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Abstract

Using methods from nonlinear dynamics and interpolation techniques from
applied mathematics, we show how to use data alone to construct discrete
time dynamical rules that forecast observed neuron properties. These data
may come from from simulations of a Hodgkin-Huxley (HH) neuron model or
from laboratory current clamp experiments. In each case the reduced dimen-
sion data driven forecasting (DDF) models are shown to predict accurately
for times after the training period.

When the available observations for neuron preparations are, for example,
membrane voltage V(t) only, we use the technique of time delay embedding
from nonlinear dynamics to generate an appropriate space in which the full
dynamics can be realized.

The DDF constructions are reduced dimension models relative to HH
models as they are built on and forecast only observables such as V(t). They
do not require detailed specification of ion channels, their gating variables,
and the many parameters that accompany an HH model for laboratory mea-
surements, yet all of this important information is encoded in the DDFmodel.

As the DDF models use only voltage data and forecast only voltage data,
they can be used in building networks with biophysical connections. Both
gap junction connections and ligand gated synaptic connections among neu-
rons involve presynaptic voltages and induce postsynaptic voltage response.
Biophysically based DDF neuron models can replace other reduced dimen-
sion neuron models, say of the integrate-and-fire type, in developing and
analyzing large networks of neurons.

When one does have detailed HH model neurons for network components,
a reduced dimension DDF realization of the HH voltage dynamics may be
used in network computations to achieve computational efficiency and the
exploration of larger biological networks.
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1 Introduction

1.1 General Setting

When we have observed data generated by a complex, nonlinear system,
neurons and their networks are a prime example of this, but we do not have
a model for the detailed neurodynamics of the system, it is possible to use
those measured data alone to create a dynamical rule that forecasts the future
of the observed quantities beyond the window in time where the data was
measured. We call this Data Driven Forecasting (DDF).

It is our goal in this paper to demonstrate how to achieve, then utilize
DDF in the context of neuroscience.

DDF is to be viewed as a way to capture observed aspects of neurobiolog-
ical data in contrast to the usual method of creating a detailed biophysical
model, often of Hodgkin-Huxley (HH) type, which may or may not be cor-
rect, specifying all of the relevant ion currents, the required gating variables,
and the concentrations of relevant quantities such as [Ca2+](t) [18, 34].

Unknown quantities in such a HH model may be estimated using data
assimilation (DA) [38, 21, 25, 27, 2]. DA requires a model of the observed
complex system, and, of course, data from observing that system. The data
are used to train items in the model such as fixed parameters and unobserved
state variables.

DDF does not require a model of all these, often unobservable, details.
Nonetheless, as it is built on observed data, it encodes those details while
forecasting only the observable properties of the neuron activity. Both DA
and DDF may be seen as a form of supervised learning [3]. In this regard
they may also be regarded as methods of machine learning.

If the construction and analysis of a biophysically detailed HH model has
been achieved, perhaps employing DA, using HH models in large networks of
biological interest may prove computationally quite challenging. DDF may
be utilized to accurately forecast the voltage time course of this HH model
thus replacing it in the network of interest. Only the voltages across neuron
cell membranes are used in the communication among neurons in a network,
thus DDF neurons are nicely suited for use as the dynamical elements of func-
tional biological networks. Using a reduced dimensional model in network
studies can result in significantly decreased computational tasks.
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1.2 Data of Interest

We start with the formulation of DDF models for individual neurons.
We have in mind data where a neuron is stimulated by a known forcing

via an injected current Istim(t), and its membrane voltage response V(t) is
measured; namely, current clamp experiments. One observes V(t) at discrete
times tn = t0 + nh; n = 0, 1, ..., N . We use these data to build a biophys-
ically based nonlinear discrete time map that takes V (tn) → V (tn+1) for
any selected stimulating current. Importantly, the map must predict well for
n ≥ N + 1.

We demonstrate that this is accomplished in in the analysis of numerically
generated data from a standard neuron model and in the analysis of current
clamp data collected in a laboratory environment.

When this is successful, we will have created a DDF dynamical rule mov-
ing V(t) forward in time without regard for gating variable time courses,
parameters such as maximal conductances or reversal potentials, chemical
reaction rates, or any of the other detailed biophysical characteristics of the
HH neuron dynamics. Yet, built from observed data, the biophysical infor-
mation is embedded in the DDF model.

As we shall demonstrate here, one is able to accomplish this but, not
surprisingly, must give up some things that are found in the use of a detailed
model. The method is restricted to forecasting only what is observed.

1.3 Useful Attributes of DDF Neurons

This forecasting construction V (tn) → V (tn+1), which we call a ‘DDF neu-
ron’, may be used in network models of interest. DDF neurons would be
located at the nodes of the network leaving only the network connectivity to
be determined, possibly by DA from observed network activity data [2].

In biological networks, the individual neurons are driven by external cur-
rents, if present, and by the currents received from other neurons presynaptic
to it. The gap junction and synaptic current connections are described by
the presynaptic voltage and the postsynaptic voltages allowing DDF neurons
to be valuable, efficient network nodes in computational models of functional
neural networks.

If one has the goal of controlling aspects of functional neural networks to
achieve desired goals, DDF neurons provide a computationally inexpensive
way of incorporating the observable properties of such a network. This is
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significant as observables are the attributes which control forces may affect.

2 Plan for this Paper

1. To begin we describe the DDF method as applied to individual neuron
data and give an example using numerical data from solving a basic
Hodgkin-Huxley (HH) neuron model [15, 18, 34] with Na, K, and Leak
channels. For brevity we designate this HH model as an NaKL neuron.

2. The time courses for the voltage and the Na and K channel gating
variables {V (t),m(t), h(t), n(t)} from the model are used as ‘data’ and
analyzed in two settings:

� The first setting is a confidence building exercise, not biologically
realistic, that assumes we have observed data on the membrane
voltage V(t) as well as on all three of the HH gating variables
{m(t), h(t), n(t)} in the model.

� The second setting conforms to what one can actually do in a
current clamp experiment, namely observe only the membrane
voltage V(t) given the stimulating current Istim(t). This requires
us to add to the basic DDF formulation the idea of constructing
enlarged state spaces from the observed variables and their time
delays [37, 4, 5, 1, 20]. This method is familiar and essential in the
study of nonlinear dynamics and will be explained in the present
context.

3. We next turn to the DDF analysis of laboratory current clamp data
acquired in the Margoliash laboratory at the University of Chicago.

4. An analysis is then made of how DDF neurons can be used in the
construction and study of networks of neurons. In this paper we first
direct our attention to a quite simple two neuron example with gap
junction connections.

5. Then we present a study of a ‘network segment’ where a presynaptic
neuron, driven by a stimulating current Istim(t) , drives a postsynaptic
neuron via a ligand gated synapse.

6. A Summary and Discussion completes the paper.
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7. We include three Appendices:

� Appendix A is a brief manual discussing how one builds DDF
models in practice.

� Appendix B has the formulation for incorporating ligand gated
synaptic connections into a DDF based network model.

� Appendix C contains a short biophysical discussion on the choice
of stimulating currents Istim(t) selected to permit the DDF model
to generalize its response to a wide class of stimulating currents.
This appendix was developed following questions from two review-
ers of an earlier draft of this paper.

3 Discussion of the Methods of DDF

Our discussion begins with a broader formulation of DDF than will be re-
quired in neurobiology where only V(t) is observed in laboratory current
clamp experiments. We return to the realistic scenario of observing only
V(t) after providing the broad perspective. An example of data, beyond
membrane voltage, where DDF will permit accurate forecasting includes fluo-
rescence associated with Ca concentration variation [Ca2+](t) in the presence
of a Ca indicator [33, 39, 23], [Ca2+](t). The DDF formulation for [Ca2+](t)
is described in Section (7).

The idea of DDF is to start with the collection of D-dimensional observed
data u(tn) = u(n) = {ua(n)}; a = 1, 2, ..., D, sampled at discrete times tn
over an observation window [t0 ≤ tn ≤ tN ]; tn = t0 + nh; n = 0, 1, 2, ..., N in
time steps of size h.

Next, using only these data, we discuss how to construct a discrete
time map u(n + 1) = u(n) + f(u(n),χ) for forecasting the future of those
data. The χ are parameters in f(u(n),χ) that we will estimate (train) on the
observed data. The nonlinear function f(u,χ) is called the vector field [36]
of the discrete time map.

When we do not have a model of the biophysical processes generating
u(t), we ask: can we build a representation of f(u,χ) and use observed data
to determine the unknown, time independent quantities χ in that represen-
tation?

We will answer this in the affirmative using applicable developments in
applied mathematics [13, 6, 8, 19, 32, 22] explored in depth over many years.
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The general idea was well investigated in the context of autonomous sys-
tems where there is no external forcing. This is not the situation that one
addresses in neurobiology where neurons are stimulated by external sources
and, in functional networks, by the activity of other neurons in the network.

The first step is to select a parametrized representation for f(u,χ). Using
u(n+ 1) = u(n) + f(u(n),χ) for 0 ≤ n ≤ N , to estimate (train) the param-
eters χ. Once the χ are known, we are able to use this trained discrete time
dynamical rule u(n+ 1) = u(n) + f(u(n),χ) to forecast the behavior of the
observed quantities u(n) for n ≥ N + 1 in time steps of size h.

We use the results of [32, 22] showing that one can accurately represent
a multivariate function of u, f(u,χ), as

fa(u,χ) =
J∑

j=1

caj pj(u) +
Nc∑
q=1

waqψ((u− uc(q))2, σ); a = 1, 2, ..., D. (1)

The {caj, waq, σ} are among the parameters to be estimated/trained using
the observed data {u(n)}.

In Eq. (1) the pj(u) are multivariate polynomials of order j, The functions
ψ((u− uc(q))2, σ) are called radial basis functions (RBFs). The Nc {uc(q)}
are denoted as centers, and they are selected from the observed data; Nc ≤ N .

In developing this representation of the vector field as a function on u
space, we may think of the {u(n); n = 0, ..., N} as samples of a distribution
in u. The f(u,χ) are designed to interpolate among these samples

The training of the {caj, waq} is a linear algebra problem [29]. The linear
algebra problem for Nc ̸= N requires regularization, and that means we must
specify a Tikhonov regularization parameter, which we call β. This is also
called ridge regression.

We must also specify any parameters appearing in the functions ψ((u−
uc(q))2, σ). A guide to how we select all parameters of the DDF formulation,
in practice, including {caj, waq, σ, β}, is given in Appendix A. When we use
time delay coordinates, as we do in Section (6), two more parameters enter:
the time delay τ and the dimension of the time delay vector DE. So χ =
{caj, waq, σ, β, τ,DE} is the full set of parameters that we must estimate from
the given data.

The representation of the vector field fa(u,χ) in Eq. (1) has both what
one often finds described as RBFs by themselves (the second term on the
right) and polynomials in u. We first tried to work with the polynomials
alone, but found that when J was only 3 or 4, they were not able to represent
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the kind of nonlinearities found in biophysical models of neurons. As J
increases the number of coefficients caj grows more or less as J !, and even
the linear algebra problem becomes difficult. The more general case in Eq.
(1) is discussed in [32, 22]. In practice we only used the monomial u.

The possibility of including polynomial terms beyond u(n) was not re-
quired to achieve the results we present, so the training (estimation) of χ is
done using

ua(n+ 1) = ua(n) +
Nc∑
q=1

waqψ((u(n)− uc(q))2, σ), n = 0.1, ..., N (2)

and we realize it by minimizing

N−1∑
n=0

D∑
a=1

[ua(n+ 1)− ua(n)−
Nc∑
q=1

waqψ((u(n)− uc(q))]2, σ)]2, (3)

which we regularize in a well established way [29]. The details of this are
presented in Appendix A.

Once the linear algebra problem of determining the {waq} is completed
Eq. (2) becomes our discrete time (in steps of size h) dynamical, nonlinear
forecasting rule for times tn ≥ tN .

There are many choices for these RBFs [13, 22, 32, 7]. Our RBF choice
has been the Gaussian: ψG((u − uc(q))2) = exp[−R(u − uc(q))2)], R = 1/σ2.
Other choices, and there are many, see Table I in [32], have given equivalent
results in practice.

4 Using DDF in Neurobiology

4.1 Data Assimilation

In the study of the ingredients of functional neuronal networks, one is able
to measure the time series of voltage V(t) across the cell membrane of in-
dividual neurons in a routine manner. Using observed values of V(t) along
with knowledge of the forcing by a stimulating current Istim(t) presented to
the neurons, it is often possible to estimate the detailed electrophysiological
properties of a Hodgkin-Huxley model of an individual neuron [15, 34, 18]
using data assimilation [2].
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The data assimilation estimation involves inferring the unmeasured state
variables, including ionic gating variables, and unknown parameters such as
maximal conductances of ion channels. A model, developed and completed in
this manner, is validated by comparing its voltage time course when driven by
stimulating currents after the observation window. Only in the observation
window is information passed to the model from measurements of V(t).

4.2 DDF

The DDF perspective selects a related, but also biophysically grounded, path
that emphasizes what can actually be measured and forecasts only those
aspects of complex neuronal activity.

Approaching the question of biophysical models for the dynamics of neu-
rons from a DDF perspective provides a way to make predictions/forecasts of
V(t) without the details of the biophysical model. This, as noted, sets aside
the knowledge of the details of the model, but for purposes of building up
the dynamics of voltage activity in a network, it may be of great utility.

One attractive feature of DDF is that it results in significant model reduc-
tion from the many state variables and proliferation of parameters present
in the neuron dynamics [27] by focusing on those state variables that can be
measured.

4.3 Hodgkin-Huxley Structure for Driven Neurobio-
logical Dynamics

We continue our discussion of DDF in neurodynamics by attending to how
one can work with numerical/simulated data from a basic, well studied,
Hodgkin-Huxley (HH) model neuron. Our analysis of experimental current
clamp data will follow this set of numerical examples.

The biophysical HH equations for the dynamics of a single neuron driven
by a simulating current Istim(t) have the structure

C
dV (t)

dt
= Fintrinsic(V (t),A(t)) + Istim(t);

dA(t)

dt
= FA(V (t),A(t)). (4)

Fintrinsic(A(t), V (t)) contains the ion currents and their gating variables which
satisfy A(t), 0 ≤ A(t) ≤ 1. These quantities are descriptive of the intrinsic
electrophysiology of a biophysical neuron are independent of the stimulating

11
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current Istim(t). In addition to the HH dynamics there may be other state
variables in addition to {V (t),A(t)} such as concentrations of various bio-
chemicals. To proceed, we concentrate on the HH voltage equation structure
in Eq. (4).

In the HH formalism the equation for the voltage is driven by Istim(t) in
an additive manner. We will use this in formulating our DDF protocol for
biophysical neuron models. What we do not know from the data alone are
the vector fields {Fintrinsic(V (t),A(t)), FA(V (t),A(t))} whose specification
yields the detailed HH biophysical model.

The solution or flow [36] of the HH model, Eq. (4), is achieved by inte-
grating Eq. (4) from tn to tn + h = tn+1 leading us to the discrete time map
{V (tn),A(tn)} → {V (tn+1),A(tn+1)} or {V (n),A(n)} → {V (n + 1),A(n +
1)}:

V (n+ 1) = V (n) +

∫ tn+1

tn

dt′
Fintrinsic(A(t′), V (t′))

C
+

∫ tn+1

tn

dt′
Istim(t

′)

C

A(n+ 1) = A(n) +

∫ tn+1

tn

dt′FA(V (t′),A(t′)) (5)

4.4 The Basic NaKL HH Neuron as An Example

We now analyze the DDF representation of the flow, Eq. (5) in the NaKL
HH model neuron in two cases: (1) when we observe all state variables
{V (t),A(t)}, and (2) when we observe only V(t). Case (1) is not a real-
istic scenario in current clamp experiments, but we include it as a confidence
building exercise in the construction of DDF neurons. Case (2) is the realistic
scenario in a current clamp experiment where a simulating current Istim(t)
drives a neuron and only the membrane voltage V(t) is observed.

Our first step is to work with numerically generated data from the HH
NaKL model neuron [18, 34].

This basic, well studied, detailed biophysical HH neuron model has 4 state
variables and the order of 20 parameters [18, 38, 21]. DDF will replace this
with a forecasting equation for V(t), the experimentally observable quantity,
alone. As we have argued, much is gained by this model reduction.
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The equations for this neuron model are

C
dV (t)

dt
= gNam

3(t)h(t)(ENa − V (t)) + gKn4(t)(EK − V (t))

+gL(EL − V (t)) + IDC + Istim(t)

dm(t)

dt
=

m0(V (t))−m(t)

τm(V (t))
;
dh(t)

dt
=

h0(V (t))− h(t)

τh(V (t))
;

dn(t)

dt
=

n0(V (t))− n(t)

τm(V (t))
. (6)

The gating variable functions g0(V ), τg(V ); g = {m,h, n} have the form

g0(V ) =
1

2

(
1 + tanh

[
(V − vg)

dvg

])
τg(V ) = tg0 + tg1

(
1− tanh2

[
(V − vgt)

dvgt

])
.

In these equations we use the parameters given in [38, 21]. Data is gen-
erated by solving Eq. (6) using a fourth order Runge-Kutta method [29].

The DDF formulation when we observe w(t) = {V (t),m(t), h(t), n(t)} =
{V (t),A(t)}, again not the realistic biological feature of a current clamp
experiment, is the following (w(tn) = w(n)):

V (n+ 1) = V (n) + fV (w(n)) +
h

2C
[Istim(n+ 1) + Istim(n)])

A(n+ 1) = A(n) + fA(w(n)),

as suggested by Eq. (5). The functions {fV (w), fA(w)} are sums over the
RBFs as in Eq. (1).

We use the trapezoidal rule [29] for the integration over Istim(t). We
are taking steps of size h in time. There are many improvements over the
trapezoidal rule for the integration from tn to tn+h over Istim(t). Those
improvements require sampling or estimating values at points between tn
and tn + h. We do not have these quantities in our data set.

The task for DDF is to select representations for the vector fields fV (w)
and fA(w) which we shall do below. Interestingly, the constant C, the
membrane capacitance, can be estimated in the DDF training protocol as
the time course of the driving force, Istim(tn), must be specified by the user.

Using a Gaussian RBF for each of the four vector fields {fv(w), fA(w)},
DDF training will provide an estimate of the parameters in each vector field.
The result from forecasting with the trained DDF model is shown in Fig. (1).
It is clear from this result that the DDF when all {V (t),A(t)} are ‘observed’
does a strikingly good job at forecasting the actual observable V(t).
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Figure 1: Top Panel Our selection of a stimulating current to an NaKL
Hodgkin-Huxley neuron model [38, 21]. Data is generated using this
Istim(t) in solving Eq. (6). Bottom Panel Forecast using a Gaussian
RBF Model trained by both the voltage and the gating vari-
ables: {V (t),m(t), h(t), n(t)}. (This not a realistic protocol for a

current clamp experiment where Istim(t) is given, but V(t) alone

is observed. This calculation is only a demonstration of the

efficacy of DDF method in neurodynamics.)
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5 Observing only V(t): Time Delay Methods

What is actually measured in current clamp laboratory experiments is V(t)
alone. The neuron dynamics resides in a higher dimensional space than the
one dimensional V(t) that is measured. What we observe is the operation of
the full dynamics projected down to the single dimension V(t). To proceed we
must effectively ‘unproject’ the dynamics back to a ‘proxy space’, comprised
of the voltage and its time delays [37, 4, 5, 1, 20], which is equivalent to the
original state space of V(t) and the gating variables for the ion channels.

This is accomplished as follows: If we have observed V(t), we can define
DE-dimensional (‘unprojected’) proxy space vectors S(tn) via time delays τk
of V (tn) [37, 1, 20] (τn+1 > τn):

S(n) = [S1(n), S2(n), ..., SDE
(n)]

= [V (tn − τ1), V (tn − τ2), V (n− τ3), ..., V (tn − τDE
)]. (7)

The use of Takens’ theorem in nonlinear dynamics [37] is widely practiced
in the analysis of time series from nonlinear systems [1, 20].

The Physics behind the time delay construction is that as the the observed
system moves from time tn − τn+1 → tn − τn, the dynamics of the system
incorporates information about the activity of all other variables beyond the
voltage alone. When the quantity V (tn − τn) is approximately statistically
independent of the quantity V (tn−τn+1), each can be used as the components
in a ‘proxy vector’ S(n) representing the system dynamics as it develops in
dimensions higher than V(t) alone.

Using the average mutual information [12, 1, 20] between Sj and Sk ̸=j,
and choosing time lags {τj, τk} giving a minimum of this average mutual
information, we achieve an approximate information theoretic, nonlinear in-
dependence of the DE components of S(n) with respect to each other.

In principle in the discussion of Takens’ work, if one has an infinite amount
of noise free data, any time delay or set of time delays [14] would give a proxy
state vector S(n) that is equivalent to the original dynamical space of the data
source. Of course, we never have that, so a ‘guide’ was devised by [12] which
suggests that choosing the components of S(n) to be nonlinearly independent
of each other, using average mutual information as a ‘nonlinear correlation’
among the components, would provide a good measure of the ability of the
components of S(n) not to be parallel to each other. If that is achieved, then
they would span the DE dimensional space of S(n) in a numerically useful
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manner. If there are multiple times scales in the data, the method of [14]
could be a useful method to implement.

To estimate DE one may use the method of false nearest neighbors [1, 20].
It is typical, but not required, to select τa = (a − 1)τ ; a = 1, 2, . . . DE.

In this standard choice of delay coordinates there are two parameters that
determine the vectors S(t) : {τ,DE}. τ is conveniently taken to be an integer
multiple of h; DE is an integer about twice the dimension of the system
generating V(t). More precise results for these criteria are given in [31, 1, 20].

In S space we develop a map from time tk − τk to time tk + τk + h:

Sa(tk + h) = Sa(tk) + fa(S(tk),χ) + [Forcinga(tk, tk + h)]; (8)

a = 0, 1, ...DE We are interested in making steps of size h to arrive at the
dynamical discrete time map (a = 1, 2, .., DE):

Sa(t+ h) = Sa(t) + fa(S(t),χ) +
h

2C
[Istim(t− τa) + Istim(t− τa + h)], (9)

as each component of S is a voltage. The last term in Eq. (9) is the
trapezoidal approximation to the integral of Istim(t) over the interval [tk −
τa, tk − τa + h]. Each fa(S,χ) is a function of the DE-dimensional vari-
ables S and constants χ to be trained as before. The parameters are now
χ = {waq, σ, β, τ,DE}. We represent fa(S,χ) using a linear combination of
Gaussian RBFs.

In Eq. (9) we have introduced DE vector fields fa(S,χ) whose parameters
χ must be estimated by requiring Eq. (9) to be true over a training set with
{tn};n = 1, 2, ..., N−1. The trained dynamical map S(n) → S(n+1) is used
to forecast all components of S(k) for k ≥ N .

Since we are representing the development of voltage in each component
of fa(S,χ) these vector fields should be independent of a, and, in practice,
we take that as given and move forward only the component S1(n), namely
the observed voltage, so

V (t+ h) = V (t) + fV (S(t),χ) +
h

2C
[Istim(t) + Istim(t+ h)]. (10)

We then use that result to evaluate the remaining components of S(n) re-
quired in Eq. (9).

6 Results When Only V(t) is Observed
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6.1 DDF Analysis of Numerical V(t) Data from an
NaKL Neuron

Still using data from the numerical solution of the basic HH equation, Eq.
(6), we now train a Gaussian RBF via Eq. (9). 125ms of data for V(t) alone
are employed in the estimation of the parameters χ of the RBF.

The trained DDF is used to predict the subsequent 500ms of the V(t)
time course.

As in the earlier (unrealistic) example when all state variables from the
NaKL neuron model were available, when V(t) alone is presented, the DDF
neuron is able to predict the time course of the observable membrane voltage
with significant accuracy. This result is shown in Fig. (2).

Note that one cannot forecast the gating variables {A(t)} of the HH
NaKL model as we have no observed information about them. Through the
time delay vector S(tn) the biophysical information in the {A(t)} is encoded
in the trained parameters χ.

6.1.1 Comparing DDF Forecasting and NaKL Forecasting Times

To assess the effectiveness of using a trained DDF to forecast V(t) data, for
example for the efficiency of computational demands on a DDF neuron in
a circuit where it replaces a HH model, we compared the computation time
for solving our HH NaKL model to the forecasting time of a DDF trained on
the V(t) from that HH NaKL model.

We generated HH NaKL data by solving Eq. (6) using a standard fourth
order Runge-Kutta method [29, 28] with a time step of h = 0.02 ms. The
times taken by the generation of the NaKL data in a forecast window of 2000
ms (105 time steps) were 8.9 s for either CPU time or wall clock time.

We then forecast in the same window using the same Istim(t) as for the
HH NaKL model but using a trained DDF, trained on V(t) from the HH
NaKL model and forecasting only V(t).

The choice of the number of centers Nc in the training and forecasting
for the DDF is important to the forecasting time of the DDF. If we choose
Nc = 500, then the CPU time for forecasting the 2000 ms with h = 0.02 is
3 s, while the wall clock time is 2.4 s. If we decrease the number of centers
to Nc = 100, the the CPU time during forecasting is reduced to 2s while the
wall clock time drops to 1.5 s.

The training time for the DDF with Nc = 500, on V(t) from the HH
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Figure 2: Data is generated by solving the HH-NaKL model Eq. (6). We
observe only the membrane voltage, V(t), and use 125ms of these data for
training the Gaussian RBF. Top Panel Istim(t) in the 500ms forecasting
window. Bottom Panel We display the V(t) forecast of the trained
DDF-NaKL construct for 500ms after the training window and compare
it to the HH NaKL model generated V(t) data. This is a numerical

calculation, but it corresponds to a realistic current clamp

experiment where, given a driving current Istim(t), only V(t) is

observed. h = 5× 10−3ms, β = 100, R = 10−3, τ = 8h, Nc = 5000.
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NaKL models is 1.1s for CPU time and 0.63 s for wall clock time. This
decreases to 135 ms CPU time and 142 ms wall clock time for Nc = 100.

These times will vary as the complexity of the HH model neuron in-
creases from the minimalist NaKL model to a model for observed laboratory
observations. One expects the V(t) trained and forecasting DDF to become
relatively more efficient than our results on the simple NaKL model. The
training times for a DDF on V(t) data alone are quite fast. In the scenar-
ios where we substitute DDF V(t) neurons for HH neurons in a circuit the
computational efficiency is what will be of central importance.

6.2 DDF Analysis of Laboratory Data from an HVC
Neuron in the Avian Song System

With these DDF results on numerical data generated by the solution of the
NaKL HH equation in hand, we turn to the use of DDF when presented with
experimental current clamp data.

In Fig. (3) we show the stimulating current Istim(t) (Left Panel) and
the resulting membrane voltage time course (Right Panel) from an in vitro
current clamp experiment on an isolated neuron in the HVC nucleus of the
zebra finch song system [27].

6.3 Only V(t) is Observed in Laboratory Current Clamp
Data

Current clamp data was collected by C. D. Meliza at the University of
Chicago laboratory of Daniel Margoliash from presenting various stimulating
currents Istim(t) to isolated HVC neurons in a zebra finch in vitro prepara-
tion. The data were organized into ‘Epochs’ of length about 2-6 seconds
observed over several hours.

In Fig. (4) we show the results of constructing a DDF neuron forecasting
model on these data. The first 500ms of the stimulating current data and
the V(t) response data (these are not shown) were used to train a DDF RBF
model. In the Left Panel we show the stimulating current used in 500ms of
a prediction window for the same experimental preparation. In the Right
panel we show the voltage forecast of V(t) using the trained DDF model
(blue) along with the observed voltage response (black).

Next we wish to provide the same analysis as in Fig. (4) using two
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Figure 3: Top Panel The stimulating current Istim(t) presented to an iso-
lated neuron in the HVC nucleus of the zebra finch song system in an in
vitro current clamp experiment at the University of Chicago laboratory of
Dan Margoliash. Bottom Panel The recorded membrane voltage response
to Istim(t). These data were collected by C. D. Meliza (now at the University
of Virginia) who designed Istim(t) in collaboration with M. Kostuk, then a
UCSD Physics PhD student.
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Figure 4: A Gaussian RBF representation for the vector field of the mem-
brane potential dynamics was used to train a DDF. The training used 500ms
of observed V(t) data. Top Panel In the 500ms forecast window Istim(t)
data from Fig. (3) were used. Bottom Panel The V(t) forecast for 500ms
by the trained DDF neuron (in red) along with 500ms of the observed V(t)
current clamp data (in black). h = 0.02 ms, τ = 2h, Nc = 5000, DE = 3.
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Figure 5: Top Panel Stimulating current Istim(t) for a current clamp exper-
iment at the Margoliash laboratory of the University of Chicago. Bottom
Panel Membrane voltage response, V(t), to Istim(t). Data was collected by
C. D. Meliza (now at the University of Virginia) in sequential time ‘epochs’
from the same HVC neuron in Zebra Finch. Between epochs Istim(t) = 0.
Many epochs of varying length in time and with different stimulating cur-
rents Istim(t) were recorded. These data are 3500ms from Epoch 25 of the
observations.

different epochs, Epoch 25 and Epoch 26, of data collected by C. D. Meliza
in the Margoliash laboratory. In Fig. (5) we display the stimulating current
Istim(t) used in Epoch 25, Upper Panel, and the V(t) response of the neuron
in the Bottom Panel. In Fig. (6) we display the stimulating current Istim(t)
used in Epoch 26, Upper Panel, and the V(t) response of the neuron in
the Bottom Panel. This demonstrates that the DDF model neuron, just as
the HH model neuron, responds appropriately to changes in the stimulating
current. It is the unknown intrinsic properties of the neuron for which we
have introduced a RBF representation.
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Figure 6: Top Panel Stimulating current Istim(t) for a current clamp exper-
iment at the Margoliash laboratory of the University of Chicago. Bottom
Panel Membrane voltage response, V(t), to Istim(t). Data was collected by
C. D. Meliza (now at the University of Virginia) in sequential time epochs
from the same HVC neuron in Zebra Finch. These data are 3500ms from
Epoch 26 of the observations.
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6.4 Training a DDF Neuron in One Epoch and Using
it to Forecast in Another Epoch on Experimental
Current Clamp Data

Another informative test of the DDF approach is to train a DDF neuron
on neuron data from one time epoch with a selected Istim(t), then using the
same parameters χ from the first epoch forecast the V(t) response to different
Istim(t) presented in a second time epoch. This a test of the DDF neuron
ability to correctly respond to different stimulating currents.

In Fig. (5), (Top Panel), we show Istim(t) in Epoch 25 and the resulting,
VData(t) (Bottom Panel). In Fig. (6), (Top Panel), we show Istim(t) in
Epoch 26 and the resulting, VData(t) (Bottom Panel). These data are from
two epochs of a current clamp experiment from the Margoliash laboratory
(University of Chicago) on an isolated neuron from the zebra finch HVC
nucleus.

Next, in Fig. (7) we display the observed data, then we analyze the ability
of DDF trained on data from Epoch 25 to forecast within that Epoch. Then
in Fig. (8) we show how the DDF model trained on data from Epoch 25 is
able to forecast the V(t) for data in Epoch 26 where the Istim(t) is different,
though the neuron is the same.

6.5 Comments on the HVC Current Clamp Experi-
ments

There is a large library of current clamp data from this preparation. The
observation window for the data used here was about 1650-3500ms. Many
entries in the library have a longer window of time over which data was
collected, and this would allow longer training windows to be used. In previ-
ous work with this kind of data [21, 27] longer estimation windows typically
result in better forecasting.

The stimulating currents in these data were designed with three biophys-
ical principles in mind: (a) the amplitude variations of Istim(t) must be large
enough to generate many action potentials as well as substantial periods of
sub-threshold behavior. This guarantees that the full dynamic range of neu-
ron response is well represented. (b) The observation window must be long
enough in time to assure the same goals as in (a). (c) The frequencies in
Istim(t) should be low enough so that properties of the stimulating signal are
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Figure 7: DDF forecasting and Observed Data; Epoch 25. Training window
was 1000ms. Only V(t) was observed and used to train the DDF neuron.
Top Panel Observed Istim(t) in Forecast Window Bottom Panel Forecast
for 1000ms by DDF Voltage on Epoch 25 data. h = 0.02 ms, τ = 2h,
Nc = 5000, DE = 4, R = 10−3, β = 10−3.
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Figure 8: Analysis of Epoch 26 data using a DDF neuron trained on 1000ms
Epoch 25 V(t) data. Top Panel Istim(t) for Epoch 26 in the Forecast Win-
dow. This is different from the Istim(t) used in the Epoch 25 training win-
dow. Bottom Panel Observed current clamp Data and DDF forecast in the
Epoch 26 time window using the Epoch 25 trained DDF. The performance
is worst for regions of Istim(t) comprised of square pulses; this is consistent
with the observations in [24]. h = 0.02 ms, τ = 2h, Nc = 5000, DE = 4, R
= 10−3, β = 10−3.
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not filtered out by the RC low-pass characteristic of the cell membrane. If
these criteria are not met, aspects of Istim(t) are filtered out by the cell mem-
brane and the training is likely to be insufficiently well informed. V(t) data
collected with Istim(t) chosen employing these guidlines were regularly suc-
cessful in using DA to estimate the properties of rich HH models [38, 21, 27]
from laboatory data.

The context of this discussion is expanded in Appendix C.

7 Adding Other Observables

In many neurobiological investigations more observables than just V(t)
may be available. We examine how these may be combined with observations
of V(t) in a DDF framework or used on their own.

As an example, we consider the important quantity of the time course of
the intracellular concentration of calcium [Ca2+](t) = Ca(t). This is governed
by a conservation equation of the form

dCa(t)

dt
= [Sources of Ca](t) +

C0 − Ca(t)

τc
;

where C0 is an equilibrium or rest state concentration of Ca, and τc Is a
relaxation time for the Ca(t) dynamics.

The equation for the difference ∆(t) = Ca(t)− C0, is

d∆(t)

dt
= [Sources of Ca](t)− ∆(t)

τc
.

The sources of Ca ions are attributed to voltage gated Ca channels with
various properties and release of and uptake of Ca from intracellular stores
such as the Endoplasmic Reticulum; [16, 17, 11, 41].

Integrate Eq. (11) from time t to time t + h to make a discrete time map

∆(t+ h)y+ = ∆(t)y− +

∫ t+h

t

dt′ [Sources of Ca](t’),

∆(t+ h)y+ = ∆(t)y− + fCa(D(t),χ). (11)

y± = 1 ± h
2τc

appears here as we identify the appearance of ∆(n) and
∆(n + 1) on both sides of the equation for the flow of Ca(t). The integral
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over ∆(t) uses the trapezoidal approximation and the unknown dynamics for
the sources and sinks of Ca(t) are represented within the RBF vector field
fCa(D(t),χ).

The Ca(t) time variation is a projection from higher dimensional dynam-
ics of a neuron and a time delay ‘unprojection’ is required here as well. The
time delay state vector for this situation is

D(t) = [∆(t− θ1),∆(t− θ2), ...,∆(t− θC)],

D(t) = [D1(t), D2(t), ..., DC(t)] (12)

in which the time delays {θk}; k = 1, 2, ..., DC appear. This construct ‘un-
projects’ the projected observation of Ca(t).

If V(t) and Ca(t) were both to be observed, then the ‘unprojection’ occurs
in the joint time delay space of voltage, S(t), Eq. (7), and D(t), Eq. (12).
Further observations, when available, may be added to this framework.

8 Using DDF Neurons in a Network

One important goal of using neuron models trained by data alone, i.e. DDF
neurons, is to provide a reduced model based on biophysical observations to
employ in building network models.

We demonstrate this in the most basic network comprised of just two
neurons, connected by gap junctions, as shown in Fig. (9).

Note that it is only the presynaptic and postsynaptic voltages that convey
information from any neuron in this circuit to others in the circuit. Either
the HH model NaKL neuron or the NaKL trained DDF neuron may be used
in this small network. Each produces voltage signals that couple the neurons.

8.1 Discrete Time Gap Junction Dynamics

The differential equations for the two neuron circuit with gap junction con-
nections are these:

dV1(t)

dt
= FV (V1(t),A1(t)) +

IDC1

C
+

g12
C

(V2(t)− V1(t)) +
Istim(t)

C
dV2(t)

dt
= FV (V2(t),A2(t)) +

IDC2

C
+

g21
C

(V1(t)− V2(t)). (13)
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Integrating these over the interval [t, t+ h], we arrive at

V1(t+ h) = V1(t) + fV 1(S
1(t)) +

hIDC1

C
+

h

2C
[Istim(t+ h) + Istim(t)]

+
g12h

C
(V2(t+ h) + V2(t)− V1(t+ h)− V1(t))

V2(t+ h) = V2(t) + fV 2(S
2(t)) +

hIDC2

C

+
g21h

C
(V1(t+ h) + V1(t)− V2(t+ h)− V2(t)), (14)

and then

g12+V1(t+ h) = fV 1(S
1(t)) + g12−V1(t) +

hIDC1

C

+
h

2C
[Istim(t) + Istim(t+ h)] +

g12h

2C
[V2(t) + V2(t+ h)]

g21+V2(t+ h) = fV 2(S
2(t)) +

g21−
C

V2(t) +
hIDC2

C
+

g21h

2C
[V1(t) + V1(t+ h)]

g12± = 1± g12h

2C
; g21± = 1± g21h

2C
(15)

Defining the two dimensional vector v(t) = [V1(t), V2(t)] Eq. (15) may be
put into matrix form

MLv(t+ h) = MRv(t) + J(t), (16)

in which

ML =

(
g12+ −g12h

2

−g21h
2

g21+

)
,MR =

(
g12−

g12h
2

g21h
2

g21−

)
, (17)

and J(t) = [hIDC1

C
+ fV 1(S

1(t))+ h
2C

[Istim(t)+ Istim(t+h)], hIDC2

C
+ fV 2(S

(t))].
The desired discrete time map for gap junction coupling in a two neuron

map is then

v(t+ h) = M−1
L

(
MRv(t) + J(t)

)
(18)
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Figure 9: A two neuron circuit comprised of two NaKL HH neurons or two
DDF neurons trained on NaKL voltage data. There are gap junction con-
nections between the two neurons in the circuit. The circuit is driven by the
stimulating current Istim(t) presented to neuron one. An NaKL neuron is a
Hodgkin-Huxley model neuron with Na, K, and leak channels [18, 34]. The
DDF neuron is one built with RBFs trained with V(t) data from the HH
NaKL model. The computational task using the DDF neurons is substan-
tially simplified as only membrane voltage plays a role and no integration
of HH differential equations is required in establishing the behavior of the
neural circuit. The equations of the map are given in Eqs. (14), (15), and
(16)
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9 Dynamics of A Simple Two Neuron Net-

work

We are now prepared to use the dynamical discrete time maps for circuits
such as the one in Fig (9).

This proceeds as follows:

(a) determine the neuron RBFs for the two neurons fV 1(S
1) and fV 2(S

2).
In the simplest case, which we adopt here, the neurons are the same,
and the RBFs, fV (S), are the same function of their respective multi-
variate arguments S1(t) and S2(t).

(b) select a stimulating current Istim(t),

(c) select excitatory or inhibitory synaptic connections or gap junction
connections,

(d) using the DDF neurons in place of the HH neurons appearing in the
circuit use the trained DDF neurons, and

(e) evaluate the network behavior using the discrete time map for the cou-
pled V1(tn) and V2(tn), Eqs. (14) and (15), when DDF neurons are at
the nodes of the network.

9.1 A Two Neuron Circuit: HH NaKL Neurons or
DDF, NaKL Trained, Neurons; Gap Junction Con-
nections

We begin by using a selected Istim(t) to an HH-NaKL neuron and use the
resulting V(t) data to train a DDF discrete time map for V(t) generated from
an HH NaKL neuron. The forecasting ability of the DDF is shown in Fig.
(10). We now have the HH model NaKL and the DDF model NaKL neuron
we require for a comparison of the circuit using one and then the other at
the nodes of the two neuron network.

Using the HH-NaKL neuron at both nodes of the network Fig. (9) we
generated the time course of V1(t) and V2(t). Then replacing the HH-NaKL
neurons with the trained DDF-NaKL neuron we generated another set of
V1(t) and V2(t) time courses.
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A comparison of results of using these two neuron models at the nodes of
our simple network is shown in Fig. (11). While the ‘network’ we selected
is simple, the idea that we are able to replace an HH-neuron with a trained
DDF-neuron in a network is now supported by these results..

This result is, as noted, for gap junction couplings between the two neu-
rons. The way one introduces ligand gated synaptic connections into a net-
work is discussed in Appendix B.

9.2 One DDF Neuron Driving a Second DDF Neuron
through a Synaptic Connection

To explore the ability of DDF neurons to work in a biological network with lig-
and gated synaptic connections, we constructed a network segment in which
Neuron 1, with membrane voltage V1(t), is driven by a stimulating current
Istim(t) and this neuron drives a second neuron, with membrane voltage V2(t),
via an excitatory ligand gated synapse. This network segment is shown in
Fig. (12).

The synaptic current from the presynaptic neuron with voltage V1(t) and
driving the postsynaptic neuron with voltage V2(t) is described by

Isynaptic(t) = gsynA(t, V1(t))[Erev − V2(t)]

dA(t, V1(t))

dt
=

A0(V1(t))− A(t, V1(t))

τA(A1 − A0(V1(t))
, (19)

where A(t, V1(t)) is a synaptic gating variable. It is opened, A(t, V1(t)) ≈ 1,
when neurotransmitter binds onto receptors on the postsynaptic cell. It
is closed, A(t, V1(t)) ≈ 0, when that neurotransmitter is released from the
postsynaptic receptor.

We represent driver of this transition in the neighborhood of a transition
at a voltage V0 from closed to open by writing

A0(V ) =
1

2
[1 + tanh(

V − V0

dV0

)].) (20)

This function moves from very near 0 when V ≪ V0 to very near 1 when
V ≫ V0, as desired, and it does so over an interval in voltage dV0.

For the excitatory synaptic connection, we selected gsyn = 0.5, Erev =
50mV, τA = 0.1ms,A1 = 9/8, V0 = −50mV and dV0 = 10mV .
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Figure 10: An HH-NaKL model neuron and a DDF-NaKL were driven by
the same Istim(t) in a training window of 500ms. Only the V(t) data from
the HH-NaKL model neuron was used to train the DDF-NaKL neuron. (h
= 0.02ms, DE =3, β = 10, τ = 3h, Nc = 5000.) In the Top Panel we
show the Istim(t) in a subsequent 500ms window used for prediction by the
trained DDF-NaKL model. Bottom Panel Comparison of the voltage time
courses V(t) from the numerical solution of the HH-NaKL and the forecast of
the trained DDF-NaKL models over a 500ms forecasting window. This V(t)
trained DDF-NaKL neuron was used in the 2 neuron gap junction network,
Fig. (9), to replace the HH NaKL neuron.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.12.03.471194doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471194
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 11: In the two neuron circuit with gap junction connections shown
in Fig.(9) HH-NaKL model neurons were used in the circuit and V1(t) and
V2(t) were recorded. Then we used the trained DDF-NaKL neurons, see Fig
(10) in the same circuit with the same Istim(t). V1(t) and V2(t) were recorded
with HH-NaKL neurons and with DDF neurons. Top Panel. Comparison
of the time courses of V1(t) in the two circuits. Bottom Panel Comparison
of the voltage time courses V2(t) in the two circuits.
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Figure 12: A network segment which has a presynaptic neuron with mem-
brane voltage V1(t) driven by a stimulating current Istim(t) connected to a
postsynaptic neuron with membrane voltage V2(t) by a ligand gated synaptic
connection. The current flowing into neuron two is given in Eq. (19).
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Figure 13: In the network segment shown in Fig. (12) Neuron 1 with mem-
brane voltage V1(t) is driven by our selected Istim(t). The voltage activity
V1(t) drives Neuron 2 through a ligand gated synapse, Eq. (19). In this figure
we show V1(t) comparing V1(t) when HH NaKL neurons are in the network
segment (black) and when DDF neurons, trained on the HH V1(t), are in the
neuron segment (red). Nc = 500 for the DDF neurons.
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Figure 14: In the network segment shown in Fig. (12) Neuron 1 with mem-
brane voltage V1(t) is driven by our selected Istim(t). The voltage activity
V1(t) drives Neuron 2 through a ligand gated synapse, Eq. (19). In this figure
we show V2(t) comparing V2(t) when HH NaKL neurons are in the network
segment (black) and when DDF neurons, trained on the HH V1(t), are in the
neuron segment (red).Nc = 500 for the DDF neurons.
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The performance of this network segment was evaluated using the sim-
ple NaKL HH neuron as both the presynaptic neuron and the postsynaptic
neuron. Along with the dynamics of the synaptic gating variable A(t, V (t))
this is a nine dimensional dynamical system. Selecting Istim(t) as we have
earlier, we solved for V1(t) and V2(t) and stored these data for later use.

Next, using just the V(t) from an isolated NaKL neuron driven by the se-
lected Istim(t) we built a DDF neuron using the time delay method described
earlier. In the construction of the DDF neuron model we used Nc = 500,
DE = 4, τ = 2, and h = 0.02 ms in the data.

Two of these DDF neurons were then used in the network segment in
place of the simple NaKL HH neurons, and the same network segment was
driven by the same Istim(t) presented to neuron 1 connected by the same
synaptic dynamics to DDF neuron 2. The DDF neurons were trained with
500 ms of HH model V(t) data.

In Fig. (13) we display the behavior of V1(t) from the presynaptic HH
neuron and from the presynaptic DDF neuron when operating in the network
segment.

In Fig. (14) we display the behavior of V2(t) from the postsynaptic HH
neuron and from the postsynaptic DDF neuron when operating in the net-
work segment.

This network segment result indicates that, indeed, we may replace the
more complex HH neuron voltage activity with the reduced dimension, bio-
physically trained, V(t) DDF neuron in synaptic connections occurring in a
network of neurons.

10 Summary and Discussion

This paper is a melding of many ideas from nonlinear dynamics and ap-
plied mathematics to the goal of constructing biophysically based models of
observables in neurobiology. These data driven models encode the full in-
formation in experimental observations on the complex system, the neuron,
which is observed in a current clamp experiment, i.e. one with a given Istim(t)
with membrane voltage V(t) observed, and permit forecasting/predicting the
voltage response of the observed neuron to other stimuli.

The method is called Data Driven Forecasting (DDF) and the model
construction produces a discrete time, nonlinear map V (t) → V (t + ∆t) =
V (t+h) that may be used in a network with synaptic or gap junction connec-
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tions as the dynamical function of each is determined by the voltages of the
presynaptic and the postsynaptic cells. We have shown this in a simple net-
work for gap junction neuronal connections and for a network segment where
a presynaptic neuron, stimulated by Istim(t), drives a postynaptic neuron via
an excitatory synapse. The formulation of the required dynamical map for
the gating variables of synaptic connections is given in Appendix B.

The DDF based network permits a computationally efficient network
model where the trained DDF discrete time map, trained on biophysical
data, replaces complex Hodgkin-Huxley models typically used in contempo-
rary research. The computational advantage is achieved in two ways: (a) no
differential equations at the network nodes must be solved, and (b) the nodal
models are substantially reduced in complexity as it is only the observable,
V(t) that is forecast.

In the timing comparisons we performed on the use of a HH NaKL model
neuron solved by a standard fourth order Runge-Kutta ordinary differential
equation solver compared to the forecasting efficiency of the V(t) alone DDF
for the same time period with the same Istim(t) we found a computational
improvement by a factor of 3.7. As the HH NaKL model evaluates four state
variables {V (t),m(t), h(t), n(t)} while the V(t) trained DDF neuron gives
only the time course of V(t): V (t) → V (t + h), a factor of about four in
execution of the DDF is sensible.

For the data in Fig. (3) a detailed Hodgkin-Huxley model with 14 state
variables, V(t) and 13 gating variables was constructed using methods of
data assimilation [27]. The improvement in computational efficiency in fore-
casting V(t) using the DDF neuron trained on these data over the HH model
was approximately 10. This suggests the idea that for a HH neuron with
Ngating variables, the computational efficiency of a DDF neuron accurately
forecasting the membrane voltage will be about Ngating faster than solving
the HH model at each node of a functional network.

One must recognize that while much is gained by the DDF neuron con-
struction, something is set aside, and that is the knowledge of the biophysics
in detailed HH models of individual neurons including the operation of gating
variables for the ion channels selected for the model, parameters determining
the dynamics and strength of those ion channels, and other unobserved, yet
relevant biophysical properties of the neurons.

In the present paper we have presented the formulation of the DDF
method. Many familiar with its ingredients will recognize the provenance
of such a strategy. We have also shown how this approach can be applied to
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experimental data from current clamp experiments from an avian songbird
preparation.

The challenges ahead in building large realistic functional network models
in neurobiology are significant. Again, as the DDF models are based on
observations of V(t) from experimental data, the biophysical content of each
representation of neuron dynamics is equivalent.

While we certainly have not shown this in the present paper, it is not
inappropriate to state that the connectivity of a realistic functional network
with DDF neuron models at the nodes can be established using methods of
data assimilation [38, 21, 27, 2].

Data assimilation for such a network requires a model of the connectivity
among the component neurons along with data on the operation of many
neurons in the intact network. The ability to use Ca fluorescence experi-
mental results [33, 23, 39], where a large number of neurons are observed,
in a data assimilation environment suggests a path forward for this kind of
network connectivity construction.

Another potential use of DDF arises when one does have detailed HH
model neurons for network components. This may be of value in answering
questions more intricate than computationally efficient neurons at the nodes
of large networks. [9] and ([2], Chapter 9). It is likely that data assimilation
will have been used to create such detailed biophysical models. Using V(t)
from such models one can construct a reduced dimension DDF V (t) → V (t+
h) realization of the biophysics in the HH model, and then, as we showed,
one may replace the complex HH model with the reduced dimension DDF
construct. One can expect to achieve computational efficiency and allow the
exploration of larger biological networks when using the DDF construction
to capture the neuron biophysics.
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A Appendix A

A.1 Guide to the Use of Radial Basis Functions in
Data Driven Forecasting

To assist the reader to have an overview of how we construct and use the
representations of the vector field for the DDF discrete time maps constructed
from observed data we present in this Appendix a ‘manual’. Our manual is
more general than the applications in the main body of the paper which has
as its focus the use of the methods in neuroscience. In this ‘manual’ We will
try to identify what is special for neuroscience and what is useful in general.

1. Collect D-dimensional data for the observations on your system of in-
terest. We call these data u(tn) = u(n)∈ RD; tn = t0 + (n − 1)h, n =
1, 2, ...N . We wish to use these data to construct a discrete time map
u(n) → u(n + 1) which we then use for n > N , namely to forecast in
the dynamical development of the observations beyond the data that
has been collected.

2. Select a training subset of the data {u(n)}; n = 1, 2, ..., NT ; NT < N .

3. Select a subset of the observed data to use as ‘centers’ uc(q) q =
1, 2, ..., Nc; Nc ≤ NT . The RBF was designed to be an accurate in-
terpolating function in u space, and the centers tell us which samples
of the distribution in u space we utilize.

4. Select a radial basis function (RBF) ψ([u − uc(q)]2, σ). All of RBF’s
have a ‘shape factor’ σ that is associated with the distance in D-
dimensional u space over which the influence of the observed data is
important [40]

5. Represent the vector field f(u(n),χ) for the discrete time dynamics
u(n+1) = u(n) + f(u(n),χ). The χ are a set of parameters which we
will learn while training the RBF.
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6. The representation of f(u,χ) is

fa(u,χ) =
Nc∑
q=1

waqψ([u− uc(q)]2, σ); a = 1, 2, ..., D, (21)

and among the parameters in χ are {waq, σ Nc} and others we identify
in a moment. A more general RBF formulation [22, 32] allows for a
polynomial in u, but we have not used this freedom in this paper.

7. Train the elements of χ via

ua(n+ 1) = ua(n) +
Nc∑
q=1

waqψ([u(n)− uc(q)]2, σ); n = 1, 2, ..., NT − 1

(22)

8. This training involves the inversion of a rectangular Nc × NT matrix
ψ([u(n) − uc(q)]2, σ) which is an ill-posed problem and requires regu-
larization [29] to make its inverse well defined. This procedure is also
called ridge regression in the literature. The regularization consists of
realizing the determination of the {waq} as the minimization of

NT∑
n=1

(
ua(n+ 1)− ua(n)−

Nc∑
q=1

waqψ([u(n)− uc(q)]2, σ)

)2

(23)

to which we add a regularization term β
∑NT

n=1

∑Nc

q=1w
T
aqwaq.

Writing Znq = ψ([u(n)−uc(q)]2, σ) and ya(n) = ua(n+1)− ua(n) the
solution to the minimization of Eq. (23) is written as

waq =
Nc∑
q′=1

(
1

ZTZ+ β

)
qq′

NT−1∑
n=1

Zq′nya(n); a = 1, 2, ..., D (24)

This enlarges the list of quantities in we are required to estimate to
{waq, σ Nc, β}.

9. If one is using the time delay embedding space to ‘unproject’ the D-
dimensional measurements into a larger space where the dynamics op-
erates, then we need to estimate two more parameters: the time delay
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τ and the dimension DE of vectors S(n) in the larger space. For D = 1,
the case we encountered in application of DDF to neuroscience prob-
lems, where u(n) = V (n), the time delay vectors are

S(n) = [u(n), u(n− τ), u(n− 2τ), ..., u(n− (DE − 1)τ)]. (25)

If D > 1, the time delay vectors will have components built with time
delays of the observed u(n).
The full set of parameters we need to estimate in this practical setting

is now {waq, σ,Nc, β, τ,DE}.

To implement this protocol, we have proceeded in the following way:
There are many RBF’s to choose from. See Table 1 in [32] for a list. We

have not tried them all. We have primarily used the Gaussian

ψG([u(n)− uc(q)]2, σ) = exp[−R(u(n)− uc(q))2], (26)

in our calculations. R is the precision of the Gaussian.
We also used the multiquadric of Hardy [13, 26, 22, 32]

ψMQ([u(n)− uc(q)]2, σ) =
√

([u(n)− uc(q)]2 + σ2), (27)

and found on some problems essentially equivalent results. In what follows,
and in the work in this paper, we remain with ψG([u(n)− uc(q)]2, σ).

A.2 Including Polynomial Terms in the Representa-
tion of f(u)

It can be helpful is to include polynomial terms as well as RBF’s in the repre-
sentation of the discrete vector field [32][22]. The vector field representation
becomes:

fa(u,χ) =
J∑

j=1

cajpj(u) +
Nc∑
q=1

waqψ([u− uc(q)]2, σ); a = 1, 2, ..., D, (28)

which is what we see in Eq. (1).
The addition of polynomials is indicated if we know on other grounds

something about the underlying dynamical of the source of the data that
suggests polynomial terms in the vector fields are present. That is not the
case in applying these methods to neuroscience, so except for the term u(n)
in Eq (22), we do not use the freedom of further polynomials in u.
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A.3 How to choose Centers

The choice of centers, the uc vectors in the RBF, is constrained by the data
points in the training window 1 ≤ n ≤ NT . We used K-means clustering [10]
to select the uc, and this is a way of selecting centers where they are needed
to sample the distribution in u space. While there may be more advanced
methods, we have found K-means to work well enough and have used the
method in finding all of the results in the paper.

Another aspect to consider is the number of centers Nc. A general rule of
thumb is that more centers can better, as the distribution in u space is better
sampled. However, this comes at the cost of both memory and computational
time. In this paper, we typically chose about 5000 centers for training lengths
NT ≈ 25− 50× 104.

There is a possible strategy with regard the selecting Nc that balances
a fine grained sampling of the distribution in u space against the increased
computing cost in evaluating the dynamical map u(n) → u(n + 1) when
Nc. When presented with a data set that is noisy the resolution in u space
is coarse grained when the data arrives. The idea is to recognize that lim-
itation on how well any DDF can perform by evaluating a metric on the
match between the predictions of the trained DDF {uDDF (n) compared to
the known, noisy knowledge we have of the data udata(n) for n ≥ NT . This
could be something like

∑
n>NT

[uDDF (n) − udata(n)]
2. Noise will limit the

improvements in forecasting quality as Nc increases, and the performance
of the metric should lead to a modest Nc larger than which no increase in
forecasting skill is seen.

A.3.1 Centers and RBF’s

We found that the obvious choices for DDF worked out well, namely choosing
Gaussian RBF’s and K-means clustering. These strategies are commonly
used in the RBF literature.

However, these are far from the only good working ideas there and others
could possibly work better. The centers could also be chosen by emphasizing
places where the first or second derivatives in the data u(n) are greatest.
This could work well because it could select more centers where data might be
sparse, for example when the neuron data is spiking and regions are traversed
at higher speed than in sub-threshold regions with smaller derivatives in
u(n) [30].
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A.4 Working with Imposed Driving Forces Acting on
the Source of the Data {u(n)}: Stimulating Cur-
rents Istim(t)

We have not found a general formulation for DDF in the case of a driven dy-
namical system. One natural idea is to include those forces, call them Kext(t)
on the list of observed quantities in the data: {u(n)} → {u(n),Kext(n)} and
enter this into the arguments of the relevant RBFs.

In many interesting situations in Physics and Neurobiology, however, the
forces are additive, so the formulation presented in this paper maybe appli-
cable to many interesting problems.

If we were analyzing the underlying detailed dynamical equations of the
processes producing the data, the Kext(t) would have to be provided as they
are not given a differential equation of their own, but specified by the user.
This is true when we solve the differential equations for a model of the driven
systems and remains true for DDF.

In the case of the dynamics of neurons, we are in a fortunate situation.
In this instance the forcing is from currents external to the intrinsic currents
associated with the ion channel dynamics. The voltage HH equation is a
statement of current conservation and currents are additive.

This permitted us to write Eq. (4)

C
dV (t)

dt
= Fintrinsic(V (t),A(t)) + Istim(t);

dA(t)

dt
= FA(V (t),A(t))., (29)

and is an example where some knowledge of the biophysics or other Physics
of the data source is of value.

A.5 Evaluating the χ

We have two classes of parameters in our representation of the vector field
f(u,χ): those coefficients {caj, waj} which weight the polynomial and RBF
contributions in Eq. (1). These are determined by linear algebra from

ua(n+ 1) = ua(n) + fa(u(n),χ) =
J∑

j=1

cajpj(u(n))

+
Nc∑
q=1

waqψ([u(n)− uc(q)], σ); a = 1, 2, ..., D, (30)
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when the parameters Ξ = {R, β, τ,DE} are fixed.
We proceeded by selecting a set of Ξ, making a coarse grid search over

the Ξ, performing the regularized linear algebra to train the coefficients φ =
{caj, waj} for each choice of the Ξ, and using this trained representation to
perform a validation test for each choice. χ = {φ, ξ}.

To accomplish this validation step this we selected the unused part of the
known data with NV = N −NT elements and calculated a validation set of
forecast values uV (n)

uV (n+ 1) = uV (n) + f(uV (n),φ,Ξ); n ≥ N −NT . (31)

The we compared the values uV (n), which are dependent on the choice of Ξ,
with the known data. Effectively we evaluated the cost function

C(Ξ) =
1

NV − 1

N∑
j=N−NT+1

(uV (j)− u(j))2, (32)

and sought a minimum over the Ξ.
Our practice has been to examine the quality of uV (n) ≈ u(n), locate

regions of the Ξ where they match well, and refine the grid search in the Ξ
as required.

A.5.1 Differential Evolution to search for the minimum of C(Ξ)

Differential Evolution is a genetic algorithm that could be implemented in
our DDF construction to improve our ability to create DDF models by more
precisely choosing sets of parameters Ξ = {R, β, τ,DE}. The method is
described in [35].

It works by initiating a parent set of parameters from a user defined
uniform distribution. From that start, new “children” sets of Ξ are made
from combining the parents in a algorithmic way and comparing the new
validation forecast {uV (j)} to the old one. A user defined cost function,
such as Eq. (32), is used to compare the the children to their parents.

As generations go by, parents will gradually be replaced by children until
all the parents converge on a minimum in the cost function. If the user is
able to define a clever cost function, they could get a result that hope to
surpass those from the simple grid searching employed so far
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A.6 Code for Our Implementation of DDF

We did all of our testing and programming in Python. We give links to the
code we used published in GitHub. In the links we include DDF code that
was written purely for Radial Basis Functions, in the repository is code for
both Gaussian and MultiQuadric forms of the RBF. There is a link to a DDF
neuron repository that includes the code that has been built specifically for
the study of an NaKL neuron where only the voltage and the stimulus is
known; this means that the code is built to perform time delay embedding
on a single dimension of voltage. The treatment of the stimulus current in
this code is as was described earlier. The third and final attached link is to a
method of using DDF with polynomial terms in the representation of f(u,χ)
as an additional resource to the reader.

� https://github.com/RandarserousRex/Data-Driven-Forecasting-Radial-
Basis-Function-Method

� https://github.com/RandarserousRex/DDF-Applications-to-Neurons

� https://github.com/RandarserousRex/Data-Driven-Forecasting-Taylor-
Method

A.7 Memory Management

An important note to consider is the size of the matrices involved in training,
for they can grow to the size of gigabytes. For example, the largest matrix
involved in training is that of all values of the RBF’s at all times, NT by
Nc, can have a standard length of 25,000 data points with 5,000 centers.
Typically we use float64 for all our values resulting in this matrix having a
size 25, 000(NT ) × 5, 000(Nc) × 8 = 1 Gigabyte. We need another Gigabyte
for its transpose used in the regularized matrix inversion calculation. This
could be a limiting factor if one is running multiple tests in parallel on a
CPU or on a cluster with limited storage.

A.8 Parallelizing DDF Calculations

This section serves as a suggestion to take advantage of the ability to run
DDF code in parallel. The grid searching method discussed above lends itself
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readily to parallel programming. Even the Differential Evolution method
can be run in parallel. A single trial of DDF doesn’t have much potential
for parallel operations as the training is just matrix multiplication, and the
forecasting is a step by step process that relies on the result of the previous
step.

B Appendix B

In the main text we implemented a simple two neuron circuit with gap junc-
tion connections between the neurons. A richer network consists of more
neurons and allows for synaptic connections as well. Starting with an equa-
tion for synaptic currents Isynaptic(t) we need a discrete time map to update
the time dependence in a map for V(t). This is given now.

B.1 Discrete Time Synaptic Dynamics

In the discrete time dynamical rules for the membrane voltages of the neurons
in a network we require the gating variable at discrete time tn and tn + h =
tn+1.

The synaptic current between a presynaptic neuron with voltage Vpre(t)
and a postsynaptic neuron with voltage Vpost(t) is described by

Isynaptic(t) = gsynA(t, Vpre(t)[Erev − Vpost(t)]

dA(t, Vpre(t))

dt
=

A0(Vpre(t))− A(t)

τA(A1 − A0(Vpre(t))
, (33)

where A(t, Vpre(t)) is a synaptic gating variable. It is opened A(t, Vpre(t)) ≈ 1
when neurotransmitter binds onto receptors on the postsynaptic cell. It is
closed A(t, Vpre(t)) ≈ 0 when that neurotransmitter is released from the
postsynaptic receptor.

Henceforth we denote the gating variable A(t, Vpre(t)) as A(t) for brevity.
In Eq. (33) we have time constants τ(A1 − A0(Vpre(t)) and a function

A0(Vpre(t)) to specify. The function A0(V ) described the transition of the
gating variable from A(t) ≈ 0, namely a closed synaptic channel, to A(t) ≈ 1,
an open synaptic channel.
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We represent this transition in the neighborhood of a transition at a
voltage V0 from closed to open by writing

A0(Vpre(t)) =
1

2
[1 + tanh(

Vpre(t)− V0

dV0

)]. (34)

This function moves from very near 0 when V ≪ V0 to very near 1 when
Vpre(t) ≫ V0, as desired, and it does so over an interval in voltage dV0.

When the width of this transition dV0 is small, A0(V ) is essentially a step
function in voltage.

When Vpre(t) < V0 Eq. (33) is approximately

dA(t)

dt
= − A(t)

τAA1

, (35)

and when Vpre(t) > V0 Eq. (33) is approximately

dA(t)

dt
=

1− A(t)

τA(A1 − 1)
. (36)

By integrating each of these equations from time t to time t+h, we find
for V ≪ V0

A(t+ h) =
u−

u+

A(t); u±1 = 1± h

2τAA1

. (37)

While for Vpre(t) ≫ V0 we find

A(t+ h)w+ = A(t)w− +
h

τA(A1 − 1)
; w±1 = 1± h

2τA(A1 − 1)
. (38)

To avoid the discontinuous change in voltage associated with a step func-
tion in Vpre we write a smoother transition over an interval dV for the synaptic
gating variable A(t):

A(t+ h) =
u−

u+

A(t)

[
1

2
(1− tanh

(Vpre(t)− V0)

dV
)

]
+

(
A(t)

w−

w+

+
h

w+τA(A1 − 1)

)[
1

2
(1 + tanh

(Vpre(t)− V0)

dV
)

]
u±1 = 1± h

2τAA1

; w±1 = 1± h

2τA(A1 − 1)
(39)
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B.2 Excitatory and Inhibitory Synaptic Formulation

In Eq. (33) we have two time constants {τAA1, τA(A1 − 1)} corresponding
to the time it takes for a neurotransmitter to undock from a postsynaptic
receptor and to dock at the receptor, respectively.

For an excitatory AMPA receptor, mediated by the neurotransmitter glu-
tamate, the approximate value of τAA1 ≈ 3ms, and of τA(A1 − 1) ≈ 1ms.
So for this excitatory synaptic connection τA = 2 ms and A1 = 1.5. For an
inhibitory synaptic connection, mediated by GABA, τAA1 ≈ 8 ms, and of
τA(A1 − 1) ≈ 2ms, leading to τA = 6 ms and A1 = 4/3.

C Appendix C

What waveforms should be chosen for Istim(t) ?
This question arose in the valuable comments of the reviewers and is

certainly an important issue in training a DDF model neuron so that it will
respond accurately to any stimulating current it may encounter in a network
or from environmental stimulation.

The fact that the stimulating current enters the biophysical (HH) equa-
tions in an additive manner, reflecting the way current conservation works
in all electric circuits, suggests that a judicious choice of Istim(t) is possible.

We do not have a mathematical statement about what stimulating cur-
rents should be used to train a DDF, or for that matter a HH neuron model
via data assimilation. However, we do have a biophysical argument.

1. If one wanted to learn how a DDF would respond when parameter
value is changed, then presenting data to the DDF training protocol
from a range of parameter values would permit the DDF to interpolate
through that range.

DDFs, and radial basis functions (RBFs) are interpolating mathemati-
cal devices by construction. With enough data sampling enough of the
dynamical system attractor the RBF can accurately interpolate among
the given data points.

2. As we have no differential equation for the stimulating current Istim(tk));
tk = t0 + hk, k = 0,1,2, . . . N are just like parameters in the voltage
or any other DDF. If we choose a training I(t) which evokes a V(t)
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over the dynamical range expected of a neuron, say -100 mV to 100
mV, then we will be able to interpolate to new V(t) values within the
training range.

That is likely not to be quite enough as Istim(t) is also a time series,
albeit prescribed by the user, so we have found that the strength of
Istim(t) in its Fourier power spectrum must lie in a range which can be
determined by the data it is presented. Biophysically, if the Istim(t) fre-
quencies are too high, they would be filtered out by the cell membranes
RC time constant, as that acts as a low pass filter.

Just this line of thinking led to the stimulating currents one sees in
each of the experimental time courses presented in the paper. Before we
used this biophysical heuristic, data assimilation—training a HH model with
data—was unsuccessful. With this heuristic guiding the choices of Istim(t),
successful DA is now routine.
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