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Harnessing the computational power of living neurons to create synthetic biological intelligence (SBI), 1 

previously confined to the realm of science fiction, is now tantalisingly within the reach of human innovation. 2 

The superiority of biological computation has been widely recognised with attempts to develop hardware 3 

supporting neuromorphic computing1. Yet, no system outside biological neurons are capable of supporting at 4 

least third-order complexity which is necessary to recreate the complexity of a biological neuronal network 5 

(BNN)1,2. This raises significant challenges to any attempts to generate in silico neuronal models to predict 6 

function of BNN systems3. Here we aim to establish functional in vitro networks of cortical cells from 7 

embryonic rodent and human induced pluripotent stem cells (hiPSCs) on high-density multielectrode arrays 8 

(HD-MEA) to demonstrate that these neural cultures can exhibit biological intelligence—as evidenced by 9 

learning in a simulated gameplay environment—in real time (Figure 1). Being able to successfully interact with 10 

SBIs would enable investigations into previously untestable areas. This would include, but not limited to, 11 

pseudo-cognitive responses as part of drug screening, bridging the divide between single cell and population 12 

coding approaches to understanding neurobiology, better understanding how BNNs compute to inform machine 13 

learning approaches, and potentially give rise to silico-biological computational platforms that surpass the 14 
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  Integrating neurons into digital systems to leverage their innate intelligence may enable 
performance infeasible with silicon alone, along with providing insight into the cellular origin 
of intelligence. We developed DishBrain, a system which exhibits natural intelligence by 
harnessing the inherent adaptive computation of neurons in a structured environment. In vitro 
neural networks from human or rodent origins, are integrated with in silico computing via 
high-density multielectrode array. Through electrophysiological stimulation and recording, 
cultures were embedded in a simulated game-world, mimicking the arcade game ‘Pong’. 
Applying a previously untestable theory of active inference via the Free Energy Principle, we 
found that learning was apparent within five minutes of real-time gameplay, not observed in 
control conditions. Further experiments demonstrate the importance of closed-loop structured 
feedback in eliciting learning over time. Cultures display the ability to self-organise in a goal-
directed manner in response to sparse sensory information about the consequences of their 
actions.  
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performance of existing silicon-alone hardware. Indeed, some proponents suggest that generalised SBI may 15 

arrive before artificial general intelligence (AGI) due to the inherent efficiency and evolutionary advantage of 16 

biological systems4.  17 

This system that we termed DishBrain, can leverage the inherent property of neurons to share a 18 

‘language’ of electrical (synaptic) activity with each other to link silicon and BNN systems through electrical 19 

stimulation and recording. Given the compatibility of hardware and cells, wetware, there are two interrelated 20 

processes that are required for sentient behaviour in an intelligent system. Firstly, the system must learn how 21 

external states influence internal states—via perception—and how internal states influence external states—via 22 

action. Secondly, the system must infer from its sensory states when it should adopt a particular behaviour. In 23 

short, it must be able to predict how its actions will influence the environment. To address the first imperative, 24 

custom software drivers were developed to create low latency closed-loop feedback systems that simulated 25 

Fig. 1 | DishBrain system and experimental protocol schematic. Neuronal cultures derived from either human 
induced pluripotent stem cells (iPSC) via Dual SMAD inhibition, NGN2 lentivirus directed differentiation, or 
primary cortical cells from E15.5 mouse embryos, were plated onto HD-MEA chips and embedded in a stimulated 
game-world of ‘pong’ via the DishBrain system. Different DishBrain environments were utilised to demonstrate: 
(1&2) low latency closed-loop feedback system (stimulation (STIM) & silent (SIL) treatment); (3) No feedback 
(NF) system to demonstrate an open-loop feedback configuration; and (4) rest (RST) configuration to demonstrate a 
system in which sensory information (yellow bolt) is absent. An interactive visualiser with gameplay is available at 
https://bit.ly/3DSi4Eg 
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exchange with an environment for BNNs through electrical stimulation. Closed-loop systems afford an in vitro 26 

culture ‘embodiment’ by providing feedback on the causal effect of the behaviour from the cell culture. 27 

Embodiment requires a separation of internal vs external states, where feedback of the effect of action on a 28 

given environment is available. Previous works both in vitro and in silico have shown that electrophysiological 29 

closed-loop feedback systems engender significant network plasticity and potentially behavioural adaptation 30 

over and beyond what can be achieved with open-loop systems5,6. Further support for the link between 31 

embodiment and functional behaviour is found in vivo where disrupting a closed loop system by uncoupling 32 

visual feedback and motor outputs disrupts functional development of visual processing in the primary visual 33 

cortex in mice7. This strongly supports the vital link between feedback and the eventual development of 34 

functional behaviour in biological neural networks. 35 

To address the second requirement, the system can be used to test key theories for how intelligent 36 

behaviour may arise. One proposition for how intelligent behaviour may arise in an intelligent system embodied 37 

in an environment is found in the theory of active inference via the Free Energy Principle (FEP)8. Previous work 38 

has established that neurons can perform blind-source separation via a state-dependent Hebbian plasticity that 39 

is consistent with the FEP9,10. The FEP suggests that any self-organising system separate from its environment 40 

seeks to minimizes its variational free energy11–13. This means that systems like the brain—at every 41 

spatiotemporal scale— may engage in active inference by using an internal generative model to predict sensory 42 

inputs that represent the external world11–13. The gap between the model predictions and observed sensations 43 

(‘surprise’ or 'prediction error') may be minimised in two ways: by optimising probabilistic (Bayesian) beliefs 44 

about the environment to make predictions more like sensations, or by acting upon the environment to make 45 

sensations conform to its predictions. This implies a common objective function for action and perception that 46 

scores the fit between an internal model and the external environment.  47 

Under this theory, BNNs hold ‘beliefs’ about the state of the world, where learning involves updating 48 

these beliefs to minimise their variational free energy or change the world, by action, to make it less 49 

surprising13,14. If true, this implies that it should be possible to shape BNN behaviour by simply presenting noisy, 50 

unpredictable feedback following 'incorrect' behaviour. If BNNs are presented with unpredictable feedback, 51 

they should adopt actions that avoid the states that resulted in this input. By developing a system that allows for 52 

neural cultures to be embodied in a simulated game-world, we are not only able to test whether these cells are 53 
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capable of engaging in goal-directed learning in a dynamic envrionment, we are able to investigate a 54 

fundemental basis of intelligence.   55 

 56 

RESULTS 57 

Growth of neuronal ‘wetware’ for computation 58 

Neurons can be grown or harvested in numerous ways. Cortical cells from the dissected cortices of rodent 59 

embryos can be grown on MEA in nutrient rich medium and maintained for months15,16. These cultures will 60 

develop complicated morphology, with numerous dendritic and axonal connections, leading to functional 61 

BNNs17,18. We successfully replicated the development of these cultures from embryonic day 15.5 (E15.5) 62 

mouse embryos, with a representative culture shown in Figure 2A. We also differentiated human induced 63 

pluripotent stem cells (hiPSCs) into monolayers of active heterogeneous cortical neurons which have been 64 

shown to display mature functional properties19–21. Using a dual SMAD inhibition as previously described21,22 65 

we developed long-term cortical neurons that formed dense connections with supporting glial cells (Figure 2B 66 

- 2C).  Finally, we wished to expand our study using a different method of hiPSC differentiation – NGN2 direct 67 

reprogramming – used in our final part of this study.  Previous work has shown that human fibroblasts can be 68 

directly converted into induced neuronal cells which express a cortical phenotype23,24. This high yield method 69 

was replicated in this work with cells displaying pan-neuronal markers (Figure S1A, S1B). These cells typically 70 

display a high proportion of excitatory glutamatergic cells, quantified using qPCR shown in Figure 1D. 71 

Integration of these cells on the HD-MEA was confirmed via scanning electron microscopy (SEM) where cells 72 

had been maintained for > 3 months. Routine SEM imaging revealed dense clustering of neurons, with a clear 73 

contrast between cell and the MEA surface (Figure 2E). Densely interconnected dendritic networks could be 74 

observed in neuronal cultures forming interlaced networks spanning the MEA area (Figure 2F). These neuronal 75 

cultures appeared to rarely follow the topography of the MEA and were more likely to form large clusters of 76 

connected cells with dense dendritic networks (Figure 2G, 2H). This is likely due to the large size of an 77 

individual electrode within the MEA, however, there are also chemotactic effects that can contribute to 78 

counteract the effect of substrate topography on neurite projections25. 79 
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Fig. 2 | Cortical cells form dense interconnected networks.  Scale bars as shown on panel. A) and B) show cortical cells 
harvested from embryonic rodents and differentiated from hIPSCs respectively. DAPI in blue stains all cells, NeuN in green 
shows neurons, BIII marks axons, while MAP2 marks dendrites. Further characterisation in C) with GFAP shows supporting 
astrocyte cells, critical for long-term functioning, along with a marker for cortex specific cells, TBR1. A risk with using 
IPSCs is that cells are not fully specified and may aggressively continue dividing, staining for Ki67, a marker of dividing 
cells, shows this is not a concern with these cultures. D) Gene expression studies over 28 days demonstrated increased 
expression of the glutamatergic neural marker, vesicular glutamate transporter 1 (vGLUT1). This data demonstrates that cells 
produced by NGN2 differentiation are comprised of synaptically active excitatory neural cells. E) – G) Neurons maintained 
on MEA for > 3 months. White arrows show regions of shrinkage within the cultures, red arrows show bundles of axons, 
blue arrays show single neurite extensions. Note complex and extensive connections between cells, the dense coverage over 
HD-MEA, and overlapping connections extended from neuronal soma present in all cultures, showing that cells overlap 
multiple electrodes. H) has false colouring to highlight the HD-MEA electrodes beneath the cells.  
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Neural cells show well-characterised spontaneous action potentials which develop over time 81 

We mapped the in vitro development of electrophysiological activity in neural systems at high spatial and 82 

temporal resolution. Robust activity in primary cortical cells from E15.5 rodents was found at days in vitro 83 

(DIV)14 (Figure 3A, 3E) where bursts of synchronised activity was regularly observed as previously 84 

demonstrated17,18. In contrast, while similar to previous reports, synchronised bursting activity was not observed 85 

in cortical cells from an hiPSC background differentiated using the dual SMAD inhibition protocol (DSI) until 86 

DIV 73 (Figure 3A, 3F)19. hiPSCs differentiated using NGN2 direct reprogramming showed activity much 87 

earlier, typically between days 14 and 24 (Figure 3A, 3G). Daily activity scans of electrophysiological activity 88 

were also conducted. While max firing rate typically increased and remained relatively stable over time for all 89 

cell types during the testing period (Figure 3B), changes were observed in both the mean firing rate (Figure 90 

3C) and variance in firing rate (Figure 3D) over the days of testing. In particular, hiPSCs differentiated using 91 

the NGN2 direct reprogramming method showed a considerable increase in mean firing rate and the variance 92 

in firing over days.  93 

Building a modular, real-time platform to harness neuronal computation  94 

We developed the DishBrain system to leverage neuronal computation and interact with neurons in an embodied 95 

environment (Supp. Text 1; Figure 4A). The DishBrain environment is a low latency, real-time system that 96 

interacts with the vendor MaxOne software, allowing it to be used in ways that extend its original functions 97 

(Figure 4B). This system can record electrical activity in a neuronal culture and provide external (non-invasive) 98 

electrical stimulation in a comparable manner to the generation of action potentials by internal electrical 99 

stimulation26. Using the coding schemes described in methods, external electrical stimulations convey a range 100 

of information: predictable, random, or sensory (Figure 5A). This setup enables one to not only ‘read’ 101 

information from a neural culture, but to ‘write’ sensory data into one. The initial proof of principle using 102 

DishBrain was to simulate the classic arcade game ‘pong’ by delivering inputs to a predefined sensory area. 103 

Similarly, the electrophysiological activity of pre-defined motor regions was gathered—in real time—to move 104 

a ‘paddle’. Preliminary investigations compared different motor region configurations using an EXP3 algorithm 105 

(Supp. Text 2; Figure S3). This aimed to identify whether the neural cultures had activity that was more 106 
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Fig. 3 | Cortical cells display spontaneous electrophysiological activity. Shaded error = 95% confidence 
intervals. A) Scale bar on the right indicates the frequency of firing in Hz. Displays the rate of firing over a 
representative culture grown from E15.5 primary rodent cortical cells, hIPSC cells differentiated to cortical 
neurons via dual SMAD inhibition (DSI), and hIPSC cells differentiated to cortical cells via NGN2 direct 
differentiation. Note that while all cultures show substantial firing over the majority of the assay area, they do 
so at different timepoints. Training was started when cells displayed consistent firing with a mean above 0.7Hz 
and continued over approximately 14 days, as seen in B) the max firing remained consistently different 
between cortical cells from a primary source and cortical cells differentiated from hIPSCs. Of interest though 
as seen in C) is that the mean activity between hIPSCs differentiated using DSI and primary cortical cultures 
was generally similar, while hIPSCs differentiated using the NGN2 method continued to increase. This is 
reflected in D) where the former two cell types displayed minimal changes in the variance in firing within a 
culture, while the latter increased variance over time. E), F) & G) Showcases raster-plots over 50 seconds, 
where each dot is a neuron firing an action potential. Note the differences between mid-stage cortical cells 
from a DIV14 primary rodent culture (E) compared to more mature DIV73 human cortical cells (F) 
differentiated from iPSCs using the dual SMAD inhibition and NGN2 direct differentiated neurons (G) 
approach described in text, in terms of synchronised activity and stable firing patterns. While all display 
synchronised activity, there is a difference in the overall levels of activity represented in B - D.  
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successful under specific configurations by choosing setups that resulted in a higher hit rate. Experimental 108 

cultures showed significantly different preferences for configurations compared to media-only controls (Figure 109 

5B). While media-only controls showed a preference for configurations that maximised bias—where sensory 110 

stimulation alone could direct the gameplay towards higher performance (blinded fully later)—experimental 111 

cultures showed a preference for configuration that enabled lateral inhibition (Figure 5C).  112 

Increasing the density of sensory information input leads to increased performance 113 

The DishBrain protocol was refined over a series of pilot studies, which can be grouped into three broad 114 

experiments, each increasing in density of sensory information. The first experiment operated with a 4Hz 115 

stimulation that was purely rate coded. Experiment two included the EXP3 based configuration. Experiment 3 116 

removed the EXP3 based configuration, locked to the layout in Figure 5C, and change to the combined rate (4 117 

– 40Hz) and placed coding method of data input. Notably the biggest increase was between second and third 118 

Fig. 4 | Schematics of software used for DishBrain. A) Diagrammatic overview of DishBrain setup. B) Software 
components and data flow in the DishBrain closed loop system. Voltage samples flow from the MEA to the ‘pong’ 
environment, and sensory information flows back to the MEA, forming a closed loop. The blue rectangles mark proprietary 
pieces of hardware from MaxWell while the green MXWServer is used to configure the MEA and Hub. Red rectangles mark 
components of the 'DishServer’ program, a high-performance program consisting of four components designed to run 
asynchronously. Running a virtual environment in a closed loop imposes strict performance requirements, and digital signal 
processing is the main bottleneck of this system. The 'LAN Interface’ component stores network state, for talking to the Hub, 
and produces arrays of voltage values for processing. Voltage values are passed to the ’Spike Detection’ component, which 
stores feedback values and spike counts, and passes recalibration commands back to the LAN Interface. When the pong 
environment is ready to run, it updates the state of the paddle based on the spike counts, updates the state of the ball based 
on its velocity and collision conditions, and reconfigures the stimulation sequencer based on the relative position of the ball 
and current state of the game. The stimulation sequencer stores and updates indices and countdowns relating to the 
stimulations it must produce and converts these into commands each time the corresponding countdown reaches zero, which 
are finally passed back to the LAN Interface, to send to the MEA system, closing the loop. Numeric operations in the real-
time spike detection component of the DishBrain closed loop system are shown below, including multiple IIR filters. 
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experiments with the introduction of rate coding of the ball's position to supplement the purely rate coded 119 

approach used previously. The gameplay for the final fifteen minutes for each culture type was compared 120 

(Figure 5D; Table S1). Cultures displayed a significant increase in performance between the second and final 121 

session and the first and final session. Between cultures, human cortical cells (hCCs) had significantly longer 122 

average rally lengths than cultures with mice cortical cells (mCCs)(Table S2). This is interesting because it 123 

suggests that—at a neuronal level—cortical cells from a human origin, in this case from hiPSCs, can out-124 

Fig. 5 | Schematics, EXP3 configuration selection and testing with increasing informational density. A) Presents 
a schematic showing the different phases of stimulation which provides information about the environment to the 
culture, in line with this is the corresponding input voltage and how that voltage appears on the raster plot over 100 
seconds. The appearance of random stimulation after a ball missing vs system wide predictable stimulation upon a 
successful hit is apparent across all three representations. This corresponds to the images on the right which show the 
position of the ball on both x and y axis relative to the paddle and backwall in % of total distance is shown on the same 
timescale. B) Shows the distribution differences relative to chance in percentage that a motor configuration was chosen 
by EXP3 algorithm (χ2 = 35690.93, p<0.0001) for control and experimental cultures. Motor configuration 0 was 
selected most often for media control while motor configuration 3 was selected most often for experimental.  C) Final 
electrode layout schematic for DishBrain pong-world gameplay. D)  * = p < 0.05, *** = p <0.001, Error bars = 95% 
CI, shows average rally length over three distinct experiment rounds during design of DishBrain pong-world where 
each subsequent experiment provided higher density information on ball position than the previous.  
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perform cells from an embryonic mouse, even when overall cell numbers are comparable. Overall, the 125 

magnitude of this change supports that increasing sensory information successively improved performance, 126 

even when cell culture features were kept constant.  127 

Biological neural networks learn over time when embodied in a gameplay environment  128 

To test the theory of active inference via the FEP (Figure 6A), using the parameters described in 129 

Methods, cortical cells, mCC and hCCs, were compared to media-only controls (CTL), rest sessions—where 130 

active cultures controlled the paddle but received no sensory information (RST), and to in-silico controls that 131 

mimicked all aspect of the gameplay but paddle was driven by random noise (IS), over 399 test-sessions (80-132 

CTL, 42-RST, 38-IS, 101-mCCs, 138-hCCs). The average rally length (total number of successful ball 133 

intercepts by the paddle) showed a significant interaction (Figure 6B; Table S1), with differences occurring 134 

based on a combination of group and time (first five and last fifteen minutes). Only the mCC and hCC cultures 135 

showed evidence of learning over time, with significantly increased rally lengths at the second timepoint 136 

compared to the first. Further, it was found that during the first five minutes of gameplay key significant 137 

differences were observed (Table S1). The hCC group performed significantly worse than mCC, CTL and IS 138 

groups (Table S2). This suggests that hCCs seem to perform worse than controls when first embodied in an 139 

environment, suggesting an initially maladaptive control of the paddle. Notably, at the latter timepoint this trend 140 

was reversed, the hCC group significantly outperformed all control groups along with a slight but significant 141 

difference over the mCC group (Table S1). Likewise, the mCC group significantly outperformed all control 142 

groups (Table S2). This data replicates our earlier finding on the differences between mouse and human cells, 143 

along with unambiguously demonstrating a significant learning effect in both experimental groups that was 144 

absent in the control groups (Movie S1).  145 

Nuances between how learning occurs exhibits differences between cell types 146 

To determine how the above learning arose, key gameplay characteristics were examined further. The 147 

number of times the paddle failed to intercept the ball on the initial serve (aces; Figure 6C) and the number of 148 

long rallies (> 3 consecutive hits; Figure 6D) were calculated for this data. As with average rally length, 149 

significant interactions between groups and time were found both for aces and long rallies (Table S1). Only the 150 

mCC and hCC groups showed significantly fewer aces in the latter timepoint compared to the first (Table S2). 151 
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Likewise, only the mCC and hCC groups showed significantly more long rallies in the latter timepoint compared 152 

to the first (Table S2). This shows that both experimental cultures improved performance by not only reducing 153 

how often they missed the initial serve, but by achieving more consecutive hits also. Similarly, a significant 154 

difference between groups was found both for aces and long rallies (Table S1). At the first timepoint for aces, 155 

it was found that the RST condition had significantly more aces than the CTL and mCC groups (Table S2). It  156 

is difficult to determine exactly why allowing the paddle to be controlled by unstimulated cells would result in 157 

more aces initially than other groups. Perhaps there is a degree of sporadic behaviour that the cells engage with 158 

when initially introduced to the rest period from gameplay that results in this behaviour, possibly similar to what 159 

was observed in average rally length by hCCs above. When the number of long-rallies at this time point was 160 

investigated, it was found that only HCC had significantly fewer long-rallies compared to all groups (Table 161 

S2). This is consistent with the finding that hCC do show worse performance in the first time point overall and 162 

explains why this may be observed.  163 

Significant differences between groups at the latter timepoint was also found both for aces and long 164 

rallies (Table S1). Most notably the HCC group showed significantly fewer aces compared to CTL, RST, and 165 

IS groups (Table S1). The mCC group also showed significantly fewer aces compared to RST and IS groups, 166 

however not the CTL group (Table S2). In contrast, for long-rallies the mCC group showed significantly more 167 

than the CTL, RST and IS groups (Table S2). Yet the hCC group only showed significantly more long-rallies 168 

compared to the IS group, but not RST or CTL (Table S2). Moreover, here a significant negative correlation 169 

was found, suggesting that the performance was not arising out of a maladaptive behaviour such as fixing the 170 

paddle to a single corner (Figure 6E). Wholistically, Figure 6F emphasises that although both mCC and hCC 171 

showed fewer aces and more long-rallies in the latter timepoints compared to the first, the cell types did display 172 

nuances in their behaviour, highlighting differences between cell types. The data also further suggests that an 173 

unstimulated culture still controlling the paddle will have significantly poorer performance than controls where 174 

the paddle is moved based on noise. This does suggest a systematic control that is difficult to interpret from this 175 

data but does indicate the potential of an enduring embodiment once stimulation ceases.  176 

Biological neural networks require feedback for learning  177 

To investigate the importance of feedback type for learning, cultures were tested under three conditions, for 178 

three days, with three sessions per day resulting in 483 sessions. Condition 1 (Stimulus) mimicked that used 179 
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Fig. 6 | Embodied Cortical Neurons Show Significantly Improved Performance in Pong When Embodied in a 
Virtual Game-World.  Significance bars show within group differences denoted with *. Symbols show between group 
differences at the given timepoint: # = vs HCC;  % = vs MCC; ^^ = vs CTL; @ = vs IS. The number of symbols 
denotes the p-value cut off, where 1 = p < 0.05, 2 = p <0.01, 3 = p < 0.001 and 4 = p <0.0001. Box plots show 
interquartile range, with bars demonstrating 1.5X interquartile range, the line marks the median and ▲marks the mean.   
A) Schematic of how neurons may engage in the game-world under active inference. This illustration adopts a 
predictive coding (a.k.a. Kalman filter) formulation of variational free energy minimisation, in which neuronal 
dynamics are read as gradient flows—and free energy gradients are read as prediction errors. On this view, prediction 
errors can be regarded as driving neuronal activity—that implicitly parameterises a generative or forward model—and 
motor responses, via minimising (synthetic) proprioceptive prediction errors. B-D) compares experimental groups 
according to two time points: timepoint 1: first 5 mins of gameplay (0-5 mins), timepoint 2: last 15 mins of gameplay 
(6-20 mins). B) Average performance between groups over time, where only experimental (MCC: t = 6.15, p = 5.27-
08 & HCC: t = 10.44, p = 3.91-19) showed significant improvement and higher performance against all control groups 
at the second timepoint. C) Average number of aces between groups and over time, only MCC (t = 2.67, p = 0.008) 
and HCC (t = 5.95, p = 2.13-08) differed significantly over time. The RST group had significantly more aces compared 
to the CTL, IS, MCC, and HCC groups at timepoint one and compared to the CTL, MCC and HCC at timepoint 2. 
Only MCC and HCC showed significant decreases in the number of aces over time, indicating learning. At the latter 
timepoint they also showed fewer aces compared to the IS group, but only the HCC group was significantly less than 
CTL. D) Average number of long-rallies (>3) performed in a session. At timepoint 1, the HCC group had significantly 
fewer long-rallies compared to all control groups (CTL, IS, and RST). However, both the MCC (t = 5.55, p = 2.36-07) 
and HCC (t = 10.38, p = 5.27-19) groups showed significantly more long-rallies over time. As such, by timepoint 2, the 
HCC group displayed significantly more long-rallies compared to the IS group. The HCC group also displayed 
significantly more long-rallies compared to all CTL, IS, and RST control groups. E) Significant negative correlation 
(r = -0.34, p < 0.001) between % aces and % long rallies for experimental cultures in the last 15 minutes. F) Distribution 
of frequency of mean summed hits per minute amongst groups show obvious differences. 
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above, where predictable and unpredictable stimuli were administered when the cultures behaved desirably or 181 

not, respectively. Condition 2 (Silent) involved the stimulus feedback being replaced with a matching time-182 

period in which all stimulation was withheld. Condition 3 (No-feedback) removed the restart after a miss. When 183 

the paddle did not successfully intercept the ball, the ball would bounce and continue without interruption: the 184 

stimulus reporting ball position was still provided. The difference between these conditions is emphasised in 185 

Figure 7A. Rest period activity was also gathered used to normalise performance on a per session basis to 186 

account for differences in unstimulated activity.  187 

Stimulus and Silent conditions showed overall higher performance compared to Rest and No-feedback 188 

conditions (Figure 7B). When testing for differences between groups in the percentage increase of average rally 189 

length over matched rest controls, a significant interaction was found (Figure 7C; Table S1). Only the Stimulus 190 

condition showed a significant increase in average rally length over time. While no differences were found for 191 

the first timepoint, a significant main effect of group was found at the second timepoint, where the Stimulus 192 

condition performed significantly higher than the Silent and No-feedback conditions (Table S2). Interestingly, 193 

the Silent condition also significantly outperformed the No-feedback conditions, although with less magnitude 194 

(Table S2).  Importantly, this demonstrates that information alone is not sufficient; feedback is required to form 195 

a closed loop learning system. When followed up at the level of day for the second timepoint (Figure 7D) no 196 

significant differences over time were observed, but the between group differences were still observed. This 197 

trend was replicated when looking at aces both summed (Figure 7E) and across days of testing (Figure 7F). 198 

For long rallies the Stimulus group at timepoint 1 showed significantly fewer long-rallies compared to the Silent 199 

and No-feedback condition, being reversed at timepoint 2 with the Stimulus group showing significant more 200 

long rallies compared to the No-feedback condition (Figure 7G). No difference was found when this was 201 

followed up across day (Figure 7H). We also demonstrate that this learning is not seen in electrically inactive 202 

non-neural cells (Figure S4). Collectively this data establishes that adaptive behaviour seen in cortical cells 203 

altering activity to manipulate the environment can be an emergent property of engaging with—and implicitly 204 

modelling—the environment. 205 

 206 

 207 
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Electrophysiological symmetry in latent activity is linked with higher performance 208 

To determine whether spontaneous action potentials correlated with performance exploratory 209 

uncorrected Pearson’s correlations were computed for key activity metrics and average rally length in the last 210 

15 minutes of gameplay. A significant positive correlation between mean firing and performance (Figure 8A) 211 

was found indicating a higher mean firing was associated with better performance, although max firing (Figure 212 

8B) did not significantly correlate. This suggests that having well balanced higher activity was related to better 213 

performance, although the correlation was notably moderate. To further investigate whether the topographical 214 

distribution of activity correlated with performance, the absolute values of four discrete cosine transform (DCT) 215 

coefficients normalised to mean activity, was used to summarise spatial modes of spontaneous activity and 216 

Fig 7 | The Importance of Feedback in 
Learning. Significance bars show within group 
differences denoted with *. Symbols show 
between group differences at the given 
timepoint: # = vs Stimulus;  % = vs Silent. The 
number of symbols denotes the p-value cut off, 
where 1 = p < 0.05, 2 = p <0.01, 3 = p < 0.001 
and 4 = p <0.0001. Box plots show interquartile 
range, with bars demonstrating 1.5X 
interquartile range, the line marks the median 
and ▲marks the mean.  Errors bands = 1 SE.  A) 
Schematic showing the stimulation from the 8 
sensory electrodes across 40 seconds of the same 
gameplay for each of the three conditions. The 
bar below colour codes what phase of 
stimulation is being delivered. Where random 
stimulation follows a miss and predictable 
stimulation follows a hit in the Stimulus 
condition. Note the corresponding absence of 
any stimulation in the Silent condition and the of 
any change in sensory stimulation in the No-
feedback condition. B) displays the probability 
of a certain number of hits occurring in a group 
at a specific minute.  C) Using different feedback 
schedules the stimulus feedback condition 
showed significant learning (as in Figure 5A; t 
= 7.48, p = 1.58-12) and outperformed Silent and 
No-feedback average rally length, Silent 
feedback also showed higher performance 
compared to these groups at timepoint 2.  D) 
displays this difference across day. E) Shows 
similar differences vs rest performance for aces 
across conditions, where the Stimulus group 
showed significantly fewer aces across time (t = 
3.21, p = 0.002) F) displays this data across day. 
G) shows that the Stimulus condition showed 
significant increase (t = 3.21, p = 0.002) across 
timepoints, however as in H) no differences were 
found across time for long rallies. 
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assess symmetry of activity (Figure 8C). 217 

DCT (0,2) which shows difference between 218 

activity on the lateral edges and the lateral 219 

centre (Figure 8E) was significantly 220 

negatively correlated with performance. 221 

However, DCT (0,1) which measures activity 222 

across the horizontal plane (Figure 8C), DCT 223 

(1,0) which measures activity across the 224 

vertical plane (Figure 8F), and DCT (2,0) 225 

which measures activity on the horizontal 226 

edges vs the horizontal centre, did not 227 

significantly correlate. These correlations 228 

indicate that symmetrical activity across 229 

cultures underwrites better performance, but 230 

max activity does not. Given the distribution 231 

of the motor regions and sensory information, 232 

this finding is very coherent, as if there are no 233 

active cells in an area to either record signal 234 

from or deliver stimulation too, it would 235 

result in a dysfunctional system.  236 

 DISCUSSION 237 

Here we present a system, Dishbrain, 238 

which is capable of embodying neurons, from 239 

any source, in a virtual environment and 240 

measuring their responses to stimuli in real 241 

time. The ability of neurons, especially in 242 

assemblies, to respond to external stimuli in 243 

Fig 8 | Relationship Between Latent Electrophysiological 
Activity for Higher Performance and the Importance of 
Feedback in Learning. A) A significant positive correlation 
between mean firing and performance was found (r = 0.17, p < 
0.001) indicating a higher mean firing was associated with better 
performance. B) No significant relationship was found between 
max firing and performance. C) Absolute DCT values were 
calculated to determine whether there was a link between the layout 
of activity and performance. This shows how these DCT values 
were calculated for each type of score D) No significant relationship 
was found between DCT (0,1), F) DCT  (1,0), or G) DCT (2,0). 
However, E) shows DCT 0,2 which mesures the difference between 
activity on the lateral edges and the lateral centre was significantly 
negatively correlated (r = -0.17, p < 0.001) with performance.  
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an adaptive manner is well established in vivo. However, this work is the first to establish this fundamental 244 

behaviour in vitro. We were able to use this silico-biological assay to investigate the fundamentals of neuronal 245 

computation. In brief, we demonstrate the first SBI device to show adaptive behaviour in real-time. The system itself 246 

offers opportunities to expand upon previous in silico models of neural behaviour, such as where models of 247 

hippocampal and entorhinal cells were tested in solving spatial and non-spatial problems (Sanders et al., 2020; 248 

Whittington et al., 2020). Minor variations on the DishBrain platform and selected cell type would enable an in 249 

vitro test to gain data around how cells process and compute information that was previously unattainable. 250 

An example of this can be seen in the contrasting results between different cell sources. Active cortical 251 

cultures, from both human and mouse cell sources, both displayed synchronous activity patterns, in line with 252 

previous research17–19,27. Yet importantly, significant differences between cell sources were observed as human 253 

cortical cells always outperformed mouse cortical cells with nuances in gameplay characteristics. Although 254 

further work is required, this is the first work finding empirical evidence supporting the hypothesis that human 255 

neurons have superior information-processing capacity over rodent neurons28,29. This inherent difference 256 

between cell sources has been proposed to be due to denser and longer dendritic trees in human neurons, 257 

compared to mouse, which would yield different input-output properties and may thereby explain different 258 

computational capacities30. It was not previously possible to separate the neuroanatomical structure of different 259 

species from the microscopic structure of neurons in terms of computational power. Our work demonstrates that 260 

even when all key features are kept constant (cell number, sensory input, motor output etc.), there are key 261 

differences between human and rodent cortical neurons. This provides the first empirical evidence of differences 262 

in computational power between neurons from different species offering an exciting avenue for future research.  263 

Another finding from this work relates to innate cell organisation, seen in the definition of motor 264 

regions. Previously, motor regions were mapped from a population coding approach that incorporated spatial 265 

information following a network activity scan5. While our early pilot studies were similar, we focused on the 266 

extent that self-organisation would adapt if motor regions were fixed between cultures. When the EXP3 267 

algorithm was used we found that experimental cultures showed significant preferences for layouts that could 268 

leverage biological processes like lateral inhibition. This is consistent with past work that finds feedback 269 

between environment and action is required for proper neural development7. However, it further suggests that 270 

perhaps this development occurs based on properties inherent at the level of the cell. This system provides the 271 
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opportunity to explore network dynamics to better understand this aspect of self-organisation. At the technical 272 

level, this system is readily adaptable to include investigations into structural organisation of neural networks 273 

in both a physical and computational sense.  274 

Most significantly, this work represents a substantial technical advancement in creating closed-loop 275 

environments for BNNs5,6,31. Here, we have emphasised the requirement for embodiment in neural systems for 276 

learning to occur. This is seen most significantly in the relative performance over experiments, where richer 277 

information and better feedback resulted in increased performance. Likewise, when no-feedback was provided 278 

yet information on ball position was available, cultures showed significantly poorer performance and no 279 

learning. Of particular interest was the finding that when stimulatory feedback was removed and replaced with 280 

silent feedback (i.e., the removal of all stimuli), cultures were still able to outperform those with no feedback as 281 

in the open-loop condition, albeit at a lesser extent. One interpretation is that playing 'pong' generates more 282 

predictable outcomes than not playing 'pong'. Despite the outcome of a ‘failure’ not being unpredictable 283 

stimulation, given that the ball resets and the direction of the next movement is itself also unpredictable, this 284 

likely results in increased informational entropy, albeit to a far less extent. This is coherent with our results, as 285 

the more unpredictable an outcome, the greater the observed learning effect. However, the action of the BNN 286 

must have an outcome observable by the system. Therefore, it is coherent that the open-loop condition, which 287 

is by its nature the most predictable condition, did not result in learning. Stimulus alone is not sufficient to drive 288 

learning, there must be a motivation for the learning where altered behaviour can influence the future observable 289 

stimulus. When faced with unpredictable stimulus following unsuccessful performance, playing 'pong' 290 

successfully acts as a free energy minimising solution. This offers a rather deflationary account of all goal-291 

directed behaviour as the goal is just to minimise surprise. A key aspect of active inference is the selection of 292 

actions that minimise free energy expected following that action.  293 

On this mechanistic level, we sought to demonstrate the utility of the DishBrain by testing base 294 

principles behind the idea of active inference via the FEP for intelligence, finding robust support for it. The 295 

closest previous work included studies of blind source separation in neural cultures9,10. However, this study did 296 

not offer physiologically plausible training environments and the system effectively existed in an open-loop 297 

environment. This makes any interpretation that the system in these studies was operating under the FEP 298 

difficult as changes in the external environment was not related back to the internal system of the neuronal 299 
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cultures. Our work here demonstrates that when supplying unpredictable (random) sensory input following an 300 

'undesirable' outcome—and providing predictable input following a 'desirable' one, we were able to significantly 301 

shape the behaviour of neural cultures in real time. The predictable stimulation could also be read as a stabilising 302 

synaptic weights in line with previous research32,33—or, in a complementary fashion, destabilising connectivity 303 

by destroying 'undesirable' free energy minima. This may be a potential mechanism behind the FEP account of 304 

biological self-organisation, sometimes discussed in terms of autovitiation (i.e. self-organised instability by the 305 

destruction of self-induced but surprising fixed points of attraction)8. Crucially, expected free energy13,34 306 

corresponds to uncertainty (i.e., informational entropy). This means that uncertainty minimising behaviour will 307 

have a natural curiosity, in the sense that it is necessarily information seeking. This is closely related to artificial 308 

curiosity in machine learning35–37 and intrinsic motivation in robotics38. 309 

Due to current hardware limitations, the sensory stimulation is magnitudes coarser compared to that for 310 

in vivo organisms. Additionally, it was infeasible to meaningfully implement mechanisms that would be crucial 311 

for an in vivo organism attempting a comparable task, such as proprioception.  Moreover, the relatively small 312 

number of cells embedded in a monolayer format means the neural architecture driving this behaviour is 313 

incredibly simple, in terms of the number of possible connections available compared to even small organisms 314 

that have a 3D brain structure. Nonetheless, using only simple patterns of predictable and unpredictable 315 

stimulation, this system was able to shape behaviour in an order of minutes. While within session learning was 316 

well established, between session learning over multiple days was not observed so robustly. Cultures appeared 317 

to relearn associations, with each new session. Given that cortical cells were selected, this is to be expected. In 318 

vivo cortical cells are not known to be specialised for long-term memory39. Future work with this system can 319 

investigate the use of other neuronal cell types and/or more complex biological structures.  320 

Conclusion. 321 

Using this DishBrain system, we have demonstrated that a single layer of in vitro cortical neurons can 322 

self-organise and display intelligent and sentient behaviour when embodied in a simulated game-world. We 323 

have shown that even without a substantial filtering of cellular activity, statistically robust differences over time 324 

and against controls could be observed in the behaviour of neuronal cultures in adapting to goal directed tasks. 325 

These findings provide a convincing demonstration of the SBI based system to learn over time in a goal-326 

orientated manner directed by input. The system provides the capability for a fully visualised model of learning, 327 
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where unique environments may be developed to assess the actual computations being performed by BNNs. 328 

This is something long sought after and extends beyond purely in silico models or predictions of molecular 329 

pathways alone (Karr et al., 2012; Whittington et al., 2020; Yu et al., 2018).  Therefore, this work provides 330 

empirical evidence which can be used to support or challenge  theories explaining how the brain interacts with 331 

the world and intelligence in general11,40. Ultimately, although substantial hardware, software, and wetware 332 

engineering is obviously still required to improve the DishBrain system, this work does evince the 333 

computational power of living neurons to learn adaptively in active exchange with their sensorium. This 334 

represents the largest step to date of achieving synthetic sentience capable of true generalised intelligence. 335 
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METHODS 437 

Ethics statement. All experimental procedures were conducted in accordance with the Australian National Statement on 438 

Ethical Conduct in Human Research (2007) and the Australian Code for the Care and Use of Animals for scientific 439 

Purposes (2013) as required. Animal work was done under ethical approval E/1876/2019/M from the Alfred Research 440 

Alliance Animal Ethics Committee B. Experiments were performed at Monash University, Alfred Hospital Prescient 441 

with the appropriate personal and project licences and approvals. Work done using hiPSCs was done in keeping with the 442 

described material transfer agreement below.  443 

Experimental Procedures. No statistical methods were used to predetermine sample size. As all work was conducted 444 

within controlled environments uninfluenced by experimenter bias, experiments were not randomized, and investigators 445 

were not blinded to experimental condition. However, conditions were blinded before final analysis to prevent bias 446 

during analysis. Figure S5A presents a schematic of the overall experimental setup.  447 

Animal Breeding and maintenance. BL6/C57 mice were mated at Monash Animal Research Platform (MARP). Upon 448 

confirmation of pregnancy animals were transported via an approved carrier to the Alfred Medical Research and 449 

Education Precinct (AMREP). Pregnant animals were housed in individually ventilated cages until the date when they 450 

were humanely killed, and primary cells were harvested.  451 

Primary Cell Culturing. Cortical cells were disassociated from the cortices of E15.5 mouse embryos. Embryos were 452 

decapitated and with the aid of a stereotactic microscope the skin, bone and meninges were removed, and the anterior 453 

part of the cortex dissected out. Approximately 800,000 cells were plated down onto each pre-prepared HD-MEA. 454 

Cultures began to upregulate spontaneous activity and display synchronised firing around DIV 10 at which point they 455 

were used for experimentation.  456 
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Stem Cell Lines. Initial work was conducted using a control hiPSC line supplied by the Gene Editing Facility at the 457 

Murdoch Children’s Research Institute (ATCC® PCS-201-010) from an ATCC PCS-201-010 background and transferred 458 

under a Material Transfer Agreement. Later work involved an hiPSC lines used in this work constitutively expressing 459 

fluorescent reporters under control of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) promoter (cell lines 460 

were generated by Professor Edouard G. Stanley and colleagues from the Murdoch Children’s Research Institute and 461 

provided under a Material Transfer Agreement)41. The GAPDH gene encodes a protein critical in the glycolytic pathway, 462 

whereby ATP is synthesised from glucose. As this function is highly conserved across multiple cell types GAPDH is 463 

ubiquitously expressed at high levels across multiple cell types, making it a suitable gene for which to base a gene-464 

expression system 42. This transgene expression system, termed GAPTrap, involves the insertion of the specific reporter 465 

gene into the GAPDH locus in hiPSCs using gene-editing technology41. For this study, RM3.5 GT-GFP-01 constitutively 466 

expressing green fluorescent protein under the GAPDH promoter was utilised. The RM3.5 hiPSC line was initially 467 

derived from human foreskin fibroblasts and reprogrammed using the hSTEMCCAloxP four factor lentiviral vector as 468 

reported previously43. All procedures described below were applied to be both cell lines. Both lines were maintained in 469 

an undifferentiated, pluripotent state in a feeder-free system using E8 media (StemCell Technologies, Canada) 470 

supplemented by a Penicillin/streptomycin solution at 5 µl/ml. Cells were plated on T25 353108 Blue Vented Falcon 471 

Flasks (Corning, Durham, USA) that were coated approximately 1 hr prior with the extracellular matrix vitronectin 472 

(Thermo Fisher Scientific, Carlsbad, USA).   473 

Stem Cell Maintenance. All procedures were carried out using sterile techniques. Prior to passaging cell confluence was 474 

recorded and the required split ratio was determined. Media was aspirated from cells and cells were washed with 5 ml of 475 

PBS -/- before passaging to remove detached cells and other debris. 3 ml of a 0.05 µM EDTA in PBS -/- was used for the 476 

dissociation and passaging of hiPSCs as aggregates without manual selection or scraping, was added to cells, and 477 

allowed to incubate at 37°C for approximately 3.5 mins. After visual examination using 10X microscope indicated that 478 

cells had lost sufficient adhesion, EDTA was aspirated, and blunt trauma applied to base of the T25 flask to dislodge 479 

cells. Cells were suspended in 2 ml E8 and transferred to 15 ml falcon tube. As described above, vitronectin coated T25 480 

flasks were prepared and aspirated before the addition of 5 ml of E8 solution. Approximately 1:10 of evenly distributed 481 

cell suspension was added to the prepared T25 flask. The flask was then gently swirled to ensure even distribution before 482 

being incubated overnight at 37°C. Media was changed daily.   483 

Stem Cell Dual SMAD Differentiation. Cellular differentiation followed a titrated dual SMAD inhibition protocol for 484 

the generation of cortical cells from pluripotent cells established by the Livesey group with minor adjustments as 485 

represented in Figure S5B19. Cells were plated in 24 well plates coated with human laminin H521. When cells reached 486 
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≈80% confluency, neural induction was initiated by using standard neural maintenance (N2B27) Base Media with 100 487 

ng/ml LDN193189 (Stemcell Technologies Australia, Melbourne, Australia) and 10 µm SB431542 (Stemcell 488 

Technologies Australia, Melbourne, Australia). Media was changed every day from day 0 to day 12. After appearance of 489 

neural rosettes and initial passaging standard N2B27 media with FGF2 20 ng/ml was utilised from day 12 to day 17 to 490 

achieve a dorsal forebrain patterning. Cells were then expanded and deemed ready for plating onto MEA or slides based 491 

on morphology at approximately 30 – 33 days. On the day of transplant, cells were detached with Accutase (Stemcell 492 

Technologies Australia, Melbourne, Australia) to a single cell suspension and centrifuged at 300g. The cell pellet was 493 

resuspended at 10,000 cells/µl in BrainPhys (Stemcell Technologies Australia, Melbourne, Australia) neural maintenance 494 

media with Rho Kinase Inhibitor IV (Stemcell Technologies Australia, Melbourne, Australia;1:50 dilution) with 495 

approximately 106 cells plated onto each MEA.  Cells began to display early but widespread spontaneous activity around 496 

DIV 80, at which point they were ready for experimentation. 497 

Stem Cell NGN2 Direct Differentiation: Cortical excitatory neurons were generated by the expression of NGN2 in 498 

iPSCs. IPSCs were plated at 25,000 cells/cm2 in a 24-well plate coated with 15µg/ml human laminin (Sigma, USA). The 499 

following day, cells were transduced with NGN2 lentivirus (containing a tetracycline-controlled promoter coupled with a 500 

puromycin selection cassette) in combination with a lentivirus for the rtTA (reverse tetracycline-controlled 501 

transactivator). NGN2 gene expression was activated by the addition of 1 µg/ml doxycycline (Sigma, Australia), this was 502 

referred to as differentiation day 0. Cells were cultured in neural media consisting of 1:1 ratio of DMEM/F12:Neurobasal 503 

media supplemented with (all reagents from Thermofisher, USA) B27 (#17504-044), N2 (17502-048), Glutamax 504 

(#35050-060), NEAA (#11140-050), β-mercaptoethanol, ITS-A (#51300-044) and penicillin/streptomycin (#15140-122). 505 

On Day 1 1.0µg/ml puromycin (Sigma, Australia) was added for 3 days at which point neurons were supplemented with 506 

10µg/ml BDNF (Peprotech, USA) and lifted with accutase, in preparation for plating on HD-MEA chips. HD-MEA chips 507 

were pre-treated with 100µg/ml PDL (Sigma, USA) and 15µg/ml laminin (Sigma, USA). For each well 1x105 NGN2 508 

induced neurons at DD4 were combined with 2.5x104 primary human astrocytes (ScienceCell, USA) in each well of the 509 

MEA plate. To arrest cell division of astrocytes 2.5µM Ara-C hydrochloride (Sigma, USA) was added at day 5 for 48 510 

hours. Cells were maintained in neural media supplemented with BDNF and media changed at least 1 day prior to 511 

recordings.   512 

MEA setup and preparation. MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) were 513 

used for this research. The MaxOne is a high-resolution electrophysiology platform featuring 26,000 platinum electrodes 514 

arranged over an 8 mm2. The MaxOne system is based on complementary meta-oxide-semiconductor (CMOS) 515 

technology and allows recording from up to 1024 channels and stimulation from up to 32 units. MEAs and chambered 516 
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glass slides are coated with either polyethylenimine (PEI) in borate buffer for primary culture cells or Poly-D-Lysine for 517 

cells from an iPSC background before being coated with either 10 µg/ml mouse laminin or 5 µg/ml human 521 Laminin 518 

(Stemcell Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhesion. 519 

Plating and Maintaining Cells on MEA. Approximately 106 cells were plated on MEA after preparation via method 520 

already described. Cells were allowed approximately one hour to adhere to MEA surface before the well was flooded. 521 

The day after plating, cell culture media was changed to BrainPhys™ Neuronal Medium (Stemcell Technologies 522 

Australia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin. Cultures were maintained in a low O2 523 

incubator kept at 5% CO2, 5% O2, 36°C and 80% relative humidity. Every two days, half the media from each well was 524 

removed and replaced with free media. Media changes always occurred after all recording sessions. 525 

Measuring of Electrophysiological Activity. Licenced MaxLab Live Scope V20.1 software was used to run activity 526 

scans. Checkerboard assays consisting of 14 configurations at 15 seconds of spike only record time were run daily 527 

immediately preceding the running of the DishBrain software. Gain was set to 512x with a 300 Hz high pass filter. Spike 528 

threshold was set to be a signal six sigma greater than background noise as per recommended software settings. Mean, 529 

max and variance of both amplitudes and firing rates was extracted from these assays and mapped using custom 530 

software: the first nine components of discrete cosine transform basis functions of space were used to summarise the 531 

spatial profile of spiking activity. The ensuing coefficients were then used in subsequent correlation analyses.  532 

DishBrain software platform. The current DishBrain platforms is configured as a low-latency, real-time MEA control 533 

system with on-line spike detection and recording software. See Figure S3 and Supplementary Text 1. The DishBrain 534 

software runs at 20,000 Hz and allows recording at this incredibly fine timescale. Working closely with MaxWell 535 

Biosystems we enabled capabilities not available using the native vendor software. The existing API was used only for 536 

loading configurations. Low level code was written in C to allow for minimal processing latencies—so that packet 537 

processing latency was typically <50 µs. High level code, including configuration set ups and broader instructions for 538 

game settings were implemented in Python. Figure S5C shows an image of the game visualiser, and a real-time 539 

interactive version is available at https://spikestream.corticallabs.com/. This allowed a spike-to-stim latency of 540 

approximately 5 ms, with the substantive delay due to inflexible hardware buffering built into MaxOne hardware. Where 541 

appropriate, the EXP3 machine learning algorithm was used to sample two predefined motor regions to select the best 542 

configuration to interpret movement commands for the paddle. When the system failed to move the ‘paddle’ into a 543 

correct position (to contact the ball), a random stimulus was applied to culture at 5 Hz and 150 mV. After a 1 s delay—to 544 

allow the culture to recover—play was resumed. The online spike detection software was developed using an adaptive 545 

threshold-based detector. The threshold was typically set at 6 sigmas above noise estimates. We established this use a 546 
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mean absolute deviation (MAD) estimate, which was multiplied by a correction factor. Infinite Impulse Response (IIR) 547 

filters and Digital Signal Processing (DSP) were used to prepare raw signals for spike detection.  548 

Input configuration. Stimulation is delivered at a given Hz and voltage as described in the main text to key electrodes in 549 

a sensory area, as shown in Figure 4B. Initial experiments delivered purely place-coded stimulation, where the distance 550 

from the centre of the sensory area was interpreted as distance from the centre of the paddle aligning with the ball. As 551 

described in the main text, later experiments adopted a mixed coding scheme, where the place coding was combined with 552 

a rate coding that delivered stimuli at 4 Hz when the ball was closest to the opposing wall and increased to a max of 40 553 

Hz as the ball reached the paddle wall.  554 

Output configuration. Initially two predefined motor regions were defined on the MEA. Activity was measured over 555 

these two regions, where the region with higher activity would move the paddle in a corresponding direction. This was 556 

found to be extremely sensitive to culture characteristics, where asymmetrical spontaneous spiking activity in cultures 557 

would cause the paddle to move swiftly in only one direction. To counter this, a gain function was implemented, which 558 

measured activity in both regions and added a multiplier to a target of 20 Hz. Activity >20 Hz was weighted by a 559 

correction factor >1, while activity <20 Hz was weighted by a correction factor <1. An EXP3 algorithm was 560 

implemented to select the different configuration options illustrated in Figure S344. We found that experimental cultures 561 

preferred configuration 3, while media only control cultures preferred configuration 0. As such, configuration 3 was 562 

selected as it offered the possibility for biologically relevant features, such as lateral inhibition, and minimised the chance 563 

of apparently successful performance through bias alone—as it precludes a direct relationship between input stimulation 564 

and output activity recording.  565 

EXP3 Algorithm. An Exponential-weight algorithm for Exploration and Exploitation (EXP3) algorithm was used 566 

initially for the adaptive selection of electrode layouts, with the objective of optimising gameplay performance 45. This 567 

algorithm was implemented to maintain a list of weights for each action and was designed to minimise regret by 568 

preferencing electrode configurations which were associated with a higher probability of the ball being returned. This is 569 

described in detail in Supplementary Text 2.     570 

Immunocytochemistry. Cells were washed three times with sterile PBS and then fixed using 4% PFA for 20 mins. After 571 

washing cells were blocked 0.3% Triton-X and 1% goat serum in PBS for 1 hr. Primary antibodies specific for Synapsin1 572 

(1:500; ab254349; Rabbit; Abcam, Cambridge, MA, USA), NeuN (1:500; ab104225; Rabbit; Abcam, Cambridge, MA, 573 

USA), Beta-III  Tubulin (1:500; MAB1637, Mouse; Kenilworth, NJ, USA), MAP2 (1:1000; Chicken; ab5392; Abcam, 574 

Cambridge, MA, USA), TBR1 (1:200; ab183032; Rabbit; Abcam, Cambridge, MA, USA), GFAP (1:500; ab4674; 575 

Chicken; Abcam, Cambridge, MA, USA), and KI67 (1:500; ab245113; Mouse; Abcam, Cambridge, MA, USA) were 576 
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applied overnight. After washing, secondary antibodies (chicken 555, rabbit 488, mouse 647; Abcam, Cambridge, MA, 577 

USA) were incubated for 2 hrs.  This was followed by 10 mins of DAPI Staining Solution in PBS (1:1000, ab228549, 578 

Abcam, Cambridge, MA, USA) after which point slides were cover-slipped with ProLong Gold Antifade Mountant 579 

(Thermo Fisher Scientific, Waltham, MA, USA) mounting media and allowed to dry for 48 hrs. Scanning Electron 580 

Microscopy. At various designated endpoints, media was aspirated from the MEA wells and cells were fixed with 2.5% 581 

glutaraldehyde (Electron Microscopy Sciences, PA, USA) and 2% paraformaldehyde (Electron Microscopy Sciences, 582 

PA, USA) in a 1 M sodium cacodylate buffer for 1 hr. They were then washed three times in 1 M sodium cacodylate 583 

buffer before being post-fixed with 1% OsO4 in a 1M sodium cacodylate buffer for 1 hr. OsO4 was removed and the 584 

fixed cells were washed with three times in milliQ water and dehydrated via an ethanol gradient exchange (30%, 50%, 585 

70%, 90%, 100%, 100% v/v) for 15 mins each. After dehydration, the cells were dried by hexamethyldisilazane (Sigma 586 

Aldrich, St. Louis, MO, USA) exchange (3x10 mins), and then allowed to evaporate for 5-10 mins. MEA chips were then 587 

affixed to an aluminium stub with carbon tape and sputter coated with 30 nm layer of gold using a BAL-TEC SCD-005 588 

gold sputter coated. All procedures were performed at room temperature. Coated MEA chips were then imaged using a 589 

FEI Nova NanoSEM 450 FEGSEM operating with an acceleration voltage of 10 kV and a working distance of 12 mm. 590 

Images were then analysed using ImageJ v. 1.52k and false coloured using Adobe Photoshop. 591 

Widefield fluorescence microscopy. Images were captured using a Nikon Ti-E upright light microscope equipped with 592 

a motorised stage. All widefield images were captured using a 20X objective.   593 

Data analysis. Data was analysed using custom code written in Python. Error bars are described in captions, except 594 

where graphs are box and whisker plots, where the line is the median, box indicates lower quartile to upper quartile and 595 

error bars show the rest of the distribution excluding outliers. The illustrative data provided in the text and figures include 596 

means and standard deviations. An alpha of p < 0.05 was adopted to establish statistical significance, providing a 5% 597 

chance of a false positive error. Where suitable assumptions were met, inferential frequentist statistics were used to 598 

determine whether statistically significant differences existed between groups. All tests were two tailed tests for 599 

statistical significance. For related samples t-tests or independent T-tests alpha values for significance were corrected via 600 

the Bonferroni method. For one-way analysis of variance (ANOVA) and the multivariate 2 x 3 repeated measures 601 

ANOVA when a significant interaction or main effect was found, this was followed up with pairwise Games-Howell post 602 

hoc tests with Tukey correction for multiple comparisons. This was adopted as = there were always differences between 603 

sample sizes and variance due to inclusion of in-silico controls. As seen in Figure S5D, four DCT basis functions were 604 

used to summarise spatial modes of spontaneous activity. Pairwise Pearson’s correlations were used to test the 605 
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relationship between the ensuing scores—along with time (s) and max and mean firing rates (Hz)—with average rally 606 

length.   607 
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Supplementary Text 

Supplementary Text 1: Development of the modular, real-time platform DishBrain to harness neuronal computation.  

The MaxOne MEA is not only capable of measuring changes in electrical activity brought about from action potentials, but also of 

stimulating cells at a range of voltages, in a manner which is relatively non-invasive to cells, and effectively elicits action 

potentials or responses in a comparable manner to internal electrical stimulation26. With the appropriate coding scheme, external 

electrical stimulations can convey a range of information, providing the capacity to not only ‘read’ information from a neural 

culture, but also to ‘write’ data into one.  We set out to build a system, named ‘DishBrain’ (Fig, S2A), which would allow us to 

integrate these two principles into a closed loop, in the hope of allowing the neurons to achieve embodiment and agency in a 

virtual environment, with demonstrable learning effects. The DishBrain system is controlled by a low latency, real-time piece of 

software named ‘DishServer’, which replaces and extends a corresponding piece of MaxWell vendor software called 

‘MXWServer’. DishServer is capable of receiving voltage readings from MaxOne vendor hardware, processing these readings, 

simulating a virtual environment, encoding the results as MaxOne electrode commands, and sending these commands back to the 

MaxOne hardware. When run on a computer with access to a MaxOne hardware setup with a live culture in place, the system acts 

as a closed loop that we can configure and record for analysis. The system is easily adaptable to other MEA hardware and virtual 

environments as well, which could exhibit different learning and embodiment effects if tested. 

So far, the main use of DishBrain has been to embody neural cultures in a simulation of the classic arcade game ‘pong’, with 

neuron activity read from multiple ‘motor regions’ defined by distinct subsets of the MEA, and sensory information encoded as 

stimulation at any of eight distinct stimulation sites placed opposite from those motor regions. The MaxOne MEA is configured to 

read up to a particular 1024 of its 26,400 electrodes, at a rate of 20,000 samples per second. As shown in Figure S2B, these 

samples are optionally recorded as-is, for later analysis, but are also run through a sequence of computationally efficient Infinite 

Impulse Response (IIR) filters to calculate noise and activity levels, which are compared in order to detect spikes. Incoming 

samples are filtered with a 2nd order high-pass Bessel filter with 100Hz cut-off, the absolute value is then smoothed using a 1st 

order low-pass Bessel filter with 1Hz cut-off, the spike threshold is proportional to this smoothed absolute value. Spikes are 

themselves optionally recorded, and either way are counted over a period of 10 milliseconds, (200 samples,) at which point the 

game environment is given the number of spikes detected in each of the configured electrodes, and these spike counts are 

interpreted as motor activity depending on which motor region the spikes occurred in, moving the paddle up or down. At each of 

these 10ms intervals the pong game is also updated, with a ball moving around a play area at a fixed speed, ‘bouncing’ off the 

edges of the play area and off the paddle, until it hits the edge of the play area behind the paddle, which marks the end of one 

‘rally’ of pong. During each rally the location of the ball relative to the paddle is encoded as stimulation to one of eight 

stimulation sites, which is tracked in an internal ‘stimulation sequencer’ module. The stimulation sequencer is updated 20,000 
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times a second, once every time a sample is received from the MEA, and once the previous lot of MEA commands should have 

finished, it constructs another sequence of MEA commands based on the place-code and rate-code information that it has been 

configured to transmit. The stimulations take the form of a short square bi-phasic pulse that is a positive voltage, then a negative 

voltage. A Digital to Analog Converter (or DAC) on the MEA will read and apply this pulse sequence to the given electrode. To 

interface with Maxwell API, DishBrain use a negative DAC value first because this corresponds to a positive voltage in the 

MaxWell API. At the end of the rally, the game environment will instead configure the stimulation sequencer to apply stimulation 

at random sites, for a period of four seconds, followed by a configurable rest period of up to four seconds, followed then by the 

next rally. Finally, the spike detection is also capable of ‘blinding’, which is expected to occur after each stimulation; in order to 

prevent DAC stimulation from being interpreted as neuron activity, all 1024 channels are ignored for a configurable number of 

samples, after either detecting anomalous activity directly, or after receiving acknowledgement from the MEA that a DAC 

command has been executed.  

Given the multitude of possible variations inherent in a system like this, it was necessary to fix some parameters and empirically 

test others. Stimulation is delivered at specific locations, frequency, and voltage to key electrodes in a topographically consistent 

manner in the sensory area relative to the current position of the paddle (Figure S3: Configuration 0). This was designed to mimic 

retinotopic and topographic representations commonly found in nearly all neural systems for representing the external world46,47. 

Other parameters, such as voltage were determined through empirical testing. Initial tests were conducted to assay which 

conditions cell cultures would survive. Testing time was found to be a highly sensitive parameter, as cells did not tolerate testing 

times >1.5 hours. When measurements were taken it was concluded that this was likely due to increased temperature in the well in 

which cells were plated in due to activity and the resulting increased evaporation and changes in osmolarity. To the surprise of the 

researchers, cells survived testing administration of stimulation up to 3000 mV for up to one hour which was the maximum testing 

time considered given the above findings. While this did create excess noise in recording cellular activity across the MEA during 

the stimulation period, there were no significant changes to spontaneous activity in the cell cultures before and after the period of 

stimuli administration. Given that cells appeared robust to voltage stimulation, the decision was made to base voltage levels on 

existing evidence of neurological function. To prevent forcing hyperpolarised cells from firing, 75 mV at 4 Hz was chosen as the 

sensory stimulation voltage that would relate to where the ball was relative to the paddle. In order to add unpredictable external 

stimulus into the system, when the culture fails to line the paddle up to connect with the ball, the ‘punishing’ stimulus was set at 

150 mV voltage and 5 Hz. It was hypothesised that this higher voltage would be sufficient to force action potentials in cells 

subjected to the stimulation regardless of the state the cell was in, thereby being even more disruptive to the culture. Initially, two 

distinct areas were defined as ‘motor regions’, where activity in motor region 1 moved the paddle ‘left’ and activity in motor 

region 2 moved the paddle ‘right’. Due to the technical difficulty of culturing neurons that displayed perfectly symmetrical 

activity in both these regions it was found to be necessary to add ‘gain’ into our system. These took a real-time value based on the 

mean firing in each motor region and multiplied it to achieve a target value of 20 Hz across the entire region. This would allow 
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changes in activity in each given region to influence the paddle position, even if they displayed different latent spontaneous 

activity.  

Supplementary Text 2: The development of an EXP3 algorithm to assess different motor region recording layouts and further 

refinement of blinding protocols.  

After initial pilot testing of the DishBrain system, two pathways were identified to modify performance: encoding of information 

and decoding of activity. The initial focus was to improve the latter. It was hypothesized that the simplified decoding system of 

measuring activity in two motor regions that were congruent where activity was stimulated might not only be inefficient but also 

prone to bias. To investigate this further an EXP3 machine learning algorithm was used to sample two predefined motor regions to 

select the best configuration from six possible configurations and interpret movement commands for this paddle. The EXP3 

algorithm was used for adaptive selection of electrode layouts, with the objective of increasing the expected number of times that 

a culture is able to hit the ball in each pong rally.  EXP3 is robust to changes in the underlying distribution of returns; this is 

important because neurons are also concurrently learning, and their behaviour changing over time. Optimising over all possible 

assignments of electrodes to actions would require a prohibitively large set of choices, so a representative set of balanced layouts 

were used. EXP3 is an online optimisation algorithm for the "multi-armed bandit" problem. It selects between several discrete 

choices, over a series of rounds. Each discrete choice yields an observable stochastic loss. The best choice is never revealed, even 

post-hoc. Quality of choices can only be inferred from noisy returns; exploration and exploitation must be balanced. In this work, 

one of a discrete set of electrode-action mappings called 'motor layouts' was chosen on each round. The loss to be minimised is 

calculated using the following equation:  

 

Equation 1.  !! = 	"!#(score!,&')&' 	 − 1 

 

Where loss_i is the loss at the end of the rally i and score_i is number of bounces during that rally. During the i-th rally, layout_i is 

used and is fixed during the entire rally. At the end of the rally, layout_i+1 is chosen by EXP3 for the next rally and the game play 

continues. When using EXP3 the system can adaptively optimise performance by choosing from a fixed set of alternative motor 

layouts (Figure S3). At the same time, a new blinding method (consensus blind) based on blinding all signals when >15 

simultaneous large (>75 mV) spikes were detected, was implemented to block stimulation delivered by the system from being 

registered as cellular activity. It was hypothesised that a lack of blinding administered signals may contribute to the apparent 

performance observed in controls in our pilot study.  As described in the main text and shown in Table S3, experimental chips 

with configurations that would enable lateral inhibition were found to be selected significantly more compared to other 

configurations resulting in an equal distribution (χ2 = 35690.93, p<0.0001), including those that were more simplified like that 
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used in the pilot where activity on the left moved the paddle left and conversely for the right (Figure S3: Configuration 0)  and 

would be most easily influenced by various sources of bias. This behaviour has been observed in experiments involving multiple 

human and mice neurological functions48–50. When the frequency tables of these two distributions were compared, they were also 

found to be significantly different, (χ2 = 15229.323, p<0.0001). Considering these differences, it is not valid to compare 

experimental and control groups as they are operating off different types of configurations.  

Given the apparent preference for configurations that would allow processes such as lateral inhibition to occur in experimental 

chips, coupled with the concern of having different groups operating from different configurations, it was decided to select 

configuration 3 for all cultures going forward, as it was chosen most frequently by the EXP3 algorithm. Moreover, if consensus 

blinding behaved as expected, control chips should also show no preference. This led us to suspect that consensus blinding was 

ineffective and on further investigation, particularly when using a higher and variable frequency of sensory stimulation we 

discovered more evidence of consensus blinding failing than our previous testing revealed. To counter this, a new blinding method 

was implemented, which was termed ‘command count blinding’. This method blinded our readout of all motor activity when a 

command was sent to generate any form of stimulation. During testing this was found to be significantly more robust than the 

previously used consensus blinding and allowed us to proceed with increasing the density and variability of sensory stimulation. A 

second method of gathering control data by gathering data during ‘rest’ periods was also implemented, whereby the game would 

continue with all events still being logged, but no stimulation was administered to the culture.  
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Fig. S1. Cortical neurons can be obtained via multiple methods. Scale bars as shown on figure. A) Primary mouse 
cortical neurons show diverse expression of synapsin1 which marks synaptic vesicles and actin filaments across long 
reaching neural networks.  B) – F) Shows that using a RM3.5 cell line comparable cortical cultures can be generated 
using the dual SMAD inhibition protocol described in Methods. B) Shows endogenous expression of GFP, BIII marking 
axons and a lack of Ki67 suggesting no dividing cells, C) additional shows these cells expressing GFAP for supporting 
glial cells Further images in D) show a characteristic neurosphere structure neurons would often spontaneously form 
when plated at high density, a dense pseudo three-dimensional sphere with dense connections of neurons and axons 
throughout. E) & F) display hIPCSs differentiated to neurons using the NGN2 method and mouse primary cortical 
neurons respectively, both plated of HD-MEA and allowed to mature before staining. These cells display all markers 
previously described, but due to the reflective material of the CMOS chip, it is infeasible to get high resolution 
fluorescent images of cells on the chips, leading to the adoption of SEM imaging shown in the main text.  G) & H) also 
show hIPCSs differentiated to neurons using the NGN2 method; G) Staining of mature neural monolayer cultures with 
the majority of cells expressing NeuN which marks neuronal cells, MAP2 marks dendrites and β3-Tubulin which marks 
long-range axons. H) Further staining shows that along with β3-Tubulin these cells express the pre-synaptic marker 
synapsin1 across the soma and cell projections.  
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Fig. S2 | Schematics of software used for DishBrain. A) Software components and data flow in the DishBrain closed loop system. 
Voltage samples flow from the MEA to the ‘pong’ environment, and sensory information flows from the ‘pong’ environment back 
to the MEA, forming a closed loop. The blue rectangles mark proprietary pieces of hardware from MaxWell, including the MEA 
well which may contain a live culture of neurons. The green MXWServer is a piece of software provided by MaxWell which is 
used to configure the MEA and Hub, using a private API directly over the network. The red rectangles mark components of the 
'DishServer’ program, a high-performance program consisting of four components designed to run asynchronously, despite being 
run on a single CPU thread. The 'LAN Interface’ component stores network state, for talking to the Hub, and produces arrays of 
voltage values for processing. Voltage values are passed to the ’Spike Detection’ component, which stores feedback values and 
spike counts, and passes recalibration commands back to the LAN Interface. When the pong environment is ready to run, it updates 
the state of the paddle based on the spike counts, updates the state of the ball based on its velocity and collision conditions, and 
reconfigures the stimulation sequencer based on the relative position of the ball and current state of the game. The stimulation 
sequencer stores and updates indices and countdowns relating to the stimulations it must produce and converts these into commands 
each time the corresponding countdown reaches zero, which are finally passed back to the LAN Interface, to send to the MEA 
system, closing the loop. The procedures associated with each component are run one after the other in a simple loop control flow, 
but the ‘pong’ environment only moves forward every 200th update, short-circuiting otherwise. Additionally, up to three worker 
processes are launched in parallel, depending on which parts of the system need to be recorded. They receive data from the main 
thread via shared memory and write it to file, allowing the main thread to continue processing data without having to hand control 
to the operating system and back again. B) Numeric operations in the real-time spike detection component of the DishBrain closed 
loop system, including multiple IIR filters. Running a virtual environment in a closed loop imposes strict performance requirements, 
and digital signal processing is the main bottleneck of this system, with close to 40 MiB of data to process every second. Simple 
sequences of IIR digital filters is applied to incoming data, storing multiple arrays of 1024 feedback values in between each sample. 
First, spikes on the incoming data are detected by applying a high pass filter to determine the deviation of the activity, and 
comparing that to the MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass filter is applied to the 
original data to determine whether the MEA hardware needs to be recalibrated, affecting future samples. This system was able to 
keep up with the incoming data on a single thread of an Intel Core i7-8809G. 
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Fig. S3 |  Representation of the specific configurations of the DishBrain platform. Stimulation is delivered to a predefined 
sensory area and activity is measured in the motor regions to determine how the paddle will move. Feedback is provided via the 
sensory area based on the outcome of the motor region activity. Note the different configurations in which motor activity may have 
been interpreted. Configuration 0 was initially adopted as the beginning choice, however when the EXP3 algorithm was used to 
control selection from all of the above options, experimental cultures adopted a preference for configuration 3, which was then 
adopted going forward.  
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Fig S5 | Electrically inactive non-neural cells also display no learning over time and perform at media control 
levels compared to cortical cells. Significance bars show within group differences denoted with *. Symbols show 
between group differences at the given timepoint: # = vs Cortical cells. The number of symbols denotes the p-value 
cut off, where 1 = p < 0.05, 2 = p <0.01, 3 = p < 0.001 and 4 = p <0.0001. Box plots show interquartile range, with 
bars demonstrating 1.5X interquartile range, the line marks the median and ▲marks the mean. A) Looking at the % 
change in rally length compared to match rest controls, cortical cells condition showed significant t = 8.22, p = 1.15-
15) and outperformed HEK293T cells and media control groups at timepoint 2 which showed no change over time 
(Table S2). B) Shows similar differences vs rest performance for aces across conditions, where the Cortical cell group 
showed significantly less % of aces across time (t = 3.21, p = 0.002) along with significantly fewer aces than the HEK 
control and Media control groups at both timepoints (Table S2). C) differences vs rest performance for % if long-
rallies across conditions, where the Cortical cell group showed significantly more long-rallies across time (t = 3.40, p 
= 0.0007) along with significantly fewer aces than the HEK control and Media control groups at the second timepoint 
(Table S2). 
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Table S1. Multivariate statistical tests and all results for tests done.  

Fig. S5 | Key methods used in this study. A) Diagrammatic illustration of the core experimental setup which drove 
the research in this project.  B) Illustration of Dual SMAD inhibition protocol for differentiating pluripotent cells into 
cortical cells.  C) Starting position of paddle and ball as visualised in the DishBrain platform. From the perspective 
of the neural cultures, it is more accurate to imagine that they view this world from the perspective of the paddle 
looking at the ball opposed to top-down as presented here.  D) The Discrete Cosine Transformation (DCT) Basis 
functions used to summarise the symmetry of spontaneous electrophysiological activity.  
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Figure Panel  Parameters Source DF1 DF2 MS F p-
value 

np2 Method 

5 D Average 
Rally Length 

Group - all  1 845 0.305    10.381     0.001 0.012 ANOVA 
Half - all       2 845 0.446    15.172     0.000     0.035 ANOVA 
Interaction - all  2 845 0.078     2.646     0.072 0.006 ANOVA 

6 B Average 
Rally Length 

Group - all  4 394   0.297 3.330     0.011   0.033 RM ANOVA 
half - all       1     394   9.208   98.908     0.000   0.201     RM ANOVA 
Interaction - all  4     394 2.020   21.696     0.000   0.181   RM ANOVA 
Group – time 1 4   394   0.698     7.031     0.000 0.067 ANOVA 
Group – time 2 4   394   1.619    19.519 0.000 0.165 ANOVA 

C % Aces Group - all  4 394   0.081    9.284     0.000   0.086   RM ANOVA 
half - all       1     394   0.131 16.509     0.000   0.040     RM ANOVA 
Interaction - all  4     394 0.058    7.295     0.000 0.069   RM ANOVA 
Group – time 1 4   394   0.044     4.143     0.003     0.040 ANOVA 
Group – time 2 4   394   0.095    15.583     0.000     0.137 ANOVA 

D % Long 
Rally 

Group - all 4 394 0.017    4.767     0.001   0.046   RM ANOVA 
half - all       1     394   0.206   59.746     0.000 0.132     RM ANOVA 
Interaction - all  4     394   0.047   13.531     0.000   0.121 RM ANOVA 
Group – time 1 4 394   0.046    10.191     0.000     0.094 ANOVA 
Group – time 2 4 394   0.017     6.928     0.000     0.066 ANOVA 

7 C Average 
Rally Length 

Group - all  2      353   20740 4.721 0.000  0.026 RM ANOVA 
half - all       1      353   33440 16.577  0.000 0.045 RM ANOVA 
Interaction - all  2      353   25812 12.795 0.000 0.068 RM ANOVA 
Group – time 1 2 483 7559 2.181 0.114  0.009 ANOVA 
Group – time 2 2 483 53943 20.507 0.000     0.078 ANOVA 

D % Change 
Average 
Rally Length 
vs. Rest 
 

Group - all  2      164   49314 
 

7.674 
 

0.001 
 

0.086 
 

RM ANOVA 

Test-day  - all       2 328   16.11
5 

0.037 
 

0.963 
 

0.000 
 

RM ANOVA 

Interaction - all  4 328 908.4
48  

2.100 0.081 0.025 RM ANOVA 

E % Ace vs 
Rest 

Group - all  2      353   19992 6.511 0.002 0.036 RM ANOVA 
half - all       1      353   42.70 0.646 

 
0.422 
 

0.002 
 

RM ANOVA 

Interaction - all  2      353   549.0
25 

8.308 
 

0.000 0.045 
 

RM ANOVA 

Group – time 1 2 483 453.4
64     

2.181 0.127     
 

0.008 
 

ANOVA 

Group – time 2 2 483 2906 
 

18.096 
 

0.000 
 

0.070 
 

ANOVA 

F % Ace vs 
Rest  

Group - all  2      164   2683 12.125  0.000       0.129 RM ANOVA 
Test-day  - all       2 328   110.5

46   
0.971 0.380 0.006 RM ANOVA 

Interaction - all  4 328 180.4
59 

1.585 0.178 0.019 
 

RM ANOVA 

G % Long-
Rally vs Rest 

Group - all  2      353   52.00
7    

0.650     
 

0.523 
 

0.004 
 

RM ANOVA 

half - all       1      353   1089.
865   

29.932 0.000 0.078 RM ANOVA 

Interaction - all  2      353   436.9
36   

12.000 
 

0.000 0.064 
 

RM ANOVA 

Group – time 1 2 483 617.7
08  

8.513 
 

0.000 0.034 
 

ANOVA 
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Group – time 2 2 483 162.9
34  

3.219     
 

0.041     
 

0.013 
 

ANOVA 

H % Long-
Rally vs Rest 

Group - all  2      164   154.4
46 

0.490 
 

0.614  
 

0.006 
 

RM ANOVA 

Test-day  - all       2 328   21.67
8 

-0.244 
 

1.000 
 

0.00 RM ANOVA 

Interaction - all  4 328 118.7
79 

-1.336 
 

1.000 
 

0.00 
 

RM ANOVA 

S4 A % Change 
Average 
Rally Length 
vs. Rest 
 

Group - all  2 237 13897 3.052 0.049 0.02 RM ANOVA 
half - all       1 237 63857 27.008 0.000 0.102 RM ANOVA 
Interaction - all  2 237 13814 5.843 0.003 0.047 RM ANOVA 
Group – time 1 2 443 1389 0.405 0.667 0.002 ANOVA 
Group – time 2 2 442 42205 14.107 0.000 0.060 ANOVA 

B  
% Ace vs 
Rest  

Group - all  2 237 1956 10.036 0.000 0.078 RM ANOVA 
half - all       1 237 378 10.036 0.010 0.028 RM ANOVA 
Interaction - all  2 237 258 4.596 0.011 0.037 RM ANOVA 
Group – time 1 2 443 844 5.060 0.007 0.022 ANOVA 
Group – time 2 2 442 2828 26.297 0.000 0.106 ANOVA 

C % Long-
rallies vs 
Rest 

Group - all  2 237 47.90 0.791 0.454 0.007 ANOVA 
half - all       1 237 1507 33.155 0.000 0.123 RM ANOVA 
Interaction - all  2 237 344 7.585 0.001 0.060 RM ANOVA 
Group – time 1 2 443 425 6.063 0.003 0.027 RM ANOVA 
Group – time 2 2 442 258.7 6.029 0.003 0.027 ANOVA 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.471005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.471005
http://creativecommons.org/licenses/by-nc-nd/4.0/


BioRxiv Preprint 
 

	 	
	 	 	 	 	 	 	 3	December	2021	|	39	

Table S2. Follow up post-hoc tests for multivariate tests with exact p-values. 

Figure Panel Parameters A B Mean A  Mean B  SE T df p-value Hedges Method 
5 D Average Rally Length 

– Second Timepoint 
MCC HCC 0.801 0.843 0.012 -3.453 591.982 0.001 -0.254 Games-Howell 

Nonparametric 
Post-Hoc Test 

Test 1 Test 2 0.780 0.823 0.019 -2.218 125.002 0.072 -0.240 
Test 1 Test 3 0.780 0.901 0.025 -4.767 218.363 0.001 -0.637 
Test 2 Test 3 0.823 0.901 0.019 -4.138 163.172 0.001 -0.402 

6 B Average Rally Length 
– First Timepoint 

CTL HCC 0.9 0.674 0.05 4.513 153.939 0.001 0.632 Games-Howell 
Nonparametric 
Post-Hoc Test 

CTL IS 0.9 0.832 0.052 1.298 113.864 0.67 0.254 
CTL MCC 0.9 0.78 0.051 2.359 151.218 0.132 0.352 
CTL RST 0.9 0.765 0.055 2.451 114.874 0.109 0.464 
HCC IS 0.674 0.832 0.043 -3.66 101.344 0.004 -0.668 
HCC MCC 0.674 0.78 0.041 -2.568 228.111 0.08 -0.335 
HCC RST 0.674 0.765 0.047 -1.967 96.31 0.29 -0.345 

IS MCC 0.832 0.78 0.044 1.18 100.059 0.736 0.223 
IS RST 0.832 0.765 0.049 1.372 77.617 0.629 0.304 

MCC RST 0.78 0.765 0.047 0.317 96.415 0.9 0.058 
Average Rally Length 
– Second Timepoint 

CTL HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829 Games-Howell 
Nonparametric 
Post-Hoc Test 

CTL IS 0.872 0.801 0.037 1.928 114.885 0.309 0.377 
CTL MCC 0.872 1.02 0.04 -3.667 161.682 0.003 -0.547 
CTL RST 0.872 0.815 0.049 1.154 93.05 0.751 0.219 
HCC IS 1.129 0.801 0.036 9.189 168.072 0.001 1.676 
HCC MCC 1.129 1.02 0.039 2.776 236.963 0.046 0.362 
HCC RST 1.129 0.815 0.048 6.467 96.724 0.001 1.135 

IS MCC 0.801 1.02 0.032 -6.872 131.12 0.001 -1.301 
IS RST 0.801 0.815 0.043 -0.325 60.15 0.9 -0.072 

MCC RST 1.02 0.815 0.046 4.472 79.017 0.001 0.817 
CTL HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829 

C % Aces – First 
Timepoint 

CTL HCC 0.508 0.545 0.016 -2.364 145.517 0.131 -0.331 Games-Howell 
Nonparametric 
Post-Hoc Test 

CTL IS 0.508 0.535 0.019 -1.44 99.395 0.59 -0.282 
CTL MCC 0.508 0.534 0.017 -1.52 163.66 0.544 -0.227 
CTL RST 0.508 0.585 0.019 -4.174 106.983 0.001 -0.79 
HCC IS 0.545 0.535 0.016 0.634 70.432 0.9 0.116 
HCC MCC 0.545 0.534 0.014 0.806 205.214 0.9 0.105 
HCC RST 0.545 0.585 0.016 -2.587 78.04 0.083 -0.454 

IS MCC 0.535 0.534 0.017 0.063 87.795 0.9 0.012 
IS RST 0.535 0.585 0.019 -2.705 77.755 0.062 -0.6 
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MCC RST 0.534 0.585 0.017 -3.033 96.296 0.025 -0.554 
% Aces – Second 

Timepoint 
CTL HCC 0.53 0.482 0.012 3.956 124.102 0.001 0.554 Games-Howell 

Nonparametric 
Post-Hoc Test 

CTL IS 0.53 0.556 0.013 -2.017 115.384 0.264 -0.395 
CTL MCC 0.53 0.499 0.013 2.367 150.917 0.13 0.353 
CTL RST 0.53 0.57 0.019 -2.147 79.955 0.211 -0.407 
HCC IS 0.482 0.556 0.009 -8.323 94.994 0.001 -1.518 
HCC MCC 0.482 0.499 0.01 -1.731 195.047 0.419 -0.226 
HCC RST 0.482 0.57 0.016 -5.352 52.462 0.001 -0.939 

IS MCC 0.556 0.499 0.01 5.523 121.048 0.001 1.045 
IS RST 0.556 0.57 0.017 -0.882 55.815 0.9 -0.196 

MCC RST 0.499 0.57 0.017 -4.138 62.492 0.001 -0.756 
D % Long Rally – First 

Timepoint 
CTL HCC 0.095 0.044 0.011 4.598 117.248 0.001 0.644 Games-Howell 

Nonparametric 
Post-Hoc Test 

CTL IS 0.095 0.093 0.013 0.136 107.875 0.9 0.027 
CTL MCC 0.095 0.073 0.012 1.791 148.918 0.384 0.267 
CTL RST 0.095 0.092 0.012 0.235 120 0.9 0.045 
HCC IS 0.044 0.093 0.01 -4.824 60.589 0.001 -0.88 
HCC MCC 0.044 0.073 0.009 -3.387 186.286 0.008 -0.442 
HCC RST 0.044 0.092 0.009 -5.554 82.198 0.001 -0.975 

IS MCC 0.093 0.073 0.011 1.758 85.357 0.407 0.333 
IS RST 0.093 0.092 0.012 0.093 72.665 0.9 0.021 

MCC RST 0.073 0.092 0.01 -1.886 115.124 0.331 -0.344 
% Long Rally – 

Second Timepoint 
CTL HCC 0.093 0.106 0.008 -1.641 118.934 0.475 -0.23 Games-Howell 

Nonparametric 
Post-Hoc Test 

CTL IS 0.093 0.083 0.008 1.154 110.96 0.751 0.226 
CTL MCC 0.093 0.122 0.009 -3.205 148.722 0.014 -0.478 
CTL RST 0.093 0.087 0.011 0.515 102.083 0.9 0.098 
HCC IS 0.106 0.083 0.005 4.313 108.408 0.001 0.787 
HCC MCC 0.106 0.122 0.006 -2.416 189.523 0.116 -0.315 
HCC RST 0.106 0.087 0.009 2.173 59.384 0.204 0.381 

IS MCC 0.083 0.122 0.006 -5.911 131.734 0.001 -1.119 
IS RST 0.083 0.087 0.009 -0.453 59.221 0.9 -0.1 

MCC RST 0.122 0.087 0.009 3.619 77.747 0.005 0.661 
7 C % Change Average 

Rally Length vs. Rest 
Second Timepoint 

 

STIM SIL 43.351 21.394 6.006 3.656 309.729 0.001 0.396 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF 43.351 8.175 4.604 7.64 339.144 0.001 0.854 
SIL NF 21.394 8.175 5.091 2.596 198.782 0.027 0.324 

D % Change Average 
Rally Length vs. Rest 

STIM SIL 43.351 21.394 6.006 3.656 309.729 0.001 0.396 Games-Howell 
Nonparametric 
Post-Hoc Test 

 STIM NF 43.351 8.175 4.604 7.64 339.144 0.001 0.854 
 SIL NF 21.394 8.175 5.091 2.596 198.782 0.027 0.324 
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Second Timepoint – 
Test Day 

E % Ace vs. Rest 
First Timepoint 

STIM SIL -5.633 -4.809 1.502 -0.548 267.191 0.831 -0.059 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF -5.633 -2.283 1.835 -1.826 195.485 0.164 -0.204 
SIL NF -4.809 -2.283 2.016 -1.253 230.34 0.425 -0.156 

% Ace vs. Rest 
Second Timepoint 

STIM SIL -8.669 -1.871 -6.798 -5.795 288.862 0.001 -0.628 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF -8.669 -1.606 -7.063 -4.174 178.239 0.001 -0.466 
SIL NF -1.871 -1.606 -0.265 -0.149 200.322 0.9 -0.019 

F % Ace vs. Rest 
Second Timepoint -

Test Day 

STIM SIL -8.669 -1.871 -6.798 -5.795 288.862 0.001 -0.628 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF -8.669 -1.606 -7.063 -4.174 178.239 0.001 -0.466 
SIL NF -1.871 -1.606 -0.265 -0.149 200.322 0.9 -0.019 

G %Long rally vs. Rest 
First Timepoint 

STIM SIL -1.689 1.8 0.959 -3.64 234.35 0.001 -0.394 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF -1.689 1.082 0.957 -2.896 215.082 0.012 -0.323 
SIL NF 1.8 1.082 1.152 0.623 253.482 0.788 0.078 

%Long rally vs. Rest 
Second Timepoint 

STIM SIL 3.48 2.195 0.794 1.619 250.019 0.24 0.176 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF 3.48 1.58 0.794 2.393 229.45 0.046 0.267 
SIL NF 2.195 1.58 0.933 0.659 253.41 0.767 0.082 

H %Long rally vs. Rest 
Second Timepoint -

Test Day 

STIM SIL 3.48 2.195 0.794 1.619 250.019 0.24 0.176 Games-Howell 
Nonparametric 
Post-Hoc Test 

STIM NF 3.48 1.58 0.794 2.393 229.45 0.046 0.267 
SIL NF 2.195 1.58 0.933 0.659 253.41 0.767 0.082 

S4 A % Change Average 
Rally Length vs. Rest 
Second Timepoint 

 

CCs HEK 44.583 18.682 5.825 4.446 279.739 0.001 0.493 Games-Howell 
Nonparametric 
Post-Hoc Test 

CCs Media 44.583 14.374 6.652 4.541 153.166 0.001 0.591 
HEK Media 18.682 14.374 7.074 0.609 163.673 0.796 0.089 

B % Ace vs. Rest 
First Timepoint 

CCs HEK -5.888 -2.41 1.43 -2.433 241.772 0.041 -0.27 Games-Howell 
Nonparametric 
Post-Hoc Test 

CCs Media -5.888 -1.422 1.649 -2.709 132.14 0.021 -0.352 
HEK Media -2.41 -1.422 1.837 -0.538 164.491 0.837 -0.078 

% Ace vs. Rest 
Second Timepoint 

CCs HEK -8.953 -2.741 1.054 -5.894 292.584 0.001 -0.654 Games-Howell 
Nonparametric 
Post-Hoc Test 

CCs Media -8.953 -0.617 1.405 -5.931 129.919 0.001 -0.772 
HEK Media -2.741 -0.617 1.452 -1.463 137.53 0.313 -0.213 

C %Long rally vs. Rest 
Second Timepoint 

CCs HEK -1.767 1.153 0.963 -3.033 200.551 0.008 -0.336 Games-Howell 
Nonparametric 
Post-Hoc Test 

CCs Media -1.767 0.765 1.184 -2.139 107.676 0.087 -0.278 
HEK Media 1.153 0.765 1.366 0.284 157.623 0.9 0.041 

%Long rally vs. Rest 
Second Timepoint -

Test Day 

CCs HEK 3.523 1.309 0.734 3.016 236.704 0.008 0.335 Games-Howell 
Nonparametric 
Post-Hoc Test 

CCs Media 3.523 1.424 0.824 2.548 134.013 0.032 0.332 
HEK Media 1.309 1.424 0.929 -0.124 169.022 0.9 -0.018 
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Table S3. Percentage configurations selected (in bold) by EXP3 algorithm for control and experimental groups. 

 

 

 

 

 

 

 

 

Movie S1. 

Representative video of a paddle being controlled by the activity of living neurons to play a simulated game of pong. It is of 

particular interest to note how frequently after a successful hit the paddle leads where the ball will eventually end up on the return, 

even before the ball hits the backwall.  

Movie S2. 

Representative video of a paddle being controlled by the activity of living neurons to play a simulated game of pong in the 

SpikeStream interactive visualizer. This is also available live in real time from any active culture in the DishBrain system. 

 

Configuration Control 

% 

Experimental 

% 

0 22.17 15.51 

1 16.16 16.62 

2 13.93 18.50 

3 18.49 19.31 

4 12.25 14.69 

5 17.01 15.37 
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