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Abstract  23 

 24 

Cryo-soft-X-ray tomography is being increasingly used in biological research to study the 25 

morphology of cellular compartments and how they change in response to different stimuli, 26 

such as viral infections. Segmentation of these compartments is limited by time-consuming 27 

manual tools or machine learning algorithms that require extensive time and effort to train. 28 

Here we describe Contour, a new, easy-to-use, highly automated segmentation tool that 29 

enables accelerated segmentation of tomograms to delineate distinct cellular compartments. 30 

Using Contour, cellular structures can be segmented based on their projection intensity and 31 

geometrical width by applying a threshold range to the image and excluding noise smaller in 32 

width than the cellular compartments of interest. This method is less laborious and less prone 33 

to errors from human judgement than current tools that require features to be manually 34 

traced, and does not require training datasets as would machine-learning driven 35 
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segmentation. We show that high-contrast compartments such as mitochondria, lipid 36 

droplets, and features at the cell surface can be easily segmented with this technique in the 37 

context of investigating herpes simplex virus 1 infection. Contour can extract geometric 38 

measurements from 3D segmented volumes, providing a new method to quantitate cryo-soft-39 

X-ray tomography data. Contour can be freely downloaded at 40 

github.com/kamallouisnahas/Contour. 41 

 42 

Impact Statement  43 

 44 

More research groups are using cryo-soft-X-ray tomography as a correlative imaging tool to 45 

study the ultrastructure of cells and tissues but very few tomograms are segmented with 46 

existing segmentation programs. Segmentation is usually a prerequisite for measuring the 47 

geometry of features in tomograms but the time- and labour-intensive nature of current 48 

segmentation techniques means that such measurements are rarely across a large number of 49 

tomograms, as is required for robust statistical analysis. Contour has been designed to 50 

facilitate the automation of segmentation and, as a result, reduce manual effort and increase 51 

the number of tomograms that can be segmented. Because it requires minimal manual 52 

intervention, Contour is not as prone to human error as programs that require the users to 53 

trace the edges of cellular features. Geometry measurements of the segmented volumes can 54 

be calculated using this program, providing a new platform to quantitate cryoSXT data. 55 

Contour also supports quantitation of volumes imported from other segmentation programs. 56 

The generation of a large sample of segmented volumes with Contour that can be used as a 57 

representative training dataset for machine learning applications is a long-term aspiration of 58 

this technique. 59 

 60 

Introduction 61 

 62 

The biology of cellular compartments has been extensively studied using high-resolution 63 

microscopy techniques. Transmission electron microscopy of thin sections of cells stained 64 

with heavy metals has been used for decades to produce images of intracellular ultrastructure 65 

and can resolve structures at the nanometer level(1). For precise quantitation, cellular 66 
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compartments of interest need to be delineated from the other ultrastructural features by 67 

segmentation. These features can be segmented manually by tracing the edges of features 68 

with Segmentation Editor in Fiji(2), or with tools such as Amira (Thermo Scientific) that have 69 

‘intelligent scissors’ that predict the boundaries of the object being traced by the user(3). 70 

However, these manual processes are time-consuming and the boundaries of the segmented 71 

volumes are prone to human interpretation(4). Automatic tools exist, but these also have 72 

limitations. For example, Bayesian matting, wherein a Bayesain framework is used to 73 

delineate foreground objects from the background based on pixel range, is less likely to 74 

successfully segment features with textured or thin edges(5). Similarly, ‘magic wand’ 75 

segmentation, in which pixels of a given range of intensities are segmented if they are all 76 

connected, is less applicable to features with a broad range of intensities and where there is 77 

high noise in the background(6,7). Watershed segmentation is often used to separate objects 78 

by estimating the boundaries between them based on the distances between their highest 79 

intensity maxima. However, the specificity of this technique is low in noisy datasets and can 80 

lead to over-segmentation, whereby many small segments are created within a single 81 

feature(8,9). As a result, segmentation tools that use machine learning and deep neural 82 

networks to distinguish features of interest from the rest of the ultrastructure have been 83 

developed for electron microscopy (e.g. Unet, Ilastik)(10–15). However, these tools require 84 

either a large representative training dataset or modified training for each micrograph. 85 

 86 

The ultrastructural imaging technique known as cryo-soft-X-ray tomography (cryoSXT) has 87 

recently become accessible as a tool to cell biologists and pathologists to image the cellular 88 

compartments of unfixed whole cells in 3D(16,17). Moreover, cryoSXT is being used as a 89 

correlative imaging technique with cryo-structured illumination microscopy (cryoSIM) to 90 

identify features in cellular ultrastructure(18,19). X rays with a relatively low energy (~0.5 91 

keV)(16), compared with those used for crystallography and medical imaging (~5–30 keV)(20,21), 92 

are used to illuminate the sample and transmission is reduced by absorption through carbon-93 

rich structures, such as membranous cellular compartments. As a result, the signal in cryoSXT 94 

data appears dark due to X-ray absorption and the background appears light due to X-ray 95 

transmission. This technique is used to resolve cellular compartments to a theoretical 96 

resolution limit of 25 nm and produce 3D tomograms of whole-cell ultrastructure(17). CryoSXT 97 

imaging of cells and tissues takes 5–20 minutes and thus a large set of tomograms—each 98 
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containing cellular compartments that need to be delineated by segmentation—can be 99 

collected in a relatively short interval(16). However, segmentation tools to mine information 100 

out of X-ray tomograms still need to be developed. One reason for this may be that X-ray 101 

tomograms are more difficult to segment than electron micrographs because the use of soft 102 

X rays to image the cell volume in 3D under near-native conditions produces higher noise and 103 

lower contrast than the heavy metal labelling used in electron microscopy(22). 104 

Although manual segmentation can be used to isolate features of interest, this is more time-105 

consuming for 3D datasets that span the entire depth of the field of view within the cell(4). 106 

The development of machine learning tools for cryoSXT data could increase the rate and 107 

efficiency of segmentation. However, the resolution, density and morphology of features can 108 

vary widely between cryoSXT datasets (e.g. depending on collection date, passage number of 109 

cultured cells, sample preparation strategy, etc.(23)), and this lack of consistency may 110 

complicate the use of machine learning tools to segment tomograms. Currently, there is a 111 

lack of training datasets for machine learning in the form of segmented volumes from multiple 112 

tomograms. SuRVoS has been developed to circumvent the need for training datasets in this 113 

form. Instead, individual frames are segmented and used to train segmentation of the whole 114 

tomogram(4). However, this strategy involves training for each tomogram, which is time-115 

consuming and does not keep pace with the high rate of cryoSXT tomogram acquisition. 116 

 117 

Here we developed Contour, a semi-automated segmentation tool for cryoSXT. This tool can 118 

be used to segment high contrast features in cryoSXT tomograms, such as mitochondria, lipid 119 

droplets, and membranous features. This is achieved by a combination of thresholding based 120 

on the projection intensity (i.e. darkness) of the features and applying a width restriction 121 

based on the size of the features. This automated procedure can be performed globally (i.e. 122 

on the entire tomogram). Some features of interest may be excluded due to the strict width 123 

restriction, but segmentation of these features can be refined locally in smaller regions of 124 

interest. Contour was developed using Python 3.7 and is available for download on Github 125 

with example datasets included (github.com/kamallouisnahas/Contour). The segmentation 126 

approach used in Contour is faster than manual segmentation tools as it does not require 127 

laborious freehand drawing and interpolation like the Segmentation Editor available in Fiji(2).  128 

 129 
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Extracting quantitative data from cryoSXT datasets is a current challenge and Contour can be 130 

used to measure the volume of segmented elements as well as their width along their longest 131 

axis. Contour was designed to be used alongside existing segmentation tools: for features that 132 

are difficult to segment based on projection intensity and width in Contour (e.g. cytoplasmic 133 

vesicles) other segmentation tools can be used to generate segmented volumes that can be 134 

imported into Contour for quantitation. We have used Contour in a recent preprint to study 135 

how the morphology of mitochondria and cytoplasmic vesicles change during infection with 136 

herpes simplex virus-1 (HSV-1)(24). We generated multiple segmented volumes with Contour 137 

and found that mitochondria became more elongated and vesicles reduced in width as the 138 

infection progressed(24). In this paper we discuss the algorithm and applications of this 139 

segmentation tool to cryoSXT data. 140 

 141 

 142 

Results 143 

 144 

The width of cellular compartments and the projection intensity of their voxels can be 145 

exploited for semi-automated segmentation 146 

 147 

High-contrast cellular compartments in tomograms can be segmented by applying a threshold 148 

on voxel intensity. CryoSXT Z stacks were generated for segmentation using IMOD version 149 

5.1.2(25) with a back projection strategy, radial filtering in the form of a simultaneous iterations 150 

reconstruction technique (SIRT)-like filter being subsequently applied to reduce noise. Twenty 151 

iterations of the SIRT-like filter were applied to limit blurring and signal loss(26). Mitochondria 152 

have a low voxel intensity (high X ray absorbance) compared with the cytosol and an arbitrary 153 

threshold range determined by trial and error was used to segment them in a U2OS cell from 154 

an 8-bit reconstructed tomogram (Fig. 1A)(18). However, segmentation based solely on 155 

projection intensity was observed to be highly sensitive to voxel noise and non-specific 156 

features, such as the outline of the lipid droplets. In order to increase specificity, an additional 157 

segmentation parameter in Contour was used based on the width of the cellular 158 

compartments of interest (Fig. 1B). Segmentation was first performed on a complete 159 
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reconstructed cryoSXT Z stack using the global segmentation algorithm in Contour. The 160 

segmentation was later refined in smaller regions using the local segmentation algorithm.  161 

 162 

During global segmentation, the same threshold range applied in Figure 1A was applied to the 163 

tomogram in Figure 1B to isolate voxels of the desired intensity and to produce binary masks 164 

for each Z image (0 for background voxels and 1 for segmented voxels). A width restriction 165 

was determined by manually inspecting the width of the mitochondria and was applied in the 166 

second step to exclude noise and non-specific elements smaller in width than the 167 

mitochondria, such as the outline of lipid droplets. In order to apply this restriction without 168 

the slow process of iterating through each voxel, the binary masks were compressed in a 169 

lossless manner by run-length encoding(27). Using this compression method, the run of voxel 170 

values (e.g. 000110000) in the binary mask were compressed into a sequence where the voxel 171 

value was coupled to the number of times it appeared consecutively (e.g. (0,3),(1,2),(0,4)). 172 

The width restriction was applied to the compressed sequence by converting voxels with a 173 

value of 1 to 0 if the number of consecutive voxels was lower than the desired width. The data 174 

compression and width restriction were applied twice independently along rows and columns 175 

in the horizontal and vertical directions, respectively, and the modified sequences were 176 

decompressed into two full binary masks. Voxels segmented within the threshold range were 177 

converted into background if their width was less than the width restriction. As a result, the 178 

segmented voxels that remained appeared as stripes with a width greater than or equal to 179 

the width restriction. The stripes were horizontal or vertical depending on the direction in 180 

which the width restriction was applied (Fig. 1B). The arrays of voxels that made up the 181 

horizontal and vertical binary masks were multiplied together such that only coordinates that 182 

contained a voxel of 1 in both masks (i.e. 1×1) were included in the product segmented 183 

volume and all other combinations were converted to background (i.e. 1×0, 0×1, and 0×0). 184 

This multiplication step eliminated most noise by ensuring that only rectangular matrices of 185 

dimensions width×width or larger remained. In some cases, horizontal and vertical stripes 186 

were produced from noise or non-specific features, such as the outline of lipid droplets. 187 

Voxels at the intersection between these stripes (i.e. 1×1) were also included after the 188 

multiplication step. The run-length encoding, width restriction, and data decompression were 189 

reapplied to the product segmented array to filter out these artefacts. The combined 190 

application of thresholding and a width restriction results in a better-defined segmentation 191 
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with less noise and fewer non-specific elements. However, the increase in specificity afforded 192 

by width analysis can lead to some desired elements becoming excluded from the segmented 193 

volume. In the presented example, the global segmentation step excluded several areas 194 

based on the minimum width restriction (Fig. 1C). These areas could be filled by using the 195 

local segmentation algorithm in Contour, whereby thresholding and width restriction were 196 

applied locally in a smaller 3D region of interest containing these excluded areas (Fig. 1D) 197 

using a lower minimal width value (4 voxels). Given that local segmentation is performed on 198 

a smaller 3D region of interest, there is no requirement for data compression by run-length 199 

encoding before applying width restriction to improve analysis efficiency(27). 200 

 201 

It is likely that local segmentation will be required following global segmentation. However, 202 

global segmentation of the complete Z stack is not required before performing local 203 

segmentations. If it is determined that the cytoplasm is too dense with high-contrast 204 

compartments to perform a global segmentation, this step can be skipped and local 205 

segmentations can be performed on the entire tomogram instead (Fig. 2A and Table 1). In 206 

addition to the global and local segmentation algorithms, manual ‘fill’ and ‘erase’ options are 207 

available for manual adjustment of the segmented volumes (Fig. 1 C and D). The segmented 208 

volume can be rendered using 3D Viewer in Fiji(2) or other appropriate visualisation software 209 

(e.g. Amira (Thermo Scientific) or Chimera/ChimeraX (UCSF)(28)) (Fig. 1E). 210 

  211 
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 212 

 213 
Figure 1. Semi-automated segmentation by analysing the intensity and width of cellular 214 
features. (A) The mitochondria in a tomogram of a U2OS cell were segmented by applying a 215 
voxel intensity threshold (blue arrows) LD, lipid droplet; Mito, mitochondrion. This technique 216 
was highly sensitive as most of the mitochondria were included and only a few areas were 217 
missing (white arrows). However, intensity thresholding alone led to noise and non-specific 218 
features such as the outline of lipid droplets being included in the segmented volume (orange 219 
arrows). (B) In Contour, a width restriction was applied in addition to an intensity threshold 220 
to segment the mitochondria. Any voxels included in the threshold range would only be 221 
included in the product segmented volume if they formed part of a 10×10 voxel area or larger 222 
(I-IV). The segmented product was specific to mitochondria, with less noise and fewer 223 
unwanted elements. However, there were more falsely-excluded areas due to the higher 224 
specificity (white arrows). (C) Remaining non-specific elements were manually erased (red 225 
box) and local regions of interest containing the excluded areas were identified (white boxes) 226 
and (D) the analysis was reattempted with a smaller width restriction of 4 voxels (green fill). 227 
(E) The final segmented volume was rendered in 3D using 3D Viewer in Fiji(2). 228 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.470962doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.470962
http://creativecommons.org/licenses/by/4.0/


 229 
Figure 2. Segmentation pipeline and decision tree in Contour. (A) Global and local 230 
segmentation algorithms can be applied to delineate cellular compartments from a cryoSXT 231 
Z stack or from smaller 3D regions of interest. Global segmentation is recommended if the 232 
cellular compartments are dispersed throughout the tomogram. For smaller regions of 233 
interest, the local algorithm can be used to discriminate features in crowded areas or features 234 
excluded from the global segmentation. The threshold range and width restriction 235 
parameters can be modified to optimise the specificity and sensitivity of the global 236 
segmentation. (B) Discrete segmented elements can be differentiated and their volumes and 237 
widths can be calculated. Any elements smaller in volume than a specified number of voxels 238 
can be filtered out and this can be used to eliminate small segments of noise in one step. (C) 239 
Final touches can be applied to improve the appearance of the segmented volumes. A 240 
smoothing function can be used to smoothen blocky edges in 2D slices and a Gaussian blur 241 
can be applied to reduce the appearance of layering in between slices of the segmented 242 
volume (Fig. 4). 243 
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Table 1. Troubleshooting segmentation in Contour. 244 
Problem Possible cause Possible solution 
Feature detection 
Global segmentation failed 
to produce a segmented 
volume 

Thresholding and width 
restriction parameters were 
too stringent 

Increase the threshold 
range and/or reduce the 
width restriction 

Global segmentation 
produced a lot of noise 

Thresholding and width 
restriction parameters were 
too permissive 

Reduce the threshold range 
and/or increase the width 
restriction 

Cellular compartments in 
the field of view were too 
crowded 

Skip global segmentation 
and perform local 
segmentations instead 

Multiple features of interest 
were excluded after the 
global segmentation 

Thresholding and width 
restriction parameters were 
too stringent Fill in the excluded regions 

using local segmentations Cellular compartments of 
interest have uneven 
projection intensity 

The edge or terminus of a 
feature or a constricted 
region within the feature 
was excluded from a global 
or local segmentation   

The width restriction was 
too stringent at this region 

Apply a local segmentation 
to this region with a 
reduced width restriction 

Noise elimination 

Too many small regions of 
noise (e.g. <1000 voxels) are 
present in the segmented 
volume. 

Width restriction 
parameters were too 
permissive 

Noise can be eliminated 
altogether in one step using 
the filter function that 
eliminates segmented 
elements below a certain 
volume of voxels. The 
elements need to be 
differentiated as a 
prerequisite. 

Appearance of segmented volume 

The segmented elements 
have blocky edges 

A high minimum width 
restriction led to large 
width×width areas being 
produced in the segmented 
volume 

Apply the smoothing 
function to the segmented 
volume 

The segmented elements 
are too thin in the 
smoothened segmented 
volume 

Too many iterations of the 
smoothing function were 
applied, resulting in 
overtrimming of the edges. 

Use fewer iterations (1 to 3 
are recommended) 

Contour lines are visible in a 
3D render of the segmented 
volume 

The segmented volume was 
not smoothened or blurred. 

Apply the smoothing 
function to the segmented 
volume and apply a 
Gaussian blur. 
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 245 
Applications of Contour to analyse geometry of cellular compartments 246 

 247 

We have shown that mitochondria can be segmented using the global and local segmentation 248 

parameters based on their intensity and width (Fig. 1, 2, and 3A). We have used Contour to 249 

segment mitochondria in a recent preprint where we studied how mitochondrial morphology 250 

changes during HSV-1 infection. We found that mitochondria transitioned from a 251 

heterogenous morphology in uninfected U2OS cells to a more consistently elongated and 252 

branched formation as the infection progressed(24). Contour can be used to segment other 253 

cellular compartments based on intensity and width, such as lipid droplets (Fig. 3B) and 254 

features at the cell surface or at cell-cell junctions, such as large internalisations of the plasma 255 

membrane that may resemble bulk endosomes arising from clathrin-independent endocytic 256 

events (Fig. 3C)(29).  257 

 258 

Discrete segmented elements can be differentiated from each other and colour-coded to aid 259 

discrimination of the components (Fig.2B and Fig. 4). This is achieved by assigning a common 260 

ID number to segmented voxels and their direct-contact neighbours. The inclusion criteria for 261 

direct-contact neighbours are any two voxels that are at XY coordinates that differ by one 262 

step in any of the eight cardinal (N,S,E, or W) and ordinal (NE, SE, SW, or NW) directions; or 263 

any two voxels at the same XY coordinate in tandem Z planes.  264 

 265 

Quantitation of the geometry of cellular features is a current challenge in cryoSXT because 266 

segmentation is often a prerequisite and measurements may need to be taken at an angle 267 

distinct from the slices of the 3D projection(16). Contour has the capacity to automatically 268 

calculate the volumes of cellular features (in units of voxels) along any axis once the user has 269 

differentiated these elements. For example, the mean volume of the mitochondria in a single 270 

9.46×9.46 μm2 field of view of a U2OS cell, given a voxel size of 10 nm3, was calculated to be 271 

0.3 ± 0.48 μm3 (mean ± SD; Fig. 3D). The width of each segmented element along its longest 272 

axis, which may not be parallel with the slices of the tomographic projection, can also be 273 

calculated in this program. This is achieved by isolating the voxels at the perimeter of each 274 

segmented element in each image plane and calculating all combinations of the distance (i.e. 275 

modulus) between any two of these voxels across the complete Z stack. The longest of these 276 
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moduli is presented as the width of the segmented element in units of voxels. The longest 277 

width of each lipid droplet was calculated for a 9.46×9.46 μm2 field of view and the droplet 278 

width was found to be 1.04 ± 0.51 μm (mean ± SD; Fig. 3E). Segmented volumes generated 279 

with other segmentation tools, such as Segmentation Editor in Fiji(2), can be imported into 280 

Contour for quantitation based on the methods described above. 281 

 282 

 283 
Figure 3. Segmentation and quantitation of cellular features. Contour can be used to 284 
segment high contrast features in U2OS cells such as (A) mitochondria, (B) lipid droplets, and 285 
(C) distinctive membrane topology at cell-cell junctions. Cyto, cytoplasm; Nuc, nucleus. 286 
Quantitative data can be extracted from the segmented volumes. (D) The mitochondria in this 287 
9.46×9.46 μm2 field of view of a U2OS cell had a mean volume of 0.3 ± 0.48 μm3 SD. (E) The 288 
mean width along the longest axis of each lipid droplet in this 9.46×9.46 μm field of view of a 289 
U2OS cell was found to be 1.04 ± 0.51 μm SD. Scale bar = 1μm. Error bars show mean ± SD. 290 
 291 

 292 

Polishing the segmented volume 293 

 294 

After the segmented elements have been differentiated, final touches can be applied to 295 

improve the appearance of the 3D volume (Fig. 4). The width restriction applied during the 296 

segmentation filters out any segmented voxels that do not form part of a width×width area 297 
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or larger. As a result, segmented elements may appear blocky. A smoothing function is 298 

supplied to smoothen the edges of segmented elements (Fig. 4). Each segmented plane in the 299 

Z stack is converted into a binary mask (0 for background and 1 for segment) and is translated 300 

by one step in all eight cardinal and ordinal directions and the voxel arrays are added together 301 

such that voxels may have a value of 0 to 8. Voxels with less than a median of 5, which occur 302 

at the perimeter of segmented elements, were transformed into background, resulting in the 303 

trimming of the edges of the segmented elements. A greater number of iterations of this 304 

function increase the extent of smoothing but reduce the width of the segmented elements. 305 

A compromise of 1-3 iterations is recommended to avoid overtrimming (Table 1). The 306 

smoothing function is only applied within slices of the segmented volume and layering 307 

artefacts can be observed in between slices. A two-dimensional Gaussian blur can also be 308 

applied per slice to reduce the appearance of layering artefacts and improve the 3D rendering 309 

of the volume.  310 

 311 

 312 

Figure 4. Colour-coding of differentiated elements and smoothing of the 3D volume. 313 
Segmented voxels are grouped together into separate elements that can be colour-coded to 314 
help distinguish them from each other. A smoothing function can be applied to 2D arrays of 315 
voxels to smooth the edges of segmented elements. Because the smoothing is applied to the 316 
2D slices, layering artefacts can be observed in between the slices. A Gaussian blur can be 317 
applied per 2D slice to reduce the appearance of layering artefacts. Scale bars = 1μm. 318 
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Discussion 321 

 322 

Here we reported the development of Contour, a segmentation tool for highly contrasting 323 

cellular features in cryoSXT tomograms that analyses the projection intensity (i.e. darkness) 324 

and width of cellular compartments. This program also calculates 3D geometric 325 

measurements from the segmented elements. We demonstrate that mitochondria, lipid 326 

droplets, and the topology of the cell surface at cell-cell junctions can be segmented using 327 

this technique. Contour was developed to accelerate segmentations of cryoSXT tomograms. 328 

Existing segmentation techniques may be time-consuming and laborious to users: manual 329 

segmentation tools require the user to trace the edges of features in periodic Z planes and 330 

interpolate between them and, although machine-learning tools such as SuRVoS are 331 

available, these tools require fresh training for each tomogram(3,4,16). The algorithm used by 332 

Contour for segmentation is largely automated, allowing users to perform either a global 333 

segmentation on a complete cryoSXT Z stack or local segmentations in regions of interest. In 334 

either case, training datasets are not required, and the user does not need to trace around 335 

features, making the process less laborious and subjective(4).  336 

 337 

We have applied Contour to one study, where we investigated how HSV-1 infection alters the 338 

morphology of cellular compartments, and we were able to segment mitochondria in multiple 339 

tomograms(24). The dependency on low projection intensity and width for the segmentation 340 

does pose some limitations. For example, some cellular compartments such as mitochondria 341 

may have uneven intensities. It is still possible to use Contour for these features, but 342 

successful analysis requires a greater number of local segmentations to be carried out with 343 

different threshold ranges (Table 1). The use of a width restriction parameter to distinguish 344 

features from noise complicates the application of this technique to thin cellular features, 345 

such as cytoskeletal filaments that are normally less than five voxels in width(30). Cytoplasmic 346 

vesicles often have a highly contrasting membrane but a light lumen, making it difficult to 347 

segment such features when applying a minimum width restriction. Although we did not use 348 

Contour to segment cytoplasmic vesicles in our recent study(24), we used Contour to calculate 349 

the longest widths of each vesicle that we manually segmented using Segmentation Editor in 350 

Fiji(2). We therefore show that Contour can be used in conjunction with other segmentation 351 
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tools to calculate quantitative data. Our semi-automated segmentation tool could be used to 352 

generate sufficient segmented volumes of different cellular compartments to facilitate 353 

training of machine learning algorithms in the future. CryoSXT is a growing technique and its 354 

applications are becoming more widespread in biomedical imaging, especially as a correlative 355 

imaging tool with cryoSIM(17–19). Contour is a largely automated segmentation tool designed 356 

to keep up with the pace of tomogram acquisition and to provide a new method for 357 

quantifying tomographic data. 358 

 359 

 360 

Materials & Methods 361 

 362 

Sample preparation 363 

 364 

3 mm gold EM grids with a holey carbon film (R 2/2, 200 mesh; Quantifoil Cat no. AU G200F1 365 

finder, batches Q45352 & Q45353) were glow discharged and treated with filtered poly-L-366 

lysine for 10 minutes (Sigma Aldrich Cat no. P4832). U2OS cells (ATCC HTB-96; RRID 367 

CVCL_0042) were seeded onto the grids at 3 x 105 cells per well in a 6-well plate. The cells 368 

were cultivated overnight in Dulbecco’s Modified Eagle’s Medium (DMEM; Thermo Fisher 369 

Scientific, Cat no. 45011590366) supplemented with 10% (v/v) fetal bovine serum (FBS; 370 

Capricorn, Cat no. FBS-11A), 4 mM L-glutamine (Thermo Fisher Scientific, Cat# 25030081), and 371 

penicillin/streptomycin (10000 U/ml; Thermo Fisher Scientific, Cat# 15070063). 2 µL of gold 372 

fiducials (BBI Solutions; EM.GC250, batch 026935) were added to the grids as previously 373 

described(18) and the grids were blotted with for 0.5-1 s at 30°C and 80% humidity with a Leica 374 

EM GP2 plunge freezer. The grids were plunged into liquid ethane and then transferred into 375 

liquid nitrogen. The tomograms presented in this paper were collected for a study of the 376 

effect of HSV-1 infection on the morphology of cellular compartments in U2OS cells(24). All 377 

tomograms shown here were collected from uninfected cells except for Fig. 3B, which was 378 

collected from a cell infected with 1 plaque forming unit per cell of HSV-1 as previously 379 

described(24). 380 

 381 

 382 
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Cryo-soft-X-ray tomography 383 

 384 

CryoSXT data was collected at beamline B24 at the UK synchrotron Diamond Light Source 385 

using a UltraXRM-S/L220c X-ray microscope (Carl Zeiss X-ray Microscopy). Soft X-rays (500 eV, 386 

λ=2.48 nm) were focussed onto the grid sample by diffraction using a diffraction grating 387 

known as a zone plate, which can achieve a nominal resolution of 25nm. A 1024B Pixis CCD 388 

camera (Princeton instruments) was used to collect tomographic data from U2OS cells with a 389 

9.46×9.46 μm field of view by rotating the grid within the range -60° to +60° at increments of 390 

0.5° or 1.0° and X-ray exposure times of 0.5 s or 1.0 s. A single-axis alignment of the 391 

tomographic images were generated using IMOD (version 4.9.2)(25). A coarse alignment with 392 

a high-frequency cut off radius of 0.1 and a subsequent fine alignment with fiducial tracking 393 

were used to align the images. The data was reoriented in 3D using a boundary model. A final 394 

alignment was carried out using linear interpolation and tomograms were reconstructed 395 

using the back projection strategy with radial filtering to reduce noise in the form of 20 396 

iterations of simultaneous iterations reconstruction technique (SIRT)-like filter(26). The 397 

tomograms were converted from a 16-bit signed format to an 8-bit format before 398 

segmentation.  399 

 400 

Global segmentation 401 

 402 

Tomographic images are stored as NumPy(31) arrays in Python 3.7 and the images in the Z 403 

plane are stored in a list. Datasets with a field of view greater than 512×512 voxels were 404 

downscaled by a multiple of two to improve the efficiency of the program and the scaling was 405 

accounted for during quantitation. A threshold range with a desired minimum and maximum 406 

value was applied to produce binary masks for each image (0 for background and 1 for 407 

segmented voxels). The sequence of 0s and 1s is compressed losslessly by run-length 408 

encoding into a paired sequence where the value is coupled to the number of times it is 409 

repeated(27). Values of 1 are converted to 0 if the number of repetitions is lower than the 410 

width restriction and the processed sequence is decompressed into a full array. The run-411 

length encoding and width restrictions are applied twice independently—down columns and 412 

along rows. Both binary arrays are multiplied together so that only voxels with a value of 1 in 413 

both arrays are included in the product array. This process is repeated to remove artefacts. 414 
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 415 

Local segmentation 416 

 417 

A cuboidal region of interest is selected from the Z stack and a threshold range is applied to 418 

produce binary masks for each image. A width restriction is applied by iterating through the 419 

voxels in each image plane in the region of interest and counting the number of repeats. If 420 

the number of repeats is lower than the width restriction the values are converted from 1 to 421 

0. This process is run along rows to produce a new array. This new array is used as the input 422 

array to rerun the width restriction down columns. This process is repeated once along rows 423 

and columns to remove artefacts. 424 

 425 

Quantitation and filtering 426 

 427 

Segmented voxels were attributed with integer IDs that served to distinguish discrete 428 

elements. IDs were shared between neighbouring voxels that were one position away from 429 

each other in all cardinal (N,S,E, or W) and ordinal (NE, SE, SW, or NW) directions or voxels 430 

with matching XY coordinates in tandem Z planes. Neighbouring voxels were first grouped 431 

together in two dimensions in the XY planes. Any two-dimensional groups from tandem Z 432 

planes were merged into one 3D group if they contained voxels whose coordinates 433 

overlapped in XY. This process was run in ascending and descending order of Z slices to ensure 434 

that segment branches, which were separated from the main body of the segment in some 435 

slices, were not excluded from the 3D merger owing to the direction of iteration through the 436 

Z stack. The volume of each 3D segment was calculated in units of voxels. This was done by 437 

isolating all the voxels in the segmented volume with a given ID using the NumPy.argwhere 438 

function(31), which produces an array of XY coordinates corresponding to these voxels per Z 439 

slice. The length of the arrays for each slice were calculated and divided by two to retrieve 440 

the number of voxels. Small segmented elements of noise were eliminated by replacing any 441 

elements with a volume of less than a desired volume threshold (e.g. 1000 voxels) with 442 

background voxels of value 0. 443 

 444 

The width of a 3D segmented element was calculated by finding the longest distance between 445 

any two voxels in the segment. First, the voxels present at the perimeter of elements were 446 
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filtered from all the voxels in the segment by determining if any neighbouring voxels have a 447 

value of 0 (background). Second, the modulus between all combinations of two perimeter 448 

voxels was calculated (Equation 1). The longest modulus was given as the width of the 449 

segment in units of voxels. Stacks of binary masks containing elements with known volumes 450 

and widths were generated to verify the quantitation functions and are available at 451 

https://github.com/kamallouisnahas/Contour/tree/main/known_quantities. 452 

 453 

!(𝑥! − 𝑥")# + (𝑦! − 𝑦")#+(𝑧! − 𝑧")# 454 

Equation 1. The modulus of all vectors connecting perimeter voxels a and b was calculated 455 

from coordinates x, y, and z. 456 

 457 

 458 

Smoothing and Gaussian blur 459 

 460 

The edges of segmented elements were smoothed by translating the arrays of voxels for each 461 

slice in the tomographic projection by one voxel in each cardinal and ordinal direction. Binary 462 

masks were used and each segmented voxel had a value of 1. A sum array was produced by 463 

adding together all eight translated arrays, such that voxels ranged from 0 to 8. A median 464 

array was calculated from the sum array by transforming voxels < 5 into values of 0 and voxels 465 

≥ 5 into values of 1. Several iterations of this function (up to 3) were applied to increase the 466 

extent of smoothing. 467 

 468 

The Gaussian filter function from the SciPy library(32) was applied with a standard deviation of 469 

1 to each of the three colours individually in RGB images of the differentiated segmented 470 

elements. Quantitation of volume and width were not affected by the smoothing and 471 

Gaussian blur functions. 472 

 473 

Statistics 474 

 475 

SuperPlots was used to generate scatterplots and to calculate the mean and standard 476 

deviation for the volume of mitochondria and the width of lipid droplets(33). 477 
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