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Abstract 

Alternative splicing is critical for human gene expression regulation and plays an important 
role in multiple human diseases. In this context, RNA sequencing has emerged as powerful 
approach to detect alternative splicing events. 

In parallel, fast alignment-free methods have emerged as a viable alternative to quantify 
gene and transcript level abundance from RNAseq data. However, the ability to detect 
differential splicing events is dependent on the annotation of the transcript reference 
provided by the user.  

Here, we introduce a new reference transcriptome aware of splicing events, TRAWLING, 
which simplifies the detection of aberrant splicing events in a fast and simple way. In 
addition, we evaluate the performances and the benefits of aligning transcriptome data to 
TRAWLING using three different RNA sequencing datasets: whole transcriptome sequencing, 
single cell RNA sequencing and Digital RNA with pertUrbation of Genes.  

Collectively, our comprehensive evaluation underlines the value of using TRAWLING in 
transcriptomic data analysis.  

Availability and implementation 

Our code is available at https://github.com/Novartis/TRAWLING 

Introduction 

The journey from gene to protein is complex and consists mainly of two processes: 
transcription and translation. During transcription, genes’ DNA is transcribed into 
messenger RNA. Coupled to transcription, introns are removed from RNAs by a process 
called RNA splicing, which also enables cells to selectively exclude alternative exons from 
the final matured mRNA. The resulting transcripts can generate diverse protein isoforms 
(Clancy, 2008; Le et al., 2015) through translation by ribosomes.  

Recent studies estimated that up to 90-95% of human genes with multiple exons are 
alternatively spliced, highlighting the importance of pre-mRNA splicing in encoding distinct 
transcript isoforms and maintaining organism functionality (Le et al., 2015; Baralle et al., 
2017; Wei et al. 2021). Therefore, any disruptions of normal splicing patterns can potentially 
affect the generation of functional proteins and cause a wide range of human diseases, such 
as cancer, muscular dystrophy, and other common human disorders (Scotti et al., 2016; 
Garcia-Blanco et al., 2004). These findings suggest that the detection of abnormal regulation 
of alternative splicing is of critical importance to identify diagnostic biomarkers and 
potential therapeutic targets (Le et al., 2015; Wu et al., 2019; Bessa et al., 2020; Zhang et al. 
2020).  

In the past few years, RNA sequencing (RNA-Seq) has emerged as a powerful technology to 
analyze transcriptomes and to study alternative splicing at both bulk and single-cell levels 
(Arzaluz-Luque et al., 2018; Liang et al., 2021; Liu et al., 2021). To detect isoform-switching 
events, it is crucial to quantifying transcriptomes at the transcript level, since the use of 
gene counts for statistical analysis can mask transcript-level dynamics (Zhang et al., 2017; 
Booeshaghi et al., 2021). In addition, the ability to detect differential isoform usage is 
dependent on the transcript reference annotation provided by the user (Zhang et al., 2017). 
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In this study, we present TRAWLING, a Transcriptome Reference AWare of spLicING events. 
TRAWLING simplifies the identification of splicing events from RNA-seq data in a simple and 
fast way, while leveraging the suite of tools developed for alignment-free methods (e.g. 
Kallisto (Bray et al., 2016), Salmon (Patro et al., 2017), Alevin (Srivastava et al., 2019)). In 
addition, it allows the aggregation of read counts based on the donor and acceptor splice 
motifs. As proof of concept, we evaluated TRAWLING on three different transcriptome 
datasets: whole transcriptome sequencing (Shuai et al. (2019)), single cell RNA sequencing 
(Johnston et al. (2020)) and Digital RNA with pertUrbation of Genes (Li J et al., (2021)).  
 

 
Figure 1 TRAWLING. TRAWLING is built from a gtf annotation file (e.g. GENCODE). It allows the easy detection of splicing 
events and estimation of exon and junction specific (pseudo)-mapping. In addition, it allows the aggregation of read counts 
based on donor and acceptor splice site motifs. 

Materials and Methods 

TRAWLING 

TRAWLING is built starting from gtf annotation file (Figure 1, Supplementary Figure 1) as 
input, and outputs a transformed gtf file. The transformation follows five main steps (Figure 
2): 

Step1. Junction annotation: annotation of the sequences at the exon-exon junctions 
(Figure 2B) for each transcript. In particular, n nucleotides within each exon are 
included respective to the starting and ending position of the intron. The value of n 
should be chosen based on the reads’ length, in a way that allows to capture the 
information about how many reads are spanning a given junction. Typically, n is set to 
the read length minus one read, or minus up to 10% of the read length. As a result, each 
junction is annotated in the output gtf file as a transcript with two exons. 

Step2. Exon annotation: annotation of each exon’s sequence and consider it as a 
transcript itself (Figure 2C). The exons shorter than n nucleotide are discarded to avoid 
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incorrect alignment but are included in the next step within the cDNA (Supplementary 
Figure 1). 

Step3. Splice motifs annotation: the donor and acceptor splice motifs are annotated for 
each junction and exon. In particular, 4 nucleotides within the exons and 10 nucleotides 
within the introns are annotated for both splice motifs. The information is annotated in 
a bed file format and the sequences are extracted using bedtools (Aaron et al., 2010). 

Step4. cDNA annotation: annotation of the cDNA for each isoform (Figure 2D). 

Step5. Reference construction and creation: the information collected in the previous 
steps is used to build TRAWLING (Figure 2E) and is annotated in a gtf file format. Lastly, 
the transcript reference fasta file is obtained using the TRAWLING’s GTF file and the 
gffread tool (Pertea et al., 2020) (Supplementary Figure 2). 

 

 
Figure 2 Main ideas of TRAWLING. In this conceptual example, (A) for a given transcript T two isoforms (t1 and t2) are 
annotated in the transcriptome reference (trRef). (B) The exonic sequences flanking the annotated introns are captured in 
order to record junction specific reads. (C) The exon sequences are extracted and considered as transcripts themselves. (D) 
The cDNA sequences of each transcript are extracted. (E) TRAWLING is built including the sequences obtained at the (B)-(C)-
(D) steps. Additionally, each TRAWLING “transcript” in steps (B)-(C) is annotated with its respective donor and acceptor splice 
site motifs; in particular, 4 nucleotides within the exons and 10 nucleotides within the introns are annotated for both donor 
and acceptor splice motifs.  
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Data 

For the following results TRAWLING was built from GENCODE gtf file and was evaluated on 
whole transcript and 3’ RNA sequencing datasets. 

Transcriptome references 

The hg38 human reference genome and the gtf annotation file were downloaded from 
GENCODE (Ratajczak et al., 2021). They were used to get the cDNA transcript reference fasta 
file using gffread tool and to build TRAWLING (Supplementary Figure 1-2). Two versions of 
the cDNA transcript reference were created. The first is based on full transcripts and used 
on full transcripts RNAseq results. The second restricts the referenced transcripts to the last 
400 nucleotides of each annotated transcripts only. These were then used to pseudo-align 3’ 
RNA sequencing datasets. Lastly, since TRAWLING depends on read length and since it was 
evaluated on three difference datasets, three versions of TRAWLING were built, as reported 
below. 

3’ RNA sequencing datasets 

DRUG-seq data 

We used a publicly available DRUG-seq dataset (GEO accession GSM5357052) presented in 
Li J et al., (2021). The dataset consists of an osteosarcoma cell line treated with 14 
compounds (Table 1), each with an 8-point dose response (3.2 nM to 10 uM). In addition, 8 
DMSO wells were included in the experiment.  
TRAWLING was built by considering the last 400 nucleotides of cDNA of each transcript and 
by setting the value of n to 45, since the reads are 51 nucleotide long. FastQ reads were 
pseudoaligned using Kallisto (Bray et al., 2016). 
Kallisto-bustool was then used to pseudoalign the reads to TRAWLING (y) as well as, for 
comparison, to the last 400 nucleotide of cDNA of each transcript obtained from GENCODE 
gtf file (x). To evaluate if the alignment to x could lead to the loss of aligned reads, the 
coefficient of determination (R2) was calculated between x and y, using the read counts 
value of each gene-compound pairs. Z-scores were calculated for each treatment to identify 
splicing events showing a statistically significant difference when compared to the control 
compound (DMSO). 

 

 
Table 1 Compounds included In the DRUG-seq dataset. Table depicts compound name, identifier, target, from Li J et al. 
2021. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2021. ; https://doi.org/10.1101/2021.12.03.471115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471115
http://creativecommons.org/licenses/by/4.0/


scRNA-seq data 

To also evaluate TRAWLING on scRNASeq data we used the data presented in Johnston et al. 
(2020) (GEO accession GSM4317810). The dataset consists of 6000 cells derived from the 
bone marrow of a patient with acute myeloid leukemia (AML) sequenced using the Illumina 
NovaSeq 6000 protocol.  
Again, TRAWLING was built by considering the last 400 nucleotide of cDNA of each isoform 
and by setting the value of n to 135, since the reads are 150 nucleotide long. FastQ reads 
were aligned using Kallisto. Kallisto-bustool was used to pseudoalign the reads to TRAWLING 
(y) and to the last 400 nucleotide of cDNA of each transcript obtained from GENCODE gtf file 
(x). R2 was calculated between x and y using the read counts value of each gene-cell pairs. 
The resulting cell-by-gene matrices were pre-processed and analysed using Seurat (Stuart et 
al., Cell, 2019), in particular to perform data normalization, scaling, variable gene selection, 
PCA, clustering, UMAP calculation and to identify cell cluster maker genes. The identified 
marker genes were used to assign a cell type to each cluster. Based on the markers’ 
expression, cell clusters n.3 and n.8 displayed signatures typical of T (Dahl et al., 1992) and 
B-cells (Schmidt et al., 2012) respectively (Supplementary figure 3). The remaining cell 
clusters were labeled as a ‘malignant cells’ cluster based on the CD34’s expression. Z-scores 
were used to detect splicing events showing a statistically significant difference between the 
malignant cells cluster and the B/T cells cluster.  
 

Whole transcript RNA-seq dataset 

We used two publicly available bulk RNAseq datasets (GEO accession number GSM3938668 
and GSM3938669) presented in Shuai et al. (2019). The RNA-seq datasets consist of chronic 
lymphocytic leukaemia cell lines with (MUT, GSM3938668) or without (WT, GSM3938669) 
an A>C somatic mutation at the third base of the U1 snRNA.  
TRAWLING was built by setting the n value equals to 70, since the reads are 78 nucleotide 
long. FastQ files were pseudoaligned using Kallisto to TRAWLING (y) and to the cDNA of 
each transcript obtained from GENCODE gtf file (x). R2 was calculated between x and y, 
using the read counts value of each gene-cell pairs. Z-scores was calculated to identify 
splicing events showing a statistically significant difference between the MUT and WT 
samples and vice-versa. 
 

Results 

TRAWLING is a transcriptome reference that easily allows the detection and quantification 
of alternative splicing events from RNA-seq data. As a motivating factor we demonstrate its 
ability to aggregate read counts based on donor/acceptor splice motifs. We then present 
TRAWLING’s performance in the general problems of aligning RNA-seq reads to a 
transcriptome reference and in detecting splicing events. The performances were evaluated 
on three different datasets in which we expected to detect splicing events. In particular, the 
DRUG-seq experiment included a splicing modulator compound among 14 compounds to 
treat an osteosarcoma cell line. For the scRNA-seq dataset, we selected an AML dataset 
because the contribution of alternative splicing to gene dysregulation in AML patients has 
already been demonstrated. (Rivera et al. 2021, de Necochea-Campion et al. 2016, Dlamini 
et al. 2020). Lastly, for the bulk RNA-seq example, we used a dataset where the cell lines are 
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known to have U1 mutations which are expected to influence splicing in a splice site motif 
dependent manner.  
 

DRUG-seq data analysis 

TRAWLING successfully recapitulated gene level counts compared to what was obtained by 
aligning to just the last 400 nucleotides of cDNA of each transcript (Figure 3A, R2 equals to 
0.999999).  

Furthermore, we leveraged TRAWLING’s ability to aggregate read counts based on 
donor/acceptor splice motifs. This information could prove useful in the discovery and 
understanding of compounds’ mechanism of action. As proof of concept, we focused on 
NVS-SM2, a splicing modulator compound that selectively alter exon splicing (Palacino et al., 
Nat Chem Biol 2015). We detected splicing events by looking for statistically significant 
difference in read-counts between NVS-SM2 and DMSO. In total, 38 events were identified 
and by aggregating their read counts at the 5 splice site (5’ss), NVS-SM2-responsive exons 
showed to be enriched for a GGA motif in the last three exonic nucleotides (as previously 
shown in Palacino et al., Nat Chem Biol 2015) (Figure 3B).  

The same analysis was applied to each compound included in the DRUG-seq dataset to 
check whether other compounds induced differential splicing of exons and whether 
responsive exons were enriched for a specific motif at the exon ends. Only NVS-SM2 shows 
a clear pattern of GGA motif at the 5’ss, while the other compounds show the inclusion of 
exons with the canonical nAG motif (Figure 3C, Supplementary Figure 4). 

Importantly, these results also demonstrate TRAWLING’s ability to capture differential splice 
motif usage from 3’ sequencing alone. 

 

Figure 3 DRUG-Seq data analysis. (A) Scatter plot of gene expression levels for each compound aligned to the last 400 
nucleotide of cDNA of each transcript (x-axis) and to TRAWLING (y-axis). (B) NVS-SM2 sequence selectively alters exon 
splicing as previously shown (Palacino, J., et al. Nat Chem Biol. 2015) (B.1) Splicing signal motif at 5’ss from (B.1) 6259 and 
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(B.2) 38 splicing events. The former are splicing events showing a non-statistically significant difference between DMSO 
and NVS-SM2, contrary to the latter. (C) Heatmap showing for each compound (row) the enrichment for each motif at the 
5’ss (last 3 nucleotide within the exon). The plot is generated by only including splicing events which displayed a 
statistically significant difference between DMSO and the considered compounds, when used at a dosage of 10uM. 

scRNA-seq data analysis 

As in the Drug-Seq dataset, the concordance between the number of reads obtained by 
aligning to TRAWLING and to the last 400 nucleotides of cDNA in the scRNA-seq dataset was 
very high (Figure 4A, R2 equals to 0.999994). 

Then, we conducted a differential splicing analysis between malignant and non-malignant 
cells (Figure 4B). We identified eleven splicing events showing a statistically significant 
difference between the Malignant-cells clusters and the B/T-cells clusters (Figure 4C-D).  Of 
those eleven genes, several have previously been shown to play a role in AML, from its 
initiation to its progression. For instance, the expression of S100A8 in leukemic cells is a 
predictor of low survival in AML patients (Nicolas et al., 2011) and its therapeutic targeting 
has been proposed to improve treatment efficiency in AML. (Mondet et al., 2021). 
Furthermore Charcot-Leyden crystals (CLC) were found in the bone marrow of patients with 
AML (Khrizman et al., 2010; Radujkovic et al., 2011; Manny et al., 2012). The small nucleolar 
RNA host gene (SNHG) family members have been revealed to be oncogenes in several 
cancers (Zimta et al., 2020) and SNHG10 was found to be upregulated in AML patients (Xiao 
et al., 2021). Also, the authors explored the interaction between SNHG10 and miR-621, 
suggesting that the former might be targeted by the latter to suppress the proliferation of 
AML cells. Hmgb3 RNA has also recently been found to be part of an embryonic stem cell-
like transcription signature that was defined in mouse models of mixed-lineage leukemia-
mediated leukemic transformation and was also reported to be transiently upregulated 
during myeloid differentiation (Petit et al., 2010; Somervaille et al., 2009). 

 

 
Figure 4 scRNA-seq data analysis. (A) Scatter plot of gene expression levels for 400 randomly selected cells aligned to the 
last 400 nucleotide of cDNA of each transcript (x-axis) and to TRAWLING (y-axis). (B) UMAP projections of scRNA-seq data. 
(C) Number of splicing events showing a statistically significant difference between the malignant cells clusters and B/T-
cells clusters. (D) Normalized expression value of each differential junction across the clusters. 
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Bulk-RNAseq data analysis 

To check whether we were not incorrectly mapping reads when aligning to TRAWLING, the 
reads were aligned to TRAWLING and to the cDNA of each transcript. As previously shown 
for the 3’ RNA-seq data analysis, we obtained a high concordance between the two 
alignment results (Figure 5A, R2 equals to 0.999937).  

To evaluate whether the A>C mutation at the third base of U1 snRNA could affects the 
production of specific aberrant isoforms, we performed a differential splicing analysis using 
the MUT and the WT samples. We identified several splicing events showing a statistically 
significant difference between the MUT and the WT. Introns with increased excision were 
highly enriched in the G at the 6th, 8th, 9th, 10th positions of the 5’ splice site. It suggests 
that the A>C mutation at the 3 base of U1 could shift the T motif preferably towards a G 
(Figure 5B). This result is consistent with previous results (Shuai et al., 2019). 
 

Figure 5 Bulk-RNAseq data analysis. (A) Scatter plot of gene expression levels estimated aligned bulk-RNAseq reads (MUT 
sample) to the cDNA of each transcript (x-axis) and to TRAWLING (y-axis). (B) Sequence motifs of 5’ splice site of splicing 
events showing (B.1) a statistically significant difference between WT and the MUT samples (exons skipping events in the 
latter) and (B.2) a statistically significant difference between MUT and WT samples (exons inclusion events in the former). 
Among the nucleotide differences between B.1 and B.2 sequence motifs, we can identify the T and G nucleotides 
preference at the sixth position of the 5’ splice site for B.1 and B.2 respectively, as previously showed (Shuai et al., Nature, 
2019) 

Discussion 

In this work, we presented TRAWLING, a transcriptome reference aware of splicing events, 
that can be built starting just from a gtf annotation file. The performances and the benefits 
of TRAWLING were evaluated in three different transcriptome datasets: bulk RNA-seq, 
scRNA-seq and DRUG-seq.  

Compared to aligning transcriptome data to just the cDNA of each transcript, TRAWLING 
enabled the detection of splicing events in a fast, simple and accurate way. In addition, 
TRAWLING did not misalign or lose reads, which demonstrates that it can be used by default 
without loss of generality for gene level quantification. Upon further development, 
transcript level quantification would also be possible. 
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In addition, TRAWLING can aggregate read counts based on the donor and acceptor splice 
motifs and the advantages of this feature have been shown in the context of DRUG-seq and 
bulk RNA-seq data analysis. In the scRNA-seq data analysis, TRAWLING enabled the 
identification of different splicing events relevant to AML genes (e.g. S100A8, CLC). 

Together, these 3 dataset analyses demonstrate that TRAWLING is widely applicable to 
transcriptomic data of different types and enables flexible downstream analysis. 

Interestingly, the approach developed to build TRAWLING could easily be applied to extend 
the reference transcriptome to non-canonical splicing events (Supplementary Figure 5-6). 
This is an important aspect since the available transcript reference annotations are meant to 
capture the canonical isoforms rather than those symptomatic of very rare or diseased 
states. Non-canonical splicing events can potentially lead to disease-causing aberrant 
transcripts but can also offer new therapeutic strategies (Sibley et al. 2016; Wang et al. 
2021). It is estimated that DNA variants in non-canonical splice motif are underrepresented 
in existing public databases, despite conveying a similar risk of disease as other DNA variants 
(Lord et al., Genome research 2019). Non-canonical splicing events could be collected from 
publicly available resources such as Snaptron (Wilks et al., Bioinformatics, 2018), a database 
containing exon-exon junctions from thousands of RNA-Seq samples (Supplementary Figure 
7). They could also be collected from published studies, like in Wang et al. 2021, in which 
the authors detected and annotated a specific type of non-canonical splicing event, called 
exitron (cryptic introns with both splice sites inside an annotated exon), across 33 cancer 
tissues. 

In summary, we believe that TRAWLING is suitable for various splicing studies and will 
provide new insights, such as the discovery of unannotated drug mechanism of actions and 
new potential targets. We believe future expansions of TRAWLING will further increase its 
impact on transcriptomic data analysis. 
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