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The genome of the SARS-CoV-2 Omicron variant (B.1.1.529)
was released on November 22, 2021, which has caused a flurry
of media attention due the large number of mutations it con-
tains. These raw data have spurred questions around vaccine
efficacy. Given that neither the structural information nor the
experimentally-derived antibody interaction of this variant are
available, we have turned to predictive computational meth-
ods to model the mutated structure of the spike protein’s re-
ceptor binding domain and posit potential changes to vaccine
efficacy. In this study, we predict some structural changes in
the receptor-binding domain that may reduce antibody interac-
tion, but no drastic changes that would completely evade exist-
ing neutralizing antibodies (and therefore current vaccines).
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Introduction
A team of researchers from the Botswana-Harvard HIV Ref-
erence Laboratory submitted a new SARS-CoV-2 genome se-
quence to GISAID on November 22, 2021 (GISAID acces-
sion. EPI_ISL_6752027). The specimen was taken from a
living 59-year-old male from Gaborone, Botswana using a
nasopharyngeal swab and was sequenced using a Nanopore
MinION device.
This sample’s genome contains 60 mutations from the
Wuhan-derived reference genome (GenBank accession no.
NC_045512.2) (1), 37 of which are in the Spike (S) protein.
This variant was given the identifier B.1.1.529 by PANGO
lineages (2). On November 26, 2021, the WHO has desig-
nated B.1.1.529 as a Variant of Concern (VOC), named Omi-
cron (3).
The emergence of new SARS-CoV-2 variants is expected.
Therefore, scientists have advocated for close international
monitoring to determine the need for vaccination boosters
and redesign (4). Hence, the identification of the omicron
variant is not surprising. What is surprising is the number of
mutations that the omicron variant accumulated compared to
the first sequenced genome of SARS-CoV-2.
Different authors have warned that limited SARS-CoV-2
sampling and sequencing from positive cases, especially
from asymptomatic and symptomatic cases that did not re-
quire hospitalization, would make it challenging to identify
new mutations in the virus. For example, Brito et al. (5)
analyzed the spatiotemporal heterogeneity in each country’s

Fig. 1. Process flow of the prediction analysis steps.

SARS-CoV-2 genomic surveillance efforts using metadata
submitted to GISAID until May 30, 2021. These authors
calculate that sequencing capacity should be at least 0.5%
of cases per week when incidence is more than 100 positive
cases every 100,000 people. This explains, for example, why
Denmark observes greater lineage diversity than most other
countries. Brito et al. (5) point out that Denmark’s turnaround
for sequencing, processing, and sharing SARS-CoV-2 ge-
nomic data was less than 18 days, and its sequencing rate
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was greater than 32% of cases.
While sampling bias can explain why we may miss new mu-
tations and fail to identify new variants of low prevalence,
the emergence of new variants is due to factors that favor
the transmission of SARS-CoV-2, including low vaccination
rates in some regions, especially in low and middle-income
countries (LMICs). Therefore, disparities in vaccination rates
combined with sampling bias explain why scientists may
continue to be surprised by the mutations in new SARS-CoV-
2 variants.
There are many questions regarding genomic epidemiology
and the lessons we can learn from the COVID-19 pandemic.
Those questions are beyond the scope of this manuscript, and
we addressed them elsewhere (6). While the origin and evo-
lution of the Omicron variant are still open questions, here we
focus on the potential implications of the mutations observed
in this variant.
This seemingly hyper-mutated variant is of public health con-
cern with unanswered questions surrounding vaccine protec-
tion (from available vaccines), the possibility of reinfection,
transmissibility, and pathogenicity.
Regarding vaccine efficacy, we must look at the receptor-
binding domain (RBD), part of the S1 subunit, of the spike
protein as this is the binding site for neutralizing antibod-
ies. This domain exists between positions 391 and 541 of the
spike protein. Omicron contains 15 mutations in the RBD,
none of which are deletions or insertions.
Given that an experimentally-derived structure of the Omi-
cron spike protein is not yet available, we must derive a pre-
dicted structure from its sequence in silico. Then, we can use
available neutralizing antibody structures to computationally
model the interaction between Omicron and the paratopes of
the antibodies, thus allowing us to compare potential affinity
changes due to the mutations and posit their effects to vaccine
efficacy.

Methods
Sequence Comparison among VBMs and VOCs. We
downloaded the reference genome of SARS-CoV-2 (Wuhan-
Hu-1, NCBI’s RefSeq accession no. NC_045512.2) as well
as the first 100 complete genome sequences (≥29,000 bp) of
each Variant of Concern (VOC) and Variant Being Monitored
(VBM). The total number of input sequences was 1,301. We
aligned all of these complete genomes using MAFFT version
7.475 (7) with the "auto" option and trimmed the alignment
to remove the 5’-UTR and 3’-UTR regions. We also removed
duplicated sequences or sequences with more than 5% of
missing data, leaving us with 1,026 sequences.
We annotated each of the 1,026 remaining sequences using
the strategy described in Machado et al. (2021) (8). Once
we had all the predicted spike proteins for each of the 1,026
genomes, we aligned those sequences based on their trans-
lation with the help of MAFFT using the TranslatorX
pipeline (9). We removed duplicated sequences and se-
quences with more than 5% of missing data. Finally, we
identified the receptor biding motif on that alignment based
on sequence similarity with the reference.

We then calculated the pairwise p-distances between each
pair of sequences were calculated using MEGA version
11.0.10 (10). This distance is the proportion (p) of nucleotide
sites at which two sequences being compared are different.
The p-distances were calculated for the whole spike align-
ments (nucleotides) but also for the alignment of its receptor
binding motif (RBM; position 430–522 of the spike amino
acid sequence, a subset of the positions in the RBD).
This variant nucleotide sequence for the spike protein was
then translated into amino acids using the standard translation
table. This sequence was then trimmed to only contain the
RBD of the spike protein (positions 319 to 541).

Receptor-Binding Domain Structural Prediction. Us-
ing the derived RBD amino acid sequence for Omicron,
we used AlphaFold2 to create a predicted 3D struc-
ture. AlphaFold2 is a neural network-based deep learning
model created by Google DeepMind (11). The algorithm first
searches for homologous sequences with existing structures
to use as a scaffold on which to place the new sequence.
This prediction was run on the with the "single sequence"
mode of AlphaFold2 using the predicted TM-score (PTM)
method. We also specified that the algorithm should run an
Amber relaxation procedure to repair any structural viola-
tions in the predicted model (12). This resulted in a .PDB
file of the predicted RBD structure for Omicron along with
metrics surrounding the predicted aligned error (PAE), se-
quence coverage, and predicted confidence (pLDDT) by po-
sition (available in Supplementary Materials).

Neutralizing Antibody Interaction Simulation. Using the
predicted structure of the Omicron RBD, we simulated the
interaction with four available neutralizing antibody struc-
tures: C105, CC12.1, CC12.3, and CV30 (PDBs: 6XCM,
6XC2, 6XC7, and 6XE1, respectively) (13–15). We used
only a single fragment antigen-binding (Fab) region of the
antibody structures as the paratope location against which to
dock. Each of the RBD structures from these reference files
have identical sequences to the Wuhan-Hu-1 spike RBD.
Each of these neutralizing antibody structures were collected
from patients who had been infected with SARS-CoV-2. All
of them bind to the same "up" location of the S1 subunit of
the spike protein. This is a similar location to the interaction
site between the human ACE2 receptor epitope. Thus, the
neutralizing mechanism of these antibodies is in the preven-
tion of SARS-CoV-2 binding to ACE2 on human cells.
We used HADDOCK version 2.4, a biomolecular model-
ing software that provides docking predictions for provided
structures, to predict the binding affinity between the epi-
tope of the RBD with the paratope of the neutralizing anti-
body structures (16). This takes in two or more .PDB files as
inputs and outputs multiple predicted protein complexes in
.PDB format along with docking metrics.
We first renumbered the residues according to HADDOCK’s
requirements and then specified the interacting residues be-
tween the RBD structure and the Fab. Specifically, ensure
there are not overlapping residue IDs between the chains of
a .PDB file and then specify the residues that are assumed to
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interact between the structures. This analysis was performed
on the antibody-RBD structure pairs shown in Table 1.

Antibody Fab Analysis Type RBD Source

C105
(6XCM, chains N and S)

Reference
6XCM
(chain B)

Prediction
B.1.1.529
(from AlphaFold2)

CC12.1
(6XC2, chains H and L)

Reference
6XC2
(chain A)

Prediction
B.1.1.529
(from AlphaFold2)

CC12.3
(6XC7, chains C and D)

Reference
6XC7
(chain A)

Prediction
B.1.1.529
(from AlphaFold2)

CV30
(6XE1, chains H and L)

Reference
6XE1
(chain B)

Prediction
B.1.1.529
(from AlphaFold2)

Table 1. List of analyses performed, comparing reference and predicted RBD struc-
tures in complex with reference Fab structures.

The assessment of these interactions was measured by mul-
tiple biophysical factors including Van der Waals energy,
electrostatic energy, desolvation energy, and restraints vio-
lation energy, which were collectively used to derive a HAD-
DOCK score to quantify changes in protein-protein interac-
tion resulting from mutations in the RBD. Further, interfac-
ing residues between the RBD and Fab structures were de-
termined to by identifying residues that are within a distance
of 1.0 Å2 or less between the chains of the RBD and the Fab
using the InterafaceResidues functionality in PyMol version
2.4.1 (17).
We then compared the metrics of the actual complexes (i.e.,
the real RBD structure and the Fab) versus the predicted RBD
of Omicron (with the same Fab). This provides a baseline
interaction that was then measured against the mutated inter-
action with each respective Fab.

Results
Variant Sequence Comparison. Although the Omicron
RBM (spike amino acid sequence, positions 430–522)
can be efficiently categorized by nine characteristic muta-
tions (S:N440K, S:G446S, S:S447N, S:T478K, S:E484A,
S:Q493R, S:G496S, S:Q298R, S:N501Y), at least two of
them (S:N440K and S:G446S) may be missing from some
samples classified as Omicron. Also, some Omicron RBMs
contains an additional mutation at S:Y505H.
The Omicron variant is the variant more distantly related to
the reference genome (SARS-CoV-2 Wuhan-Hu-1; NCBI’s
RefSeq accession no. NC_045512.2) in the proportion of
shared nucleotides. Also, Omicron is the variant that is more
distantly related to Gamma. See Figures 2 and 3.

Mutational Analysis. Comparing the RBD of Omicron to
the reference genome, there are 15 mutations, all of which
are single amino acid substitutions. Most of the substitutions
result in a change in the residue type. (See Table 2.)

Fig. 2. Distance matrix of the spike gene (using nucleotides) for 9 Variants Being
Monitored (VBM) and 2 Variants of Concern (VOC). The distance is the average
proportion (p) of nucleotide sites at which two sequences being compared are dif-
ferent.

Fig. 3. Distance matrix of the receptor biding motif (RBM) of spike gene (using
amino acids) for 9 Variants Being Monitored (VBM) and 2 Variants of Concern
(VOC). The distance is the average proportion (p) of nucleotide sites at which two
sequences being compared are different.

The resulting RBD structure from AlphaFold2 shows that
there is little conformational change from the reference struc-
ture. See Figure 4.

Fig. 4. Comparison of reference RDB structure (PDB: 6XC2, shown in green )

and the predicted Omicron (B.1.1.529) RBD structure (shown in blue ). Mutated

residues are highlighted in red .

However, there are multiple mutated residues (shown in red
in Figure 4) in positions that may affect the ability of a neu-
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Position Ref Alt Ref Type Alt Type Type Difference
339 G D Non-Polar Negative Yes
371 S L Polar Non-Polar Yes
373 S P Polar Non-Polar Yes
375 S F Polar Non-Polar Yes
417 K N Positive Polar Yes
440 N K Polar Positive Yes
446 G S Non-Polar Polar Yes
477 S N Polar Polar No
478 T K Polar Positive Yes
484 E A Negative Non-Polar Yes
493 Q R Polar Positive Yes
496 G S Non-Polar Polar Yes
498 Q R Polar Positive Yes
501 N Y Polar Polar No
505 Y H Polar Positive Yes

Table 2. Mutations in the receptor-binding domain (RBD) of the spike protein in the
Omicron variant (B.1.1.529).

tralizing antibody to sufficiently bind. Some of these mutated
residues change to much longer side-chained or differently-
charged amino acids. For example, there are two "to ly-
sine" mutations: N440K and T478K (i.e., from polar, smaller
side chain residues to a positive-charged, longer side chain
residue). These types of changes may have an effect on the
binding affinity between the RBD and an antibody, either by
changing the surface charge on the protein or by inhibiting a
tighter antibody interaction.

Fig. 5. Possible inhibitory mutated RBD residues in Omicron (B.1.1.529) (struc-
ture shown in blue with mutated residues of interest shown in red ). Note: the

reference RDB structure (PDB: 6XC2 is shown in green with equivalent position

residues highlighted in yellow . CC12.1 antibody Fab (from PDB 6XC2) is shown

in magenta / pink .

In Figure 5, note how mutations Q498R, N501Y, and S477N
from the predicted Omicron (B.1.1.529) structure may affect
binding position of the antibody, causing it to bind less ef-
fectively. In other words, these longer/larger side chains may
increase the distance between the Fab paratope of the anti-
body and the epitope of the RBD.

Antibody Binding Analyses. The results of all four anti-
body docking exercises show that the Fab of the respective
neutralizing antibodies continue to bind to the RBD of Omi-
cron, though not as well as the reference interaction. Note
that there is a consistent decrease (increase in value) in the
electrostatic energy and an increase in restraints violation en-
ergy between the binding from the reference RBDs and the
predicted RBD of Omicron. The HADDOCK score is worse
(higher) across the board and it appears that the interaction
of the Omicron RBD with the antibodies are more distant, as
shown by the buried surface area changes below.

C105 Antibody Binding. Resulting binding metrics from the
C105 HADDOCK docking analysis are shown in Table 3. This
interaction shows that there is a ∼ 4% reduction in the elec-
trostatic energy and an ∼ 5% decrease in buried surface area
comparing between the 6XCM RBD and predicted RBD of
Omicron.

Metric 6XCM RBD
w/ C105

Predicted B.1.1.529
RBD w/ C105 % Difference

Van der Waals energy -85.0 -71.8 -16%
Electrostatic energy -280.9 -268.9 -4%
Desolvation energy -18.6 -17.1 -8%
Restraints violation energy 154.1 158.8 3%
HADDOCK score -144.4 -126.8 -12%
Buried Surface Area 2417.8 2299.6 -5%

Table 3. HADDOCK metrics for the CC12.1 docking prediction, comparing the
6XCM RBD vs. the Omicron (B.1.1.529) predicted RDB structure.

Fig. 6. HADDOCK docking prediction using C105 (shown in magenta / pink ),

comparing the 6XCM RBD (shown in shown in green ) vs. the Omicron (B.1.1.529)

predicted RDB structure (shown in blue ).
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CC12.1 Antibody Binding. Resulting binding metrics from
the CC12.1 HADDOCK docking analysis are shown in Table
4. This interaction shows that there is a ∼ 17% reduction in
the electrostatic energy and an ∼ 7% decrease in buried sur-
face area comparing between the 6XC2 RBD and predicted
RBD of Omicron.

Metric 6XC2 RBD
w/ CC12.1

Predicted B.1.1.529
RBD w/ CC12.3 % Difference

Van der Waals energy -106.9 -90.7 -15%
Electrostatic energy -342.6 -284.9 -17%
Desolvation energy -37.5 -28.8 -23%
Restraints violation energy 143.2 152.6 7%
HADDOCK score -198.6 -163.3 -18%
Buried Surface Area 2778.5 2584.3 -7%

Table 4. HADDOCK metrics for the CC12.1 docking prediction, comparing the
6XC2 RBD vs. the Omicron (B.1.1.529) predicted RDB structure.

Fig. 7. HADDOCK docking prediction using CC12.1 (shown in magenta / pink ),

comparing the 6XC2 RBD (shown in shown in green ) vs. the Omicron (B.1.1.529)

predicted RDB structure (shown in blue ).

CC12.3 Antibody Binding. Resulting binding metrics from
the CC12.3 HADDOCK docking analysis are shown in Table
4. This interaction shows that there is a ∼ 22% reduction in
the electrostatic energy and an ∼ 3% decrease in buried sur-
face area comparing between the 6XC7 RBD and predicted
RBD of Omicron.

Metric 6XC7 RBD
w/ CC12.3

Predicted B.1.1.529
RBD w/ CC12.3 % Difference

Van der Waals energy -86.1 -93.1 8%
Electrostatic energy -248.1 -194.1 -22%
Desolvation energy -41.7 -37.9 -9%
Restraints violation energy 159.1 104.7 -34%
HADDOCK score -161.5 -159.4 -1%
Buried Surface Area 2489.8 2416.7 -3%

Table 5. HADDOCK metrics for the CC12.3 docking prediction, comparing the
6XC7 RBD vs. the Omicron (B.1.1.529) predicted RDB structure.

Fig. 8. HADDOCK docking prediction using CC12.3 (shown in magenta / pink ),

comparing the 6XC7 RBD (shown in shown in green ) vs. the Omicron (B.1.1.529)

predicted RDB structure (shown in blue ).
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CV30 Antibody Binding. Resulting binding metrics from the
CV30 HADDOCK docking analysis are shown in Table 6. This
interaction shows that there is a ∼ 52% reduction in the elec-
trostatic energy and an ∼ 20% decrease in buried surface area
comparing between the 6XE1 RBD and predicted RBD of
Omicron.

Metric 6XE1 RBD
w/ CV30

Predicted B.1.1.529
RBD w/ CV30 % Difference

Van der Waals energy -86.1 -61.7 -28%
Electrostatic energy -354.4 -171.8 -52%
Desolvation energy -13.8 -19.5 -41%
Restraints violation energy 147.6 159.4 8%
HADDOCK score -156.0 -99.6 -36%
Buried Surface Area 2479.0 1992.6 -20%

Table 6. HADDOCK metrics for the CV30 docking prediction, comparing the 6XE1
RBD vs. the Omicron (B.1.1.529) predicted RDB structure.

Fig. 9. HADDOCK docking prediction using CV30 (shown in magenta / pink ),

comparing the 6XE1 RBD (shown in shown in green ) vs. the Omicron (B.1.1.529)

predicted RDB structure (shown in blue ).

Antibody Interaction Comparison. All of the interaction
predictions among the four antibodies tested in this study
(C105, CC12.1, CC12.3, and CV30) agree that there is a
decrease in binding affinity when comparing the respective
RBD interactions with the Omicron RBD interaction. We
see a drop in electrostatic interaction (increase in the elec-
trostatic energy value) ranging from ∼ 4% to ∼ 52% and a
consistent decrease in buried surface area (increase in dis-
tance) of the RDB and the antibody Fab. In addition, we see
a variable increase (worsening) in the HADDOCK score, in-
dicating that all of the Omicron RBD structures have a lower
binding affinity when compared to their respective reference
RBD structures as a benchmark. See Figure 10.

Fig. 10. HADDOCK results comparison between the reference RBD structures
and the predicted RBD of Omicron (B.1.1.529). The p-values values corrspond to
Wilcoxon Rank-Sum test results.

Interestingly, performing the Wilcoxon Rank-Sum tests on
these metrics from Figure 10 to compare the differences be-
tween the predictions and reference results shows that there
is no statistically-significant difference at the α = 0.5 level.
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Interface Position 417
(K▶N)

448
(N)

477
(S▶N)

484
(E▶A)

493
(Q▶R)

494
(S)

498
(Q▶R)

501
(N▶Y)

505
(Y▶H)

6XC2 vs. B.1.1.529 Reference K N S E Q S Q N Y
Prediction N - N - R - R Y H

6XC7 vs. B.1.1.529 Reference K N S E Q S Q N Y
Prediction N - N - R - R Y H

6XCM vs. B.1.1.529 Reference K - S E Q S Q N Y
Prediction N - N - R S R Y H

6XE1 vs. B.1.1.529 Reference K - S - Q S Q N Y
Prediction N - - A R S R Y H

Legend:
♦ - Mutated positions with no interface changes,
⃝ - Non-mutated positions with interface changes,
△ - Mutated positions with interface changes

♦ ⃝ ♦ △ ♦ ⃝ ♦ ♦ ♦

Table 7. Interfacing residue changes of interest between the Fab paratope and the RBD structures. (Note that a ‘-’ means that the residue at this position no longer interfaces
with the Fab structure.)

Fab-RBD Interfacing Residues. Furthermore, when compar-
ing residues that are interfaced between the Fab and RBD,
there is agreement in that particular residues in Omicron are
no longer interfacing with the antibodies analyzed in this
study. In particular, residues 448N, 484A, and 494S may not
interface with the Fab structure as they are in the reference
RBD-Fab complexes. However, the aforementioned N501Y
and S477N mutations (along with a variety of other muta-
tions) do not appear to affect the interfacing of the residues
at these positions. See Table 7.
This implies that there are certain positions that are more sen-
sitive to mutations in that substitutions at these loci are more
likely to affect the interface of the RBD with the antibody’s
Fab (denoted by a △ symbol in Table 7).
In contrast, there are other positions that have been substi-
tuted between the reference RBDs and the predicted Omi-
cron RBD that continue to interface with some or all the Fab
structures (denoted by a ♦ symbol in Table 7).
Finally, there are a some residues that remain unchanged in
the Omicron variant RBD structure, yet we see changes in the
interfacing at these loci (denoted by a ◦ symbol in Table 7).
This suggests that there are other mutated residues around
these stable positions that may be affecting their ability to
interface.

Conclusion and Discussion
While in vitro experiments are needed to validate these pre-
dictions, the predicted results here suggest that existing neu-
tralizing antibodies will still bind to the mutated spike protein
of the Omicron variant. However, it appears that the affin-
ity of Omicrons’s RBD for neutralizing antibodies is reduced
compared to the reference RBD structures. This result sug-
gests that antibodies elicited from vaccines or a previous in-
fection will provide some protection against Omicron.
Though there are a multitude of mutations in the RBD of
Omicron, these mutations do not appear to be causing any
large conformational change that would totally evade anti-
body interaction. However, we do see some amino acid
substitutions to different, longer side chained residues at the
binding site. This result may be due to the slightly more dis-
tant interaction with the antibody and therefore may reduce
the binding affinity.
Determining the actual structure of a protein is a time-
consuming process. Further, quantifying protein-protein in-
teractions (like spike-to-antibody interactions) are also exper-
imentally difficult to perform in vitro. Given the public health
urgency in understanding the impacts of new SARS-CoV-2
variants quickly requires that we act quicker than is possible
in a lab. Thus, in silico predictive tools like AlphaFold2
and HADDOCK are important for quickly understanding the
biochemistry of variants and can help us to infer the epidemi-
ological implications of the variant.

Supplementary Materials
All data, scripts, and results from this work are available
at GitHub.com/colbyford/SARS-CoV-2_B.1.1.529_Spike-
RBD_Predictions (18).
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