aggregated data. We 353 

therefore evaluated phylogenetic inference methods for optimizing a tree of 364,427 SARS-CoV-2 354 

genome sequences, without constraining methods according to time or memory requirements. We 355 

optimized this global phylogeny using matOptimize (Ye et al. 2022), IQ-TREE 2 (Minh et al. 2020), and 356 

FastTree 2 (Price et al. 2010). Overall, we found that matOptimize produced the tree with the lowest 357 

parsimony score across all methods in roughly one hour (Table 1). 358 

We found that after each of the six iterations of FastTree 2 optimization, the likelihood and 359 

parsimony improvements are strongly linearly correlated (Fig. 5). This suggests that changes achieved 360 

by maximizing parsimony will also optimize likelihood for SARS-CoV-2 data. That is, for extremely 361 

densely sampled phylogenies wherein long branches are especially rare, parsimony and likelihood of 362 

phylogenies, and tree moves to optimize either are highly correlated. However, despite the strength of 363 

this correlation, we find an extreme disparity in practical usage when optimizing by either metric. 364 

Parsimony-based methods are far more time- and data-efficient, and presently available ML approaches 365 

quickly become prohibitively expensive. For example, while the 6 iterations of FastTree did result in large 366 

improvements in both likelihood and parsimony score, the resulting tree would be out of date long before 367 

the 10.5-day optimization had completed. Moreover, we applied matOptimize to the tree output by the 368 

sixth iteration of FastTree, achieving a parsimony score of 293,866 (improvement of 288) in just 16 369 

minutes, indicating that even after 10.5 days, additional optimization was still possible. This suggests 370 

that, for the purposes of optimizing even moderately large SARS-CoV-2 trees, parsimony-based 371 

methods should be heavily favored due to their increased efficiency. 372 
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 373 

 374 

Method Iterations Runtime (H:M:S) Final Parsimony Score (Percent Change from Starting Tree) 

IQ-TREE 2 2 24:30:52 294,258 (0.67) 

FastTree 2 6 252:02:49 294,154 (0.71) 

matOptimize 1 1:12:03 294,022 (0.75) 

 375 

Table 1: We applied each of the three optimization methods to a starting tree of 364,427 SARS-CoV-2 376 

samples, which had an initial parsimony score of 296,247. We first ran 2 iterations of IQ-TREE 2 377 

optimization, using an SPR radius of 20 on the first and 100 on the second. We also used an SPR radius 378 

of 10 on one iteration of matOptimize, and six iterations of pseudo-likelihood optimization using FastTree 379 

2, which we terminated after roughly 10.5 days. 380 

 381 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2021.12.02.471004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.471004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 5. Improvement in likelihood and parsimony have a linear relationship for our optimized 382 

global tree. We optimized our initial global tree using 6 iterations of FastTree and measured the total 383 

parsimony and the likelihood after each, finding a linear relationship (Pearson correlation, rho = -1.0, p < 384 

2.9×10-7). 385 

 386 

Conclusions 387 

 388 

The SARS-CoV-2 pandemic has made phylogenetics central to efforts to combat the spread of 389 

the virus, but has posed challenges for many commonly used phylogenetics frameworks. A major 390 

component of this effort relies on a comprehensive, up-to-date, global phylogeny of SARS-CoV-2 391 

genomes. However, the scale and continuous growth of the data have caused difficulties for standard de 392 

novo phylogenetic methods. Here, we find that online phylogenetics methods are practical, pragmatic, 393 

and accurate for inferring daily phylogenetic trees from a large and densely-sample virus outbreak. 394 

One counterintuitive result is that parsimony-based optimizations outperform sufficiently efficient 395 

ML approaches regardless of whether phylogenies are evaluated using parsimony or likelihood. This 396 

might be a consequence of the fact that parsimony scores and likelihoods are strongly correlated across 397 

phylogenies inferred via a range of phylogenetic approaches. The extremely short branches (Fig. S2) on 398 

SARS-CoV-2 phylogenies mean that the probability of multiple mutations occurring at the same site on a 399 

single branch is negligible. Stated another way, SARS-CoV-2 is approaching a “limit” where parsimony 400 

and likelihood are nearly equivalent. In turn, because of their relative efficiency, parsimony-based 401 

methods are able to search more of the possible tree space in the same amount of time, thereby 402 

resulting in trees with better likelihoods and lower parsimony scores than trees optimized using currently-403 

available ML software packages. We emphasize that this does not bear on the relative merits of the 404 

underlying principles of ML and MP, but instead reflects the utility of methods that have been applied 405 

during the pandemic. Nevertheless, this observation does suggest that in some cases, MP optimization 406 

may provide a fast and accurate starting point for ML optimization methods. Indeed, many popular 407 

phylogenetics software, such as RAxML (Stamatakis 2014) and IQ-TREE (Minh et al. 2020) already use 408 
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stepwise-addition parsimony trees as initial trees for their optimization. Our results suggest that further 409 

optimization of these initial trees using MP may provide benefits in speed and accuracy for some 410 

datasets, even when the target is an estimate of the ML tree.    411 

As sequencing technologies progress and become more readily available, sample sizes for 412 

phylogenetic analyses of major pathogens and highly-studied organisms will necessarily continue to 413 

increase. Today, SARS-CoV-2 represents an extreme with respect to the total number of samples 414 

relative to the very short branch lengths on the phylogeny. However, the global sequencing effort during 415 

the pandemic suggests that the public health sphere has a strong interest in the increased application of 416 

whole-genome sequencing to study the genomic contents, evolution, and transmission history of major 417 

and emerging human pathogens. We expect that million-sample datasets will become commonplace in 418 

the near future. Parsimony-based methods like matOptimize show promise for huge datasets with short 419 

branch lengths. Similarly, recently developed parsimony-based likelihood approximations may ultimately 420 

be similarly scalable and accurate (De Maio et al. 2022). Online phylogenetics using both of these 421 

methods will be a fruitful avenue for future development and application to accommodate these datasets.  422 

 423 

Methods 424 

 425 

 We first developed a "global phylogeny", from which all analyses in this study were performed. 426 

We began by downloading VCF and FASTA files corresponding to March 18, 2021 from our own daily-427 

updated database (McBroome et al. 2021). The VCF file contains pairwise alignments of each of the 428 

434,063 samples to the SARS-CoV-2 reference genome. We then implemented filters, retaining only 429 

sequences containing at least 28,000 non-N nucleotides, and fewer than two non-[ACGTN-] characters. 430 

We used UShER to create a phylogeny from scratch using only the remaining 366,492 samples. To 431 

remove potentially erroneous sequences, we iteratively pruned this tree of highly divergent internal 432 

branches with branch parsimony scores greater than 30, then terminal branches with branch parsimony 433 

scores greater than 6, until convergence, resulting in a final global phylogeny containing 364,427 434 

samples. The branch parsimony score indicates the total number of substitutions along a branch. Similar 435 
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filters based on sequence divergence are used by existing SARS-CoV-2 phylogenetic inference 436 

methods. For full reproducibility, files used for creating the global phylogeny can be found in 437 

subrepository 1 on the project GitHub page (Thornlow et al. 2021b). 438 

 Following this, we tested several optimization strategies on this global phylogeny, hereafter the 439 

"starting tree". We used matOptimize, FastTree 2, and maximum parsimony (MP) IQ-TREE 2. MP IQ-440 

TREE 2 uses parsimony as the optimality criterion in contrast to the maximum likelihood mode used in all 441 

other experiments, which was infeasible on a dataset of this size. In these optimization experiments, we 442 

used experimental versions of MP IQ-TREE 2 that allow finer control of parsimony parameters (specific 443 

versions are listed in the supplemental Github repository). In one experiment, we used the starting tree 444 

and its corresponding alignment and ran five iterations of MP IQ-TREE 2, varying the SPR radius from 445 

20 to 100 in increments of 20. Experiments on a small dataset indicated that there is little or no 446 

improvement in parsimony score beyond a radius of 100. Separately, we tested another strategy that 447 

applied two iterations of MP IQ-TREE 2 to the starting tree, the first iteration using an SPR radius of 20 448 

and the second using a radius of 100. Finally, we tested a strategy of six iterations of pseudo-likelihood 449 

optimization with FastTree 2 followed by two iterations of parsimony optimization with matOptimize. The 450 

tree produced by this strategy, hereafter the “ground truth” tree, had the highest likelihood of all the 451 

strategies we tested. This tree (after_usher_optimized_fasttree_iter6.tree) and files for these optimization 452 

experiments can be found in subrepository 2.  453 

 In the multifurcating ground truth tree of 364,427 samples, there are 265,289 unique (in FASTA 454 

sequence) samples. There are 447,643 nodes in the tree. For reference, a full binary tree with the same 455 

number of leaves has 728,853 nodes. 23,437 of the 29,903 sites in the alignment are polymorphic (they 456 

display at least two non-ambiguous nucleotides). Homoplasies are common in these data. In the starting 457 

tree, 19,090 sites display a mutation occurring on at least two different branches, and 4,976 sites display 458 

a mutation occurring more than ten times in the tree. 459 

 To mimic pandemic-style phylogenetics, we separated a total of 233,326 samples from the 460 

starting tree of 364,427 samples into 50 batches of ~5,000 by sorting according to the date of sample 461 

collection. We then set up two frameworks for each of the three software packages (matOptimize 462 
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(commit 66ca5ff, conda version 0.4.8), maximum-likelihood IQ-TREE 2 (multicore version 2.1.3 COVID-463 

edition), and FastTree 2 (Double Precision version 2.1.10)). The online phylogenetics frameworks began 464 

by using UShER to infer a small tree de novo from the first batch of samples, followed by alternating 465 

steps of optimization using one of the three evaluated methods and placement of additional samples with 466 

UShER. In de novo phylogenetics, we supplied each software package with an alignment corresponding 467 

to all samples in that batch and its predecessors (or VCF for matOptimize) without a guide tree. For both 468 

cases, each tree is larger than its predecessor by ~5,000 samples, and each tree necessarily contains all 469 

samples in the immediately preceding tree. For FastTree 2, we used 2 rounds of subtree-prune-regraft 470 

(SPR) moves (-spr 2), maximum SPR length of 1000 (-sprlength 1000), zero rounds of minimum 471 

evolution nearest neighbor interchanges (-nni 0), and the Generalised Time Reversible + Gamma 472 

(GTR+G) substitution model (-gtr -gamma). For IQ-TREE 2, we used a branch length minimum of 473 

0.000000001 (-blmin 1e-9), zero rounds of stochastic tree search (-n 0), and the GTR+G substitution 474 

model (-m GTR+G). With these parameters, IQ-TREE 2 constructs a starting parsimony tree and then 475 

performs hill-climbing NNI steps to optimize likelihood, avoiding the significant time overhead of 476 

stochastic search. We ran all matOptimize analyses using an instance with 15 CPUs and 117.2 GB of 477 

RAM, and we ran all IQ-TREE 2 and FastTree 2 analyses on an instance with 31 CPUs and 244.1 GB of 478 

RAM, but we limited each command to 15 threads for equivalence with matOptimize. Files for all 479 

simulated data experiments can be found in subrepository 3.  480 

To generate our simulated data, we used the SARS-CoV-2 reference genome (GISAID ID: 481 

EPI_ISL_402125; GenBank ID: MN908947.3) (Shu and McCauley 2017; Sayers et al. 2021) as the root 482 

sequence and used phastSim (De Maio et al. 2021b) to simulate according to the ground truth phylogeny 483 

described above. Intergenic regions were evolved using phastSim using the default neutral mutation 484 

rates estimated in ref. (De Maio et al. 2021a), with position-specific mean mutation rates sampled from a 485 

gamma distribution with alpha=beta=4, and with 1% of the genome having a 10-fold increase mutation 486 

rate for one specific mutation type (SARS-CoV-2 hypermutability model described in ref. (De Maio et al. 487 

2021b)). Evolution of coding regions was simulated with the same neutral mutational distribution, with a 488 

mean nonsynonymous/synonymous rate ratio of omega=0.48 as estimated in (Turakhia et al. 2021a), 489 
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with codon-specific omega values sampled from a gamma distribution with alpha=0.96 and beta=2. 490 

Rates for each intergenic and coding region were not normalized in order to have the same baseline 491 

neutral mutation rate distribution across the genome.  492 

We repeated our iterative experiments using de novo and online matOptimize, IQ-TREE 2 and 493 

FastTree 2 on this simulated alignment, using the same strategies as before. However, instead of 494 

computing parsimony and likelihood scores, we computed the Robinson-Foulds (RF) distance (Robinson 495 

and Foulds 1981) of each optimization to the ground truth tree, pruned to contain only the samples 496 

belonging to that batch. To calculate each RF distance, we used the -O (collapse tree) argument in 497 

matUtils extract (McBroome et al. 2021) and then used the dist.topo command in the ape package in R 498 

(Paradis and Schliep 2019), comparing the collapsed optimized tree and the pruned, collapsed ground 499 

truth tree at each iteration. We computed normalized RF distances as a proportion of the total possible 500 

RF distance, which is equivalent to two times the number of samples in the trees minus six (Steel and 501 

Penny 1993). 502 

Eliminating the 24-hour runtime restriction, we also repeated the first three de novo iterative 503 

experiments on both real and simulated data to compare UShER+matOptimize, IQ-TREE 2 with 504 

stochastic search, and RAxML-NG. These iterations of ~4.5k, ~8.9k, and ~13.2k samples were allowed 505 

to run for up to 14 days. For runs that did not terminate within this time (the second and third iterations of 506 

RAxML-NG), we used the best tree inferred during the run for comparisons. We ran IQ-TREE 2 and 507 

RAxML-NG under the GTR+G model with the smallest minimum branch length parameter that did not 508 

cause numerical errors. To compare the trees inferred from real data, we computed log-likelihoods under 509 

the GTR+G model for all trees, fixing the model parameters to those estimated by IQ-TREE 2 during tree 510 

inference. We also compared the log-likelihoods of the trees under the parameters estimated by RAxML-511 

NG for the first iteration, but could not do so for the second and third iterations which did not terminate in 512 

under two weeks. We allowed optimization of branch lengths during likelihood calculation. For the 513 

UShER+matOptimize trees, before computing likelihoods, we converted the branch lengths into units of 514 

substitutions per site by dividing each branch length by the alignment length (29,903). To compare the 515 
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trees inferred from simulated data, we computed the RF and quartet distances of each tree to the 516 

corresponding ground truth tree described above. 517 

 518 

 519 

Figure S1: Log-likelihoods calculated using Generalised Time Reversible (GTR) and Jukes-Cantor 520 

(JC) models are correlated. We calculated log-likelihoods for each de novo and online method as in 521 

Figure 2B using (A) GTR+G and (B) JC models, which suggest that relative performance of each method 522 

is consistent across models, and significantly correlated with each other. All values are normalized by the 523 

value obtained for the matOptimize online approach, such that other methods are expressed as a ratio.  524 
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 525 

Figure S2: Most branches in the ground truth phylogeny are extremely short. In our optimized 526 

global SARS-CoV-2 phylogeny, the majority of branch lengths are zero. This low amount of divergence 527 

yields many identical nodes in the tree and demonstrates that the probability of observing multiple 528 

mutations at a single site along the same branch is negligible. These characteristics may help explain the 529 

ability of parsimony-based inference methods to outperform likelihood optimization on SARS-CoV-2 data. 530 

 531 

Figure S3: Temporal patterns in simulated SARS-CoV-2 data may affect Robinson-Foulds (RF) 532 

distance normalization. The RF distances for each tree in Figure 2 are normalized against the 533 

maximum possible RF distance for that tree. While the raw RF distances are approximately continuously 534 
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increasing (A), they do not increase linearly with the maximum RF distance, leading to the pattern 535 

observed in Figure 2. A potential explanation for this is the variation in sequence diversity over simulated 536 

time. The ratio of the number of total mutations in the tree (parsimony score) to the number of samples in 537 

the inferred trees at each iteration (B) approximates the average divergence between samples in each 538 

tree. The initial drop in divergence per sample may contribute to the more rapid increase in RF distance 539 

because there is less phylogenetic signal to facilitate the resolution of correct topologies. As the 540 

divergence subsequently increases, tree inference improves before the RF distances stabilize and begin 541 

to increase approximately linearly. 542 
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