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Abstract 

People are biased towards seeing outcomes that they are motivated to see. For example, sports fans 

often perceive the same ambiguous foul in favor of the team they support. Here, we test the 

hypothesis that motivational biases in perceptual decision-making arise from amygdala-dependent 

biases in sensory processing. Human participants were rewarded for correctly categorizing an 

ambiguous image into one of two categories while undergoing fMRI. On each trial, we used a 

financial bonus to motivate participants to see one category over another. The reward maximizing 

strategy was to perform the categorizations accurately, but participants were biased towards 

categorizing the images as the category we motivated them to see. Heightened amygdala activity 

was associated with motivation consistent categorizations, and tracked trial-by-trial enhancement 

of neural activity in sensory cortices that was specific to the desirable category. Analyses using a 

drift diffusion model provide converging evidence that trial-by-trial amygdala activity was 

associated with stronger biases in the accumulation of sensory evidence. Prior work examining 

biases in perceptual decision-making have focused on the role of frontoparietal regions. Our work 

highlights an important contribution of the amygdala. When people are motivated to see one 

outcome over another, the amygdala biases perceptual decisions towards those outcomes. 
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People are biased towards seeing percepts that they are motivated to see, a phenomenon known as 

‘wishful seeing’ (Dunning and Balcetis 2013). For example, sports fans of opposing teams 

watching the same game often perceive an ambiguous foul differently, with each group of fans 

judging the foul in favor of the team they support. When motivated to see one interpretation of 

reality over another, people become less objective and are more prone to perceptual errors (Voss 

et al. 2008; Bromberg-Martin and Sharot 2020; Leong et al. 2021). Individuals who score higher 

on trait paranoia are also more likely to exhibit wishful seeing (Rossi-Goldthorpe et al. 2021), 

suggesting that extreme cases of wishful seeing might contribute to biased beliefs about the world 

that are the hallmark of many psychiatric disorders (Kube and Rozenkrantz 2021). Why are people 

more likely to see what they are motivated to see?  

To formulate a mechanistic understanding of wishful seeing, we can draw on the extensive 

neurophysiological and behavioral modeling work characterizing how perceptual decisions are 

determined from noisy sensory information (e.g., Heekeren et al., 2008; Shadlen and Kiani, 2013). 

In particular, perceptual decisions are thought to involve the temporal accumulation of sensory 

evidence from the environment. When the level of sensory evidence reaches a threshold, the 

individual commits to a decision. Recent work suggests that wishful seeing is driven by the 

selective enhancement of neural activity encoding desirable percepts (Leong et al. 2019). This 

biases sensory evidence accumulation in favor of percepts one is motivated to see, giving rise to 

motivationally biased perceptual decisions. While prior work has shown that motivation enhances 

the neural representation of desirable percepts in sensory cortices, how this enhancement occurs is 

not known. Consequently, the neural mechanisms that give rise to wishful seeing remain 

underspecified.  
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The amygdala has extensive connections to the visual cortex (Freese and Amaral 2005), 

and is well-positioned to mediate wishful seeing. Human neuroimaging and non-human primate 

electrophysiology studies have found that the amygdala plays a central role in biasing attention 

towards affectively salient aspects of the environment (Pessoa and Adolphs 2010; Pourtois et al. 

2013; Peck and Salzman 2014a; Mather et al. 2016). For example, fluctuations in amygdala 

activity correlate with the enhanced neural representation of images that had acquired affective 

salience due to having been previously paired with an electrical shock (Lim et al. 2009). We 

hypothesize that wanting to see a percept ascribes affective significance to the associated sensory 

features, and the amygdala is similarly involved in enhancing the neural representation of these 

features. Past studies, however, have not examined the role of the amygdala in contexts where 

participants are motivationally biased to see one percept over another. It is thus unclear if and how 

the amygdala biases perception towards desirable percepts.  

In the current work, we conducted a series of pre-registered analyses on a previously 

published dataset (Leong et al. 2019) to test the hypothesis that the amygdala facilitates wishful 

seeing by enhancing sensory evidence accumulation in favor of desirable percepts. We first 

assessed if amygdala activity was associated with motivationally biased perceptual decisions. 

Next, we tested if amygdala activity was associated with stronger neural representations of 

percepts participants were motivated to see. Finally, we incorporated participants’ trial-by-trial 

amygdala activity, perceptual decisions and response times into a computational model to test the 

hypothesis that amygdala activity was specifically associated with motivational biases in evidence 

accumulation. Together, our work takes a convergent approach that combines behavioral, neural 

and modeling measures to characterize the neural mechanisms underlying motivational biases in 

perceptual decision-making.  
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Materials and Methods 

Participants 

Thirty-three participants provided informed consent and were compensated between $30-50 

depending on their performance in the task. Data were discarded from 3 participants due to 

excessive head motion (i.e., >3 mm in any direction) during >1 scanning sessions, yielding a final 

sample of 30 participants (17 males, 13 females; age range, 18-43 years; mean age, 22.3 years). 

These data have been previously reported in Leong et al. (2019).  

 

Stimuli 

Stimuli consisted of grayscale images created by combining a scene image and face image in 

varying proportions. Face images were frontal photographs taken from the Chicago Face Database 

(Ma et al. 2015), and consisted of half female and half male faces with neutral expressions. Scene 

images consisted of half outdoor and half indoor scenes. For each participant, six stimulus sets 

were created. Each set contained 40 images: 1 × 100% scene, 3 × 65% scene, 5 × 60% scene, 

7 × 55% scene, 8 × 50% scene, 7 × 45% scene, 5 × 40% scene, 3 × 35% scene and 1 × 0% scene. 

Images with more than 50% scene were considered “more scene” while images with less than 50% 

scene were considered “more face”. Stimuli were presented to participants using MATLAB 

(Mathworks) and the Psychophysics Toolbox (Brainard 1997). 

 

Experimental Task 

Participants were told that they would be performing a visual categorization task with a teammate 

(“Cooperation” condition) and an opponent (“Competition” condition) (Fig. 1). At the beginning 

of each trial, either the teammate or the opponent would make a bet on whether the upcoming 
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image would consist of more face or more scene (i.e. whether the face image or scene image was 

of higher intensity). Participants were first presented with the text “Your Teammate/Opponent bets 

40 cents that the next image will have more” for 1 second (Trial Start), before the category that 

the teammate/opponent bet on was shown on screen for 3 seconds (Motivation Cue). Participants 

were then presented with a face-scene composite image (see Stimuli). Participants earn 40 cents if 

the teammate’s bet was correct (e.g., if the teammate bet “more face” and the image actually 

consists of more face) and lose 40 cents if the teammate’s bet was wrong. In contrast, participants 

lose 40 cents if the opponent’s bet was correct and earn 40 cents if the opponent’s bet was wrong. 

As such, participants were motivated to see the image as the category that the teammate had bet 

on and the category that the opponent had bet against.  

 Participants were then asked to indicate whether the image consists of more face or more 

scene and received a 10-cent reward if they correctly categorized the image. If participants did not 

respond in 4 seconds, the trial would time out and participants would lose the opportunity to earn 

the reward. The image remained on screen for the entire 4 seconds regardless of when participants 

made their response. Participants then indicated how confident they were in their categorization 

on a 1-5 scale. After a variable inter-trial-interval (ITI) of 2-4 seconds, they proceeded to the next 

trial. Participants performed 2 fMRI runs of the Cooperation condition and 2 fMRI runs of the 

Competition condition in an interleaved order that was counterbalanced across participants. Each 

run was approximately 8 min long and consisted of 40 trials.  

 Importantly, the 40-cent bonus associated with the teammate or opponent’s bet depended 

solely on the objective category of the image (i.e. whether the image actually contained more face 

or more scene) and was not affected by participants’ responses. For example, if the teammate bet 

that the upcoming image contains more face but the image objectively contained more scene, 
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participants would lose the 40 cents regardless of how they categorized the image. As such, 

participants would earn the most amount of money from the experiment if they ignored the bets 

and categorized the images accurately based on what they saw to earn the maximum reward from 

correctly categorizing each image. Participants were told that both the teammate and the opponent 

did not have a priori information about the images and were making blind bets. Participants were 

also told that neither the teammate or opponent would be informed of their responses, and were 

thus not pressured to conform to the bets. Unbeknownst to participants, the teammate’s and 

opponent’s bets were pseudo-randomized to be correct on half of the trials.  

The instructions were delivered verbally by the experimenter and also in written form 

on screen at the beginning of the experiment. It was intuitive to participants that the bet 

depended on the objective category of the images rather than their categorizations, and that 

they should categorize each image accurately to earn maximum reward. In the post-experiment 

survey, all participants responded that the task instructions were clear and that they had 

understood the task correctly.  

 

Figure 1. Experimental design. Each trial begins with a teammate (Cooperation condition) or an 

opponent (Competition condition) making a bet on whether the upcoming image would consist of more 

face or more scene. Participants earn 40 cents if the teammate’s bet is correct, and lose 40 cents 

otherwise. Conversely, they lose 40 cents if the opponent’s bet is correct and earn 40 cents otherwise. 
Participants are then presented with a face-scene composite image, and have to categorize whether the 

image has more face or more scene. They then rated how confident they were in their categorization. 

Images have been replaced with cartoon images to comply with bioRxiv policy.  
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MRI Data Acquisition and Preprocessing 

A 3T General Electric scanner was used to collect the MRI data. Functional images were obtained 

with T2*-weighted echo planar imaging (EPI) pulse sequences. Each volume comprised 46 

transverse slices. Volumes were acquired in interleaved order, with the following imaging 

parameters: repetition time, 2 s; echo time, 25 ms; flip angle, 77º; voxel size, 2.9 𝑚𝑚3. A T1-

weighted pulse sequence was used to acquire anatomical images at the beginning of the session 

with the following parameters: repetition time, 7.2 ms; echo time, 2.8 ms; flip angle, 12º; voxel 

size, 1𝑚𝑚3.  

Preprocessing and analysis of EPI images were performed using FSL/FEAT v6.05 (FMRIB 

software library, FMRIB, Oxford, UK) and included motion correction (rigid-body realignment of 

functional volumes to the first volume), slice-timing correction, high-pass filtering of the data with 

a 100 ms cut-off, and spatial smoothing using a Gaussian kernel with a full-width at half-maximum 

of 4 mm. For multivoxel classification analyses, our classifier was trained and tested in each 

participant’s native space (see fMRI analyses). For all other analyses, we first registered the 

functional volumes to participants’ anatomical images (6 d.f.) and then registered the volumes to 

a template brain in the Montreal Neurological Institute (MNI) space (affine transformation with 

12 d.f.). 

 

Regions of interest (ROI) definition  

We defined a bilateral amygdala ROI as the voxels that are estimated to have greater than 0.5 

probability as being part of the amygdala according to the Harvard-Oxford Subcortical Structural  

Atlas. To measure sensory representations, we defined an occipito-temporal ROI by combining 

the bilateral occipital and temporal lobe masks from the Harvard-Oxford Structural Atlas. This 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2021.12.03.471135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471135


 

 

9 

mask includes the visual cortex as well as the ventral temporal areas important for object 

recognition (Grill-Spector 2003). We defined additional ROIs from an atlas derived from applying 

independent component analysis to resting-state data (Shirer et al. 2012). Specifically, the anterior 

insula and dorsal anterior cingulate cortex (dACC) ROIs were obtained from the set of regions 

labeled the “anterior salience network”, while the dorsolateral prefrontal cortex (DLPFC) and 

inferior parietal lobule (IPL) ROIs were obtained from the set of regions labeled the “executive 

control network”.  

 

fMRI Analyses 

In earlier work, we had found that motivational bias and response times did not differ between the 

Competition and Cooperation conditions - participants were just as likely and quickly to categorize 

the image as the category that the teammate had bet on as they were to categorize it as the category 

the opponent had bet against (Leong et al. 2019). Therefore, in the current study, we collapsed 

across the two conditions based on whether the desirable category was face (i.e. when the 

teammate bet on more face or when the opponent bet on more scene) or scene (i.e. when the 

teammate bet on more scene or when the opponent bet on more face).  

We ran a general linear model (GLM) analysis contrasting neural activity on motivation 

consistent trials (i.e. trials where participants categorized the image as the desirable category) 

against that on motivation inconsistent trials (i.e. trials where participants categorized the image 

as the less desirable category). We focused specifically on activity at the time of the motivation 

cue (i.e. 3 seconds prior to the image onset). The two trial types were modeled as separate 

regressors. These were created by convolving a stimulus function, consisting of an impulse 

response at the time of the motivation cue, with a Gamma hemodynamic response function (HRF). 
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As is conventional for analyses using FSL, we estimated a separate model for each run before 

aggregating across the four runs of a participant in a fixed effects analysis to obtain a statistical 

parametric map. This approach allows for the estimation of between-run variability for each 

participant. For each model, response times (convolved with HRF) and extended motion 

parameters (i.e. standard motion parameters, their temporal derivatives, and the squares of both 

the standard motion parameters and the temporal derivatives; not convolved with HRF) were 

included as covariates of no interest. We then used FSL’s featquery function to extract the average 

z-statistic of the contrast in the amygdala ROI for each participant, and ran a one-sample t-test 

against zero to assess if amygdala activity was higher on motivation consistent trials than on 

motivation inconsistent trials. 

At the end of the experimental task, participants performed two runs of a localizer task 

where they were presented with unambiguous face and scene images one at a time (5 blocks of 15 

images of each category; each image presented for 2 seconds with a 2-second interval). Participants 

had to indicate whether each face was male or female, and whether each scene was indoors or 

outdoors. We trained an L1-regularized logistic regression classifier (C = 1) to classify whether 

the participant was seeing a face or scene based on the patterns of activity in the occipito-temporal 

ROI. We then applied the trained classifier to the single-trial activation patterns in the experimental 

task. Specifically, all trials in a run were simultaneously estimated in a single GLM, with each trial 

modeled using a separate regressor consisting of an impulse response at the time of stimulus onset 

convolved with a HRF (i.e. a “Least-Squares All” model; Mumford et al., 2014). The beta weights 

of each trial were then used as inputs for the trained classifier. For each trial, the classifier outputs 

the probability that the participant was viewing a scene vs. a face based on the beta weights in the 
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occipito-temporal ROI, thus providing us with a measure of the relative strength of scene vs. face 

selective neural activity for that trial. 

 We estimated amygdala activity on each trial using a Least-Squares All GLM that modeled 

each trial as a separate regressor created by convolving a stimulus function, consisting of an 

impulse response at the time of each motivation cue, with a HRF. The resulting beta weights 

obtained for each regressor were then averaged within the amygdala ROI as the estimate of 

anticipatory amygdala activity for that trial. A linear mixed effects model (LME Model M1; Table 

S1) was used to test the relationship between trial-by-trial anticipatory amygdala activity and 

sensory representations: 

scene vs. face activity  ~ % scene + motivation + amygdala + motivation*amygdala +  

(motivation + amygdala + motivation*amygdala | subj)   

where scene vs. face activity is the relative strength of scene vs. face-selective neural activity as 

indexed by the classifier output,  % scene is the amount of scene in an image, motivation is the 

category participants were motivated to see (face = 0, scene = 1), and amygdala is amygdala 

activation in response to the motivation cue. The coefficient for the interaction term, 

motivation*amygdala, would thus capture the extent to which motivational effects on sensory-

related activity depended on anticipatory amygdala activation. To unpack the interaction effect, 

we divided each participant’s data into trials with high and low amygdala activity based on a 

median split, and examined the effect of motivation on scene vs. face activity for the two trial types 

separately (High Amygdala Activity: LME Model M2, Low Amygdala Activity: LME Model M3; 

Table S1): 

scene vs. face activity  ~ % scene + motivation + (motivation | subj)  
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In a series of exploratory analyses, we also examined if motivational effects on scene and 

face-selective activity were dependent on activity in the anterior insula, dorsal anterior cingulate 

cortex (dACC), dorsolateral prefrontal cortex (DLPFC), and inferior parietal lobule (IPL) (Tables 

S2). All models were estimated using the lmer function in the lme4 package in R, with P values 

computed from t-tests with Satterthwaite approximation of degrees of freedom as implemented in 

the lmerTest package. Full model specification and estimates are reported in Table S1 and S2. 

 

Drift Diffusion Model 

We fit a drift diffusion model to participants’ data using the HDDM toolbox with default priors 

(Wiecki et al. 2013). The model assumes that participants’ decisions are determined by the 

stochastic accumulation of sensory evidence towards one of two decision thresholds. We estimated 

model parameters that determined the starting point of the decision process (parameter z), the rate 

of evidence accumulation (i.e. drift rate, parameter v), the distance between the two decision 

thresholds (parameter a) and time not related to the decision process (e.g., time for stimulus 

encoding or motor response; non-decision time, parameter t). We modeled the “scene” decision 

threshold as the top boundary (i.e. scene threshold = a) and the “face” threshold  as the bottom 

boundary (i.e. face threshold = 0). HDDM implements hierarchical Bayesian estimation, which 

assumes that parameters for individual participants were randomly drawn from a group-level 

distribution. Individual participant parameters and group-level parameters were jointly estimated 

using Markov Chain Monte Carlo sampling (20,000 samples; burn-in=2,000 samples; thinning=2). 

To account for outliers generated by a process other than that assumed by the model (e.g., 

accidental button press, lapses in attention), we estimated a mixture model where 5% of trials were 

assumed to be distributed according to a uniform distribution. We chose not to include inter-trial 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2021.12.03.471135doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?DbAFQ0
https://doi.org/10.1101/2021.12.03.471135


 

 

13 

variability parameters in this model, as simulation studies have shown that they can compromise 

the reliability and accuracy of the estimates of individual parameters (Boehm et al. 2018). A model 

that included parameters for inter-trial variability in the starting point, drift rate and non-decision 

time yielded qualitatively similar results (see Supplemental Text; Fig. S1). 

 The drift rate was allowed to vary trial-by-trial as a function of the stimulus, the category 

participants were motivated to see, and amygdala activity: 

𝑣 = 𝛽𝑣1 %𝑠𝑐𝑒𝑛𝑒  +𝛽𝑣2  𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +𝛽𝑣3 𝑎𝑚𝑦𝑔𝑑𝑎𝑙𝑎 

+ 𝛽𝑣4 𝑎𝑚𝑦𝑔𝑑𝑎𝑙𝑎 ∗ 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +𝛽𝑣0  

where % scene refers to the percentage scene in an image, motivation refers to the category 

participants were motivated to see (face = -1; scene = 1), and amygdala refers to amygdala 

activation at the onset of the motivation cue estimated from a GLM (see fMRI analysis). The 

coefficient for the amygdala*motivation interaction reflects the extent to which the effect of 

motivation on the drift rate depended on amygdala activation. Specifically, a positive value of 

𝛽𝑣4would indicate that the drift bias towards the motivation consistent category was stronger when 

amygdala activation was higher. To assess if 𝛽𝑣4was positive, we extracted the posterior 

distribution of 𝛽𝑣4estimated from participants’ data and computed the proportion of the distribution 

that was greater than 0. This proportion denotes the probability the amygdala activation moderated 

motivational effects on the drift rate.  

 Within the same model, the starting point was also allowed to vary trial-by-trial  as a 

function of the motivation consistent category and the amygdala activation at motivation cue onset: 

 

𝑧 =
1

1+ 𝑒𝑥𝑝 − (𝛽𝑧1 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +𝛽𝑧2 𝑎𝑚𝑦𝑔𝑑𝑎𝑙𝑎 + 𝛽𝑧3 𝑎𝑚𝑦𝑔𝑑𝑎𝑙𝑎 ∗ 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +𝛽𝑧0 )
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Here, the coefficient for the amygdala*motivation interaction reflects the extent to which the effect 

of motivation on the starting point depended on amygdala activation. A positive value of 𝛽𝑧3would 

indicate that the starting point is more strongly biased towards the threshold of the motivation 

consistent category when amygdala activation was higher. To assess if 𝛽𝑧3 was positive, we 

extracted the posterior distribution of 𝛽𝑧3 estimated from participants’ data and computed the 

proportion of the distribution that was greater than 0. This proportion denotes the probability the 

amygdala activation moderated motivational effects on the starting point.  

Model convergence was assessed using the Gelman-Rubin �̂� statistic. �̂� of all parameters 

were less than 1.004, suggesting that there were no issues with model convergence. Model 

convergence metrics, posterior means and 95% credible intervals of model parameters are reported 

in Table S3.   

 

Conditional Response Functions 

We simulated choice and response time data from a model where the motivational bias in the 

starting point was dependent on amygdala activity (amygdala bias starting point model), and a 

model where the motivational bias in drift rate was dependent on amygdala activity (amygdala 

bias drift model). The simulated data reflect the pattern of choice and response time data if 

participants’ behavior were perfectly described by the model. Each participant was simulated 

performing 1000 trials at 50% scene with a model parameterized with the best fit parameters of 

that participant. Trial-wise amygdala activity was simulated by drawing randomly from a normal 

distribution with mean and standard deviation determined by the empirical mean and standard 

deviation of amygdala activation at the time of the motivation cue for that participant. 
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 We plotted conditional response functions (CRF) for each model to illustrate the distinctive 

effect of an amygdala-dependent bias in the starting point and an amygdala-dependent bias in the 

drift rate. For each simulated participant, we divided trials into “fast” and “slow” trials based on a 

median split of RT, and “high amygdala activity” trials and “low amygdala activity” trials based 

on a median split of amygdala activity. We then computed the average proportion of trials on 

which the model predicted “more scene”, separately for face and scene motivation trials, fast and 

slow trials, and high amygdala activity and low amygdala activity trials. Thus, these CRFs allow 

us to examine the relationship between responses, motivation and RT separately for trials with 

high vs. low amygdala activity. 

 We then plotted the CRFs for the empirical data for comparison. We restricted this analysis 

to the subset of trials with images at 50%, as there were an insufficient number of trials at the other 

levels of percentage scene to be reliably divided into the 8 bins necessary for a CRF (i.e. scene vs. 

face motivation x fast vs. slow trials x high vs. low amygdala activity). The average proportion of 

trials on which participants responded “more scene” was calculated separately for each bin.  

To statistically assess the effects of amygdala activity on choice and response time 

distributions, we ran a linear mixed effects model assessing the three-way-interaction between 

motivation, RT and amygdala activity on responses (LME Model M4): 

choice ~ % scene + motivation * RT * amygdala + (motivation * RT * amygdala | subj) 

where choice denotes whether the participant reported that the image contained more face or 

more scene (face = 0, scene = 1). The LME model allowed us to treat RT and amygdala activity 

as continuous variables, and also allowed us to control for the effect of percentage scene on 

responses. As such, we were able to include trials at all levels of percentage scene for this 

analysis. To visualize this interaction, we fit separate LME models to estimate the effect of 
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motivation on responses for fast vs. slow trials and high vs low amygdala activity trials.  

 

Confidence Analyses 

We used a linear mixed effects model to examine the relationship between amygdala activity and 

confidence ratings, controlling for stimulus uncertainty (LME Model M5):  

confidence ~ |% scene - % face| + amygdala + (|% scene - % face| + amygdala | subj) 

where  |% scene - % face| denotes the absolute difference between % scene and % face in an 

image. |% scene - % face| is high when the stimulus uncertainty is low (e.g., 100 % scene and 0% 

face), and low when the stimulus uncertainty is high (e.g., 50% scene and 50% face). Full model 

specification and parameter estimates are reported in Table S1.  

 

Preregistration 

We pre-registered how we defined the amygdala and occipitotemporal ROIs. We had also pre-

registered the following hypotheses: greater amygdala activity would be associated with (1) an 

increased tendency to make motivation consistent categorizations, (2) stronger motivation 

enhancement of desirable perceptual features in the sensory cortex, and (3) stronger motivational 

biases in evidence accumulation in favor of the desirable category estimated using the DDM. We 

also pre-registered a fourth prediction that individual differences in amygdala activation would be 

associated with individual differences in motivational bias. However, given recent work 

questioning the reliability of across-subject brain-behavior correlations with a sample size of ~30 

participants (Grady et al. 2021), we no longer report this analysis. The pre-registration is available 

at: https://osf.io/z6xjd?view_only=030ad17d15724af2bb5f6f02ca5b34e7 
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Results  

Thirty participants were scanned using fMRI while they were presented with visually ambiguous 

images consisting of a face image and a scene image superimposed with one another. Participants 

had to categorize whether they saw more face or more scene in each image, and received a 

monetary reward for each correct categorization. At the beginning of each trial, we motivated 

participants to see one category over the other with a cue indicating that they would win extra 

money if the image was of one category (the “desirable” percept) and lose some of their earnings 

if the image was of the other category (the “less desirable” percept) (see Materials and Methods). 

The bonus or loss depended on the objective category of the image (i.e. whether the image actually 

contained more face or more scene) and not participants’ categorizations. As such, participants 

would earn the most money from the task if they categorized the images accurately and were not 

influenced by what they were motivated to see. In earlier work, we had shown that participants 

were nevertheless more likely to categorize the images as the desirable percept, and that this bias 

was associated with enhanced neural activity selective to the desirable percept in the ventral visual 

stream (Leong et al. 2019). 

 

Amygdala activity was associated with motivational bias in perceptual decisions 

We divided trials into trials where participants categorized the image as the desirable percept 

(motivation consistent trials; e.g., categorizing an image as more scene when motivated to see 

more scene) and trials where they categorized the image as the less desirable percept (motivation 

inconsistent trials; e.g., categorizing an image as more scene when motivated to see more face). 

We then ran a GLM that contrasted neural activity on motivation consistent trials against that on 

motivation inconsistent trials at the time of the motivation cue (i.e. when participants were first 
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informed which category would win them more money on that trial)  and extracted the z-statistic 

in a bilateral amygdala ROI for each participant (Fig. 2A). The average z-statistic of the motivation 

consistent > motivation inconsistent contrast was significantly greater than 0 in the amygdala ROI 

(t(29) = 2.45, P = 0.0208; Fig. 2A, 2B), indicating that amygdala activity was higher on trials 

when participants made motivation consistent categorizations than when they made motivation 

inconsistent categorizations. Amygdala activation was not significantly associated with 

participants’ confidence ratings (t(17) = -1.61, P = 0.126, b = -0.04, SE = 0.03). 

 

Amygdala activity was associated with stronger motivational enhancement of category-

selective neural activity 

The preceding analyses indicated amygdala activity was associated with motivational biases in 

perceptual decisions. Was amygdala activity also associated with the motivational enhancement 

of sensory representations? To answer this question, we used multivariate pattern analysis to 

quantify face- and scene-selective activity in the occipitotemporal cortex. We first trained a logistic 

regression classifier on BOLD data from a localizer task to categorize whether participants were 

seeing a face or a scene based on the pattern of activity in a occipitotemporal cortex ROI (see 

Methods). We then applied the trained classifier to data from the experimental task to measure the 

level of face and scene-selective activity on each trial.  

In previous work, we had found that motivation enhances sensory representations in the 

occipitotemporal cortex - for a given image, face-selective activity was higher when participants 

were motivated to see more face, while scene-selective activity was higher when participants were 

motivated to see more scene (Leong et al. 2019). Here, we test if this motivational enhancement 

was dependent on amygdala activity. We modeled each trial as a separate regressor in a GLM. 
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Each regressor was created by convolving an impulse response at the time of the motivation cue 

with a HRF. This allowed us to estimate activation in response to the motivation cue for each trial. 

The resulting beta weights were then averaged within the amygdala ROI as an estimate of the 

amygdala activation to the motivation cue for that trial. We then used a LME model to examine 

the relationship between category-selective activity, motivation and amygdala activity. There was 

a significant interaction between amygdala activity and motivation on category-selective activity 

in the occipitotemporal cortex (t(692) = 3.15, P = 0.002, b = 0.045, SE = 0.014). To unpack this 

interaction, we divided each participant’s data into trials with high and low amygdala activity. 

Motivation enhanced category-selective activity on trials with high amygdala activity (t(30) = 

2.17, P = 0.038, b = 0.032, SE = 0.015), but not on trials with low amygdala activity (t(30) = 0.43, 

P = 0.67, b = 0.007, SE = 0.016; Fig. 2C), indicating that motivational enhancement of sensory 

representations was dependent on amygdala activity. 

Prior work implicates a network of frontoparietal regions in biasing perceptual decisions, 

including the dorsolateral prefrontal cortex (DLPFC), the dorsal anterior cingulate cortex (dACC), 

and the intraparietal lobule (IPL) (Domenech and Dreher 2010; Summerfield and Koechlin 2010; 

Mulder et al. 2012, 2014; White et al. 2012). In a series of exploratory analyses, we tested if these 

regions were associated with the motivational enhancement of sensory representations. We also 

considered the role of the anterior insula, which previous work had found to be involved in the 

accumulation of sensory evidence during perceptual decision-making (Ho et al. 2009). Activity in 

these regions did not moderate motivational effects on category-selective activity (DLPFC: t(54) 

= 0.34, P = 0.735, b = 0.003, SE = 0.01; dACC: t(36) = 1.29, P = 0.206, b = 0.014, SE = 0.011; 

IPL: t(38) = 0.44, P = 0.665, b = 0.004, SE = 0.010; anterior insula: t(37) = 1.64, P = 0.109, b = 

0.021, SE = 0.013; Fig. 2D).  
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Figure 2. Amygdala activity was associated with motivational biases in perceptual decisions 

and category-selective neural activity. A.  Amygdala ROI defined using the Harvard-Oxford 

Subcortical Structural Atlas. B. Amygdala activity was higher when participants made motivation 

consistent categorizations. Data points denote average z-statistic of the motivation consistent > 

motivation inconsistent contrast in the amygdala ROI for individual participants. C. Classifier 

probability that the participant was seeing a scene rather than a face based on the pattern of activity 

in the occipito-temporal ROI. On trials with high amygdala activity, category-selective activity 

was higher for the category participants were motivated to see. On trials with low amygdala 

activity, motivation had no effect on category-selective activity. D. Regression coefficients of the 

motivation x activity interaction on classifier probability for the amygdala, DLPFC, dACC, IPL 

and anterior insula. Error bars indicate SEM. ** p < 0.01. 
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Amygdala activity was specifically associated with motivational biases in evidence 

accumulation 

The drift diffusion model (DDM) provides a formal framework to examine the decision processes 

underlying perceptual decision-making (Forstmann et al. 2016). The model assumes that 

perceptual decisions arise from the noisy accumulation of sensory evidence from the external 

environment. When the level of evidence reaches a decision threshold, the corresponding decision 

is made. The starting point and rate of evidence accumulation, as well as the decision thresholds 

and time not related to decision processes (i.e. non-decision time, e.g., time needed to translate the 

decision into a motor response), are determined by model parameters that can be estimated by 

fitting the model to participants’ data (Fig. 3A). In previous work, we had found that motivation 

biases perceptual decisions by (1) shifting the starting point towards the decision threshold of the 

desirable category, thereby reducing the amount of sensory evidence needed to make a motivation 

consistent response, and (2) by biasing sensory evidence in favor of the desirable category (Leong 

et al. 2019). To understand the amygdala’s contribution to motivation biases, we assessed if either 

or both of these biasing mechanisms were dependent on trial-by-trial fluctuations in amygdala 

activity.  

We took a linear regression approach to examine the effects of the amygdala on 

motivational biases in the starting point and rate of evidence accumulation. Specifically, the 

starting point (parameter z), was allowed to vary as a function of the motivation consistent 

category, amygdala activation at the time of the cue, and the interaction between the two (amygdala 

x motivation interaction; see Methods). The regression coefficient on the interaction term reflects 

the extent to which motivational effects on the starting point depended on amygdala activity. A 

positive coefficient would indicate that the starting point is more strongly biased towards the 
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decision threshold of the motivation consistent category on trials with higher amygdala activity. 

When we fit the model to participants’ behavioral data, the posterior distribution of the regression 

coefficient of the interaction term was centered around zero (P(zamygdala*motivation>0) = 0.557, mean 

= 0.001, 95% credible interval = -0.016 to 0.020; Fig. 3B), indicating that motivational effects on 

the starting point did not depend on amygdala activity.  

 In the same model, we allowed the rate of evidence accumulation (i.e. “drift” rate, 

parameter v) to vary as a function of the percentage scene in the image, the motivation consistent 

category, amygdala activation at the time of the cue, and the interaction between the motivation 

consistent category and amygdala activation at the time of the cue. Here, the regression coefficient 

on the interaction term reflects the extent to which motivational effects on the drift rate depended 

on amygdala activity. A positive coefficient would indicate a stronger bias in evidence 

accumulation in favor of the motivation consistent category on trials with higher amygdala 

activity. When we fit the model to participants’ behavioral data, the posterior distribution of the 

regression coefficient of the interaction term indicated a high probability that the coefficient was 

positive (P(vamygdala*motivation>0) = 0.975, mean = 0.084, 95% credible interval = 0.001 to 0.170; 

Fig. 3C). These results indicate that on trials with high amygdala activity, evidence accumulation 

was biased in favor of the motivation consistent category, resulting in an increased bias towards 

making motivation consistent responses. To visually assess model fit, we compare the distributions 

of model-predicted and empirical response times in Figure S2. 

In exploratory analyses, we fit a model that included inter-trial variability parameters for 

the drift rate, starting point and non-decision-time, which allows for random trial-by-trial 

variability in model parameters. Consistent with our earlier results, we found that trial-by-trial 

amygdala activity moderated motivational biases in the drift rate (P(vamygdala*motivation> 0) = 0.991, 
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mean = 0.14, 95% credible interval = 0.029 to 0.255) but not the starting point (P(zamygdala*motivation> 

0) = 0.24, mean = -0.01, 95% credible interval = -0.034 to 0.017; Fig. S1), suggesting that our 

results could not be explained by random trial-by-trial fluctuations in model parameters. 

 

 
Figure 3. Modeling Results. A. Schematic diagram of the drift diffusion model (DDM). The 

DDM assumes that perceptual decisions arise from the stochastic accumulation of sensory 

evidence over time towards one of two decision thresholds. z: starting point, v: drift rate, a: 

decision threshold, t0: sensory delay, t1: time needed for response execution, the sum of t0 and t1 

constitutes non-decision time. Motivation can bias perceptual decisions by biasing both the starting 

point and drift rate (red and blue lines). B. Posterior distribution of the regression coefficient of 

the amygdala x motivation interaction on the starting point. The distribution is centered around 0, 

indicating that motivational effects on the starting point did not depend on amygdala activity. C. 

Posterior distribution of the regression coefficient of the amygdala x motivation interaction on the 

drift rate. A large proportion of the distribution was greater than 0 , indicating the motivational 

effects on the drift rate were dependent on amygdala activity. 
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The relationship between amygdala activity and response time distributions is consistent 

with a motivational bias in drift rate 

A bias in drift rate and a bias in starting point increases the proportion of motivation consistent 

responses, but have different effects on the shape of response time distributions (White and 

Poldrack 2014; Fig. 4). In particular, a bias in starting point has stronger effects early on in a trial 

than later in a trial, and would result in stronger motivational bias on fast trials than slow trials. In 

contrast, a bias in the drift rate has a constant effect throughout the trial, and would result in a 

strong motivational bias (i.e. more motivation consistent than motivation inconsistent responses) 

on both fast and slow trials. We can distinguish between a bias in drift rate and a bias in starting 

point on conditional response functions (CRF), where response proportions are plotted separately 

for fast (RT < median) and slow (RT > median) trials. 

 

 

Figure 4. Motivational biases in the starting point and drift rate have distinguishable effects 

on response time distributions. The gray lines show an example trajectory of evidence 

accumulation on a single trial. The blue and red lines show the mean drift and resulting RT 

distributions when participants are motivated to see more scene and more face respectively. A bias 

in the starting point has a stronger effect earlier on in a trial, and would give rise to RT distributions 

with a stronger right-skew. In contrast, a bias in the drift rate is constant throughout a trial, and 

would thus scale the RT distributions proportionally such that the overall shape of the distribution 

does not change (right). z, v, a, t0 are the same as in Fig. 2. t1 was omitted for brevity.   
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To better understand the relationship between amygdala activity and model parameters, we 

simulated choice and response time data from models where the motivational bias in either the 

starting point (amygdala bias starting point model) or the drift rate (amygdala bias drift model) 

was dependent on amygdala activity. For each model, we plot the CRF separately for trials with 

high (i.e. higher than median) and low (i.e. lower than median) amygdala activity. In the amygdala 

bias starting point model, the motivational bias in drift rate, which affects both fast and slow trials, 

is independent of amygdala activity. Thus, motivation had a strong effect on responses on both 

fast and slow trials regardless of the level of amygdala activity (Fig. 5A). In contrast, for the 

amygdala bias drift model, motivation had a strong effect on both fast and slow trials when 

amygdala activity was high, but only a weak effect on slow trials when amygdala activity was low 

(Fig. 5B). This is because when amygdala activity was low, motivational effects in the model were 

driven predominantly by a bias in the starting point, which has stronger effects early on in a trial, 

and motivational effects would thus be more prominent on fast trials.  

 We then assessed which pattern of response times was more consistent with the empirical 

data. To plot empirical CRFs, we restricted our analysis to trials at 50% scene, as that was the only 

level of percentage scene with a sufficient number of trials per participant to be divided into 8 bins 

(Fig. 5C). The empirical CRFs were most consistent with the predictions of the amygdala bias 

drift model in that when amygdala activity was high, motivation biased both fast and slow trials, 

but when amygdala activity was low, motivation had a weaker effect on slow trials than fast trials. 

Next, we sought to statistically assess the relationship between amygdala activity, response time 

and motivational bias in responses across the entire dataset (i.e. across all levels of percent scene). 

Specifically, we ran a generalized linear mixed effects model (GLMM) to test the motivation (i.e. 

motivated to see face vs. scene) x RT x amygdala activity interaction on participants’ responses 
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(face vs. scene), controlling for the percentage scene of each image. Both RT and amygdala activity 

were treated as continuous variables in this analysis. 

There was a significant three-way interaction (z = 2.41, P = 0.016, b = 0.58, SE = 0.24), 

indicating that the interaction between motivation and RT on responses depended on amygdala 

activity. To visualize this interaction, we again performed a median split based on amygdala 

activity to identify trials with high amygdala activity and trials with low amygdala activity. For 

each level of percent scene, we then performed a median split on RT to identify fast trials and slow 

trials. We then ran separate glmer models to assess the effect of motivation on responses separately 

for fast vs. slow trials, and for trials with high vs. low amygdala activity. The coefficients indicate 

that the three-way interaction was indeed driven by a weaker effect of motivation on responses on 

slow trials when amygdala activity is low, consistent with the predictions of the amygdala bias 

drift model (Fig. 5D). Together, these analyses complement the formal model-fitting results by 

providing a descriptive account of why the data is best explained by a model where motivational 

effects on the drift rate are dependent on amygdala activity.  
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Figure 5. Amygdala activity moderates the relationship between motivation, RT and 

responses. CRF plots of data simulated from a model where amygdala biased the A. starting point 

or B. the drift rate. C. CRF plots of empirical data from trials at 50% scene. There were insufficient 

trials at the other levels of percentage bins to be divided into 8 bins. D. Regression coefficient of 

motivation on responses separately for fast and slow trials, and for trials with high or low amygdala 

activity. There was a significant three-way interaction between motivation, RT and amygdala 

activity such that motivational biases in perceptual decisions were weaker on slow trials with low 

amygdala activity.  
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Discussion 

Psychophysical studies have previously shown that stimulus features that have been repeatedly 

paired with reward tend to “capture” attention and are preferentially processed by the visual system 

(Anderson et al. 2011; Le Pelley et al. 2015). Relatedly, fMRI studies have found that reward value 

modulates sensory-related neural activity, including activity in both early visual areas (Serences 

2008; Anderson 2017) and activity in the object-selective ventral temporal cortex (Hickey and 

Peelen, 2015; Barbaro et al., 2017; Leong, Radulescu et al., 2017). These findings highlight the 

pervasive influence of reward on sensory representations in the brain. Building on this body of 

work, we recently demonstrated that using financial incentives to motivate participants to see a 

particular interpretation of an ambiguous image enhances neural activity encoding stimulus 

features associated with said interpretation (Leong et al. 2019). This selective enhancement biases 

participants towards seeing perceptual outcomes that they are motivated to see. The neural 

mechanisms driving the selective enhancement of desirable representations, however, remain 

unclear. 

In the current work, we show that the motivational enhancement of desirable percepts was 

dependent on amygdala activity. In particular, we found that heightened amygdala activity was 

associated with participants categorizing an image as the category they were motivated to see. 

Amygdala activation was also associated with stronger motivational enhancement of desirable 

sensory representations in the occipitotemporal cortex, suggesting that the amygdala biases 

perceptual decisions by driving enhanced processing of desirable perceptual features. To 

understand the decision computations affected by the amygdala, we fit a DDM to participants’ 

behavioral data and trial-by-trial amygdala activity. The model fits suggest that amygdala-

dependent motivational biases on perceptual decisions were specifically related to the faster 
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accumulation of sensory evidence in favor of desirable percepts. Together, our findings provide 

converging behavioral, neural and modeling evidence of the amygdala’s role in biasing perceptual 

decisions towards desirable perceptual outcomes.  

 Historically, the amygdala has been associated with the processing of fear and threat-

related stimuli (LeDoux, 2000, c.f. Visser et al., 2021). More recent perspectives have emphasized 

a broader role of the amygdala in processing motivationally salient information, including 

information relevant for predicting and obtaining rewards (e.g., Pessoa and Adolphs, 2010; 

Pourtois et al., 2013). For example, activity in the amygdala has been shown to encode the 

appetitive value of stimuli (Gottfried et al. 2003; Jenison et al. 2011; Lichtenberg et al. 2017; 

Shanahan et al. 2021). In a series of studies with non-human primates, Peck and colleagues have 

also found that amygdala activity tracks spatial attention towards stimuli associated with reward 

(Peck et al. 2013; Peck and Salzman 2014a, 2014b). Our findings are consistent with this broader 

view of amygdala function that considers its role in processing reward-relevant information. 

Notably, our results suggest that the amygdala is not only sensitive to the value of reward-relevant 

stimuli, but also flexibly enhances the neural representation of what is valuable at a given moment, 

which in turn gives rise to a perceptual bias towards percepts that are desirable.  

The amygdala can enhance sensory representations both via direct connections to sensory 

areas (Freese and Amaral 2005; Gschwind et al. 2012), as well as via indirect pathways involving 

frontoparietal regions and brainstem neuromodulatory systems (Lim et al. 2009; Pourtois et al. 

2013). Recent theories have proposed that the amygdala works in concert with the locus-coeruleus 

norepinephrine (LC-NE) system to selectively amplify the representation of physically and 

affectively salient stimuli (Markovic et al. 2014; Mather et al. 2016). Building on these theories, 

we hypothesize that wanting to see a percept imbues affective salience to the associated perceptual 
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features. The amygdala signals this affective salience by the selective enhancement of neural 

activity encoding those features. At the same time, the amygdala recruits the LC which then 

releases NE into the cortex. NE released in sensory areas increase the gain of sensory neurons 

selective to salient stimuli, such that they are more likely to fire to target inputs (Berridge and 

Waterhouse 2003). In addition, NE released in the amygdala further enhances the saliency signal, 

resulting in even greater amplification of the neural response to salient stimuli (Gallagher and 

Holland 1994). 

Notably, amygdala activity has indeed been found to be associated with reward-driven 

changes in pupil dilation (Watanabe et al. 2019), a known correlate of LC-NE activity (Murphy et 

al. 2014; Joshi et al. 2016). Using a variant of the current task, we also recently demonstrated that 

motivational biases in sensory evidence accumulation were associated with increased pupil 

dilation (Leong et al. 2021). Thus, there is reason to hypothesize that the amygdala-dependent 

motivational enhancement of sensory representations observed in the current study were mediated 

by the LC-NE system. The small size and location of the LC present challenges to imaging the LC 

using fMRI (Liu et al. 2017). Recent studies have been able to take advantage of novel approaches 

to functionally and anatomically localize the LC (de Gee et al. 2017; Grueschow et al. 2021). 

Future work can use these approaches to simultaneously measure activity in the amygdala, LC and 

sensory regions to further characterize the neural circuitry underlying motivational biases in 

perceptual decisions.  

Prior work examining reward-related biases in perceptual decision-making have focused 

on the role of frontoparietal regions (Mulder et al. 2014). Here, we did not find evidence of the 

involvement of frontoparietal regions in enhancing desirable sensory evidence, suggesting that our 

results arose from distinct biasing mechanisms. We note that in earlier studies that assign 
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asymmetric rewards to perceptual options, participants would earn the larger reward only if they 

correctly categorized a stimulus as the category associated with larger reward (Summerfield and 

Koechlin 2010; Mulder et al. 2012). In such settings, participants would earn more reward over 

the course of the experiment if they biased their responses towards the category associated with 

larger reward (Bogacz et al. 2006; Feng et al. 2009; Fan et al. 2018). Thus, reward-related biases 

in these earlier experiments have largely been interpreted as a shift in response strategy to 

maximize reward on the task and are not necessarily related to biases in sensory evidence 

accumulation. Consistent with this idea, these studies have found that reward biases perceptual 

responses without a corresponding effect on sensory representations.  

 In our task, however, the additional reward associated with the motivation consistent 

category was not contingent on participants’ responses - participants won or lost the bonus based 

on the objective category of the image, regardless of their subjective categorizations. Hence, the 

bias observed in our task was unlikely to have resulted from a shift in response strategy to 

maximize reward. Instead, it was likely driven by participants wanting to see one percept over 

another. Using a drift diffusion model, we had previously found that this motivational bias reflects 

both an a priori response bias towards outcomes participants want to see (i.e. a bias in the starting 

point of evidence accumulation), and a perceptual bias in how sensory evidence accumulates over 

time (i.e. a bias in the drift rate) (Leong et al. 2019). The current results indicate that amygdala 

activity was specifically associated with the perceptual bias and not the response bias. Thus, the 

amygdala-dependent biases in perceptual decisions are potentially distinct from the response-

related biases associated with frontoparietal regions documented in earlier studies.  

In everyday life, people are rarely neutral observers indifferent to different perceptual 

outcomes. They are motivated to see some outcomes over others, and exhibit a bias to report seeing 
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those outcomes over possible alternatives. The current work suggests that this bias is associated 

with the amygdala-dependent enhancement of desirable neural representations in sensory cortices. 

Together, these results expand our understanding of the neural mechanisms underlying 

motivational influences on perceptual decision-making. Notably, similar motivational biases have 

been documented across a broad array of decision-making contexts (Hughes and Zaki 2015). In 

one recent study, participants were asked to judge whether they were in a desirable state (i.e. an 

environment with greater rewards than losses) or an undesirable state (i.e. an environment with 

low probability of reward) by sampling evidence that was probabilistically associated with each 

state (Gesiarz et al. 2019). The authors found that participants accumulated evidence in a manner 

that was biased towards the belief that they were in a desirable state, much like the bias towards 

desirable visual percepts observed in our study. Could the amygdala be involved in biases in 

evidence accumulation beyond sensory perception? Given that the amygdala has also been 

implicated in value-based learning and decision-making (Jenison et al. 2011; Prévost et al. 2013; 

Lichtenberg et al. 2017), this is certainly possible. We believe that exploring the role of the 

amygdala in mediating motivational biases in other reasoning and evaluative processes would be 

a fruitful direction for future research. 
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