Abstract
Visual neurons can have their tuning properties contextually modulated by the presence of visual stimuli in the area surrounding their receptive field, especially when that stimuli contains natural features. However, stimuli presented in specific egocentric locations may have greater behavioural relevance, raising the possibility that the extent of contextual modulation may vary with position in visual space. To explore this possibility we utilised the small size and optical transparency of the larval zebrafish to describe the form and spatial arrangement of contextually modulated cells throughout an entire tectal hemisphere. We found that the spatial tuning of tectal neurons to a prey-like stimulus sharpens when the stimulus is presented in the context of a naturalistic visual scene. These neurons are confined to a spatially restricted region of the tectum and have receptive fields centred within a region of visual space in which the presence of prey preferentially triggers hunting behaviour. Our results demonstrate that circuits that support behaviourally relevant modulation of tectal neurons are not uniformly distributed. These findings add to the growing body of evidence that the tectum shows regional adaptations for behaviour.
Competing Interest Statement
The authors have declared no competing interest.