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Abstract 

The accumulation of multisite large-sample MRI datasets collected by large brain research projects 

in the last decade has provided a critical resource for understanding the neurobiological mechanisms 

underlying cognitive functions and brain disorders. However, the significant site effects, observed in 

the imaging data and their derived structural and functional features, has prevented the derivation of 

consistent findings across different studies. The development of harmonization methods that can 

effectively eliminate complex site effects while maintaining biological characteristics in 

neuroimaging data has become a vital and urgent requirement for multisite imaging studies. Here, we 

proposed a deep learning-based framework to harmonize imaging data from pairs of sites, in which 

site factors and brain features can be disentangled and encoded. We trained the proposed framework 

with a publicly available traveling-subject dataset from SRPBS and harmonized the gray matter 

volume maps from eight source sites to a target site. The proposed framework significantly 

eliminated inter-site differences in gray matter volume. The embedded encoders successfully 

captured both the abstract texture of site factors and the concrete brain features. Moreover, the 

proposed framework exhibited outstanding performance relative to conventional statistical 

harmonization methods in site effect removal, data distribution homogenization, and intra-subject 

similarity improvement. Together, the proposed method offers a powerful and interpretable deep 

learning-based harmonization framework for multisite neuroimaging data that could enhance 

reliability and reproducibility in multisite studies for brain development and brain disorders. 
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1 Introduction 

Advances in magnetic resonance imaging (MRI) in the recent decades have offered potent techniques 

for noninvasively exploring the structures and functions of the human brain in vivo, leveraging our 

understanding for the neurobiological mechanisms underlying the development of complex 

cognitions and the clinical impairments related to brain disorders (Cao et al., 2017a; Fornito et al., 

2015; Park and Friston, 2013). The practice of multisite MRI data acquisition in recently launched 

large brain research projects, such as the IMAGEN (Schumann et al., 2010) and ABCD (Casey et al., 

2018), has accumulated critical neuroimaging resources to facilitate brain investigation with 

impressive statistical power (Laird, 2021; Poldrack and Gorgolewski, 2014; Xia and He, 2017). 

However, considerable heterogeneity among imaging datasets collected from different sites, that is, 

the site effect, has been widely documented, in both the raw structural and functional imaging data 

(Li et al., 2020; Radua et al., 2020) and image-derived brain characteristics, such as gray matter 

volume (GMV) (Melzer et al., 2020) and functional connectivity (Noble et al., 2017a; Yamashita et 

al., 2019). The site effect predominantly results from both the sampling of divergent populations and 

the different scan equipment across different sites and is a major source of the inconsistencies in the 

findings reported from different studies on the same topic. Therefore, developing methods for 

harmonizing imaging data across different scan sites has become a fundamental and urgent 

requirement for multisite imaging studies.  

To correct for the site effect in multisite imaging data, several harmonization strategies have been 

proposed, which can be summarized into two major categories: conventional statistics-based 

harmonization methods and recently developed deep learning (DL)-based harmonization methods. 

Conventional statistical methods are usually applied in a linear regression manner on univariate 

metrics with sites indexed as a categorical covariate, for example, the least squares-based general 

linear model (Rao et al., 2017) and Bayesian estimation-based ComBat (Fortin et al., 2018; Fortin et 

al., 2017). These methods have been utilized in multisite imaging studies and have shown a powerful 

capacity for removing linear site effects in brain metrics (Pomponio et al., 2020; Xia et al., 2019; Yu 

et al., 2018). However, noticeable limitations have been observed for this type of harmonization 

method. First, the site effect is mathematically assumed to be linear, while the actual effect may be 

much more complex. Second, brain characteristics are considered independently in these models, 

largely neglecting the spatial and topological relationships among brain regions. To overcome these 

defects, recently proposed DL-based harmonization methods, including U-net (Dewey et al., 2019), 

cycle-generative adversarial network (Modanwal et al., 2020), or three-dimensional convolutional 

neural network (Tong et al., 2020), allow for mapping the complex abstract representations of the 

nonlinear spatial pattern of the site effects in MRI data. These models have been primarily applied to 

the harmonization of diffusion tensor images (Moyer et al., 2020), structural images (Zuo et al., 

2021), and morphological measurements (Zhao et al., 2019), successfully eliminating the site effect 

in such data with complex spatial or topological information. However, the interpretability is 

relatively low for most of these established DL-based harmonization methods, for which high-

dimensional representations are difficult to delineate. Additionally, the model training strategy of site 

pairing is a common approach for DL-based methods, and the fusion of data from multiple sites in a 

single model will greatly increase the model’s complexity and require much more training data. 

Designing a harmonization framework with high expandability will facilitate the application of DL-

based methods.  

Another critical factor for establishing reliable multisite image harmonization models is the selection 

of training data. The core objectives of multisite harmonization are the elimination of non-biological 

factors, such as MRI equipment and scan protocols, while simultaneously retaining the biological 

factors of the participants across different sites. Therefore, the innovative traveling-subject dataset, in 
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which each participant is scanned at all different sites, has become a valuable resource for the 

training of harmonization models, as it can minimize the bias of population sampling across sites and 

ensure that the established models only learn non-biological factors (Noble et al., 2017b; Tong et al., 

2019; Yamashita et al., 2019). Although existing multisite imaging studies have shown that 

harmonization models based on nontraveling-subject datasets, be they conventional statistics or DL-

based models, can efficiently remove the site effect (Garcia-Dias et al., 2020), it is unknown whether 

the inter-site differences in biological factors are over eliminated. Benefiting from the publicly 

available traveling-subject dataset, several recent studies have established harmonization methods 

that can separate and protect biological factors from complex site effects and have achieved 

outstanding performance with a small training sample (Yamashita et al., 2019). However, DL-based 

harmonization models for brain measurements using traveling-subject dataset are still lacking.  

Here, we proposed a DL-based harmonization framework that can disentangle both site-factor and 

brain-factor representations from site effects based on a publicly available traveling-subject dataset. 

Taking the widely used GMV measurement as an illustration, we first examined whether this 

framework can significantly eliminate site effects in the GMV maps of nine scan sites. Then, we 

investigated whether the site-factor and brain-factor encoders embedded in the framework can 

capture inter-site and inter-subject variability, respectively. Finally, we compared proposed methods 

with several conventional statistical harmonization methods in terms of site effect removal, data 

distribution homogenization, and intra-subject similarity improvement. 

 

2 Methods 

2.1 The deep learning-based representation disentanglement (DeRed) framework for multisite 

imaging data harmonization  

We proposed a DL-based bidirectional framework (Fig. 1a) for neuroimaging data harmonization, 

which enables the transfer of imaging data from a given site to a target site, and vice versa. 

Specifically, this framework contains four encoders for disentangling site-factors and brain-factors in 

imaging data of the source and target sites, and two decoders for synthesizing the harmonized images 

for the encoders. This design allows harmonized imaging data to contain both target site information 

and natural brain features. This framework was inspired by a disentangled unsupervised cycle-

consistent adversarial network (DUNCAN) (Liu et al., 2021), which was developed to remove MRI 

artefacts based on representation disentanglement. As shown in Fig. 2a, the site-factor encoder in 

DeRed is designed to have three residual blocks which can avoid the convergence performance 

degradation caused by structure redundancy (He et al., 2016a, b). Each residual block includes a set 

of 2D-Convonlution Layer, and leaky rectified linear unit (LeakyReLU) activation (Fig. 2b). When 

the feature maps pass through the residual block, the size is reduced by half, and the output of each 

residual block can be used as image features at different scales. Notably, each input slice of the site-

factor encoder must undergo an average pooling process before the residual blocks because the 

representation related to the scanning site or equipment should be abstract, regardless of anatomical 

details, and should not be extracted from the shallower layer. Similar to the site-factor encoder, the 

brain-factor encoder is composed of four residual blocks. The difference is that the brain-factor 

encoder lacks the average pooling process and each residual block contains the instance 

normalization operation (Huang and Belongie, 2017) after LeakyReLU activation to capture 

independent features across imaging data of the same subject.  

The decoder (Fig. 2c) contains a two-step synthesis structure, integrating features extracted by the 

encoders. First, the site-factor features at different scales are mixed through a series of upsampling 
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processes and residual blocks, it should be noted that the size of each feature map is not be reduced 

by half when passing through the residual block. Similarly, the mixing process for brain-factor 

features also involves brain-factor residual blocks and an upsampling process. After the first stage of 

the mixing process, the decoder produces two feature maps, one for the site-factors and the other for 

the brain-factors. Second, the mean, maximum and minimum feature maps are calculated, and these 

feature maps are concatenated and input into a brain-factor residual block with a 2D-convonlution 

operation. The input data of the site-factor encoder and the brain-factor encoder are two-dimensional 

images obtained by slicing along a certain direction of within three-dimensional data, and the output 

results of the decoder maintain a consistent shape with the input data.  

Based on the DeRed framework, we established a flexible harmonization network as shown in Fig. 

1b. The different sites can be understood as different nodes in this harmonization network, connected 

by edges played by DeRed. The harmonization network possesses a center-spoke topology, with the 

target site, whose scanned images have the best data quality, at the center, and the data of th other 

sites are harmonized to this center site. Notably, the scanning data from any site can be transferred to 

another site through the network edges. Furthermore, if a new site establishes a relationship with a 

site belonging to this harmonization network, it can also be transferred to any other site along the 

network edges. 

2.2 Materials and T1 data processing 

To minimize sampling bias across sites, we trained our harmonization framework using a traveling-

subject dataset from the DecNef Project Brain Data Repository (https://bicr-resource.atr.jp/srpbsts/), 

which was gathered by the Japanese Strategic Research Program for the Promotion of Brain Science 

(SRPBS) (Tanaka et al., 2021; Yamashita et al., 2019). This dataset included nine healthy participants 

(all male, ages 24-32 years), each of whom underwent T1-weighted MRI scans at 12 different 

centers. All of these sites used 3T scanners but with different manufacturers (Siemens, GE, and 

Philips), scanner types (Verio, Tim Trio, Spectra, Skyra, and Achieva), phase encoding directions 

(posterior to anterior and anterior to posterior), and numbers of channels per coil (8, 12, and 32). 

Data from three sites were excluded (ATT, UTO, YC2) due to duplicate data. The detailed scanning 

parameters at each site are listed in Table S1.  

In the current study, we selected the widely used GMV measurement (Grieve et al., 2013; 

Smallwood et al., 2013) derived from T1-weighted images as an example to examine the feasibility 

of the proposed harmonization method. The calculation of the GMV was carried out by using 

Statistical Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/) (Ashburner, 2012) and 

the Computational Anatomy Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat12/) (Iglesias et al., 

2015). Briefly, for each T1 scan, an N4 bias field inhomogeneity correction was first performed, and 

an adaptive maximum a posteriori (AMAP) approach was then used in tissue segmentation. 

Optimized shooting approach-based spatial registration was further performed to normalize all 

images into the standard Montreal Neurological Institute (MNI) space. Modulated normalization was 

then implemented to compensate for GMV changes caused by affine transformation and nonlinear 

warping. Finally, all GMV maps were smoothed with an 8-mm full-width at half-maximum (FWHM) 

Gaussian kernel.  

2.3 Training and harmonization processes 

ATV was selected as the target site (𝜑𝑡) in the harmonization process mainly for the following two 

reasons. First, the equipment manufacturer and number of channels per coil of ATV were the most 

frequently used among all the sites. Second, the imaging data from ATV showed better quality with 
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less noise than those from other sites according to the visual screening. Other sites were regarded as 

the source sites (𝜑𝑠), resulting in 8 independent inter-site harmonization pairs with ATV. 

Prior to the training process, we cropped all the GMV maps from a matrix size of (181, 217, 181) to 

(176, 208, 176), which guaranteed that the sliced images could can be restored to their original size 

after multiple average pooling and upsampling operations. Moreover, to ensure the harmonization 

process within the gray matter regions and reduce the computational burden, we constrained the data 

training process within a gray matter mask, which was determined by averaging the GMV maps of 

all scans and further applying a threshold of 0.2 mm3. 

The inputs of the training model were obtained by slicing along a certain anatomical direction 

(coronal, sagittal, or transverse); slices that did not intersect with the gray matter mask were not 

included in the subsequent training process. A section position was then randomly determined during 

each epoch to ensure uncertainty during the training process, and slices of imaging data of all 

subjects at 𝜑𝑡 and 𝜑𝑠 were extracted at this position. Notably, we hold that spatially adjacent slices 

assist in capturing brain-factor representation information, so we set the spatial resolution of the 

training slices to (176, 208, 3) for the transverse orientation, (176, 176, 3) for the coronal orientation, 

and (208, 176, 3) for the sagittal orientation. Thus, the i-th individual slice can be predicted 

repetitively at different channels for the (i-1)-th, i-th and (i+1)-th slice inputs. The images resulted 

from the three channels were averaged to obtain the final harmonized single slice.  

Furthermore, if the harmonization process is simply based on a single slicing direction, it cannot 

fully summarize the global spatial information of 3D-images. Therefore, we independently trained 

three models. The training set of each model was obtained by slicing the image data from different 

anatomical directions, and then the output was averaged as the final harmonization result of the 3D 

image. 

We defined four convergence constraint losses for the harmonization procedure: 

First, we expect the site-factor encoder to extract the same representation at the same site across 

different subjects: 

 

𝐿𝑜𝑠𝑠𝑠𝑖𝑡𝑒−𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

= 𝔼𝑥𝑠~𝜑𝑠
‖𝐸_𝑠𝑖𝑡𝑒𝑠

𝑖(𝑥𝑠) − 𝐸_𝑠𝑖𝑡𝑒𝑠
𝑖(𝑥𝑠)𝜇‖1

+ 𝔼𝑥𝑡~𝜑𝑡
‖𝐸_𝑠𝑖𝑡𝑒𝑡

𝑖(𝑥𝑡) − 𝐸_𝑠𝑖𝑡𝑒𝑡
𝑖(𝑥𝑡)𝜇‖1 

(1) 

where 𝑥𝑠 and 𝑥𝑡 denote the images from 𝜑𝑠 and 𝜑𝑡, respectively. 𝐸_𝑠𝑖𝑡𝑒𝑠
𝑖(. ) and 𝐸_𝑠𝑖𝑡𝑒𝑡

𝑖(. ) 
denote the i-th feature map outputs of the i-th residual block in the site-factor encoders of 𝜑𝑠 and 

𝜑𝑡, respectively. 𝐸_𝑠𝑖𝑡𝑒𝑠
𝑖(𝑥𝑠)𝜇 =

1

𝑛
∑ 𝐸_𝑠𝑖𝑡𝑒𝑠

𝑖(𝑥𝑘)𝑥𝑘~𝜑𝑠
 and 𝐸_𝑠𝑖𝑡𝑒𝑡

𝑖(𝑥𝑡)𝜇 =
1

𝑛
∑ 𝐸_𝑠𝑖𝑡𝑒𝑡

𝑖(𝑥𝑘)𝑥𝑘~𝜑𝑡
 

denote the average i-th site-factor residual block outputs of n subjects from 𝜑𝑠 and 𝜑𝑡, respectively. 

Second, we expect the brain-factor encoders of 𝜑𝑠 and 𝜑𝑡 to extract the same representation from 

imaging data acquired from the same person but at different sites: 

 𝐿𝑜𝑠𝑠𝑏𝑟𝑎𝑖𝑛−𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝔼𝑥𝑠~𝜑𝑠,𝑥𝑡~𝜑𝑡
‖𝐸_𝑏𝑟𝑎𝑖𝑛𝑠

𝑖(𝑥𝑠) − 𝐸_𝑏𝑟𝑎𝑖𝑛𝑡
𝑖(𝑥𝑡)‖1 (2) 

where 𝐸_𝑏𝑟𝑎𝑖𝑛𝑠
𝑖(. ) and 𝐸_𝑏𝑟𝑎𝑖𝑛𝑡

𝑖(. ) denote the i-th feature map outputs of the i-th residual block 

in the brain-factor encoders from 𝜑𝑠 and 𝜑𝑡, respectively. 
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Third, we encourage the decoders to reconstruct the images by merging the site-factor representation 

and the brain-factor representation from their own sites. This self-reconstruction loss can be 

formulated as: 

 𝐿𝑜𝑠𝑠𝑠𝑒𝑙𝑓−𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝔼𝑥𝑠~𝜑𝑠
‖𝑥𝑠 − �̂�𝑠‖2 + 𝔼𝑥𝑡~𝜑𝑡

‖𝑥𝑡 − �̂�𝑡‖2 (3) 

Fourth, the site-factor representation from 𝜑𝑡 is necessary for the decoder in 𝜑𝑡 to reconstruct the 

images, even if the brain-factor representation belongs to 𝜑𝑠. In the same way, the decoder of 𝜑𝑠 

can reconstruct images according to the site-factor representation from 𝜑𝑠 and the brain-factor 

representation from 𝜑𝑡. The cross-reconstruction loss can be formulated as  

 𝐿𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠−𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝔼𝑥𝑠~𝜑𝑠
‖𝑥𝑠 − �̃�𝑠‖2 + 𝔼𝑥𝑡~𝜑𝑡

‖𝑥𝑡 − �̃�𝑡‖2 (4) 

where �̂�𝑠 = 𝐷𝑠(𝐸_𝑏𝑟𝑎𝑖𝑛𝑠(𝑥𝑠), 𝐸_𝑠𝑖𝑡𝑒𝑠(𝑥𝑠)𝜇) and �̃�𝑠 = 𝐷𝑠(𝐸_𝑏𝑟𝑎𝑖𝑛𝑡(𝑥𝑡), 𝐸_𝑠𝑖𝑡𝑒𝑠(𝑥𝑠)𝜇) denote 

the reconstructed images, both of which contain the site-factor representation from 𝜑𝑠 but the brain-

factor representation from 𝜑𝑠 and 𝜑𝑡, respectively. In contrast, �̂�𝑡 =

𝐷𝑡(𝐸_𝑏𝑟𝑎𝑖𝑛𝑡(𝑥𝑡), 𝐸_𝑠𝑖𝑡𝑒𝑡(𝑥𝑡)𝜇) and �̃�𝑡 = 𝐷𝑡(𝐸_𝑏𝑟𝑎𝑖𝑛𝑠(𝑥𝑠), 𝐸_𝑠𝑖𝑡𝑒𝑡(𝑥𝑡)𝜇) denote the 

reconstructed images, both of which contain site-factor representation from 𝜑𝑡 but the brain-factor 

representation from 𝜑𝑡 and 𝜑𝑠, respectively. 

2.4 Evaluation of harmonization outcome 

We trained the DeRed harmonization network with a total of 81 images from all subjects scanning 

across all sites and obtained the corresponding harmonization results, which were used to quantify 

the inter-site differences and explain the representation captured by DeRed.  

2.4.1 Correction for site effects  

We adopted two methods to examine whether the proposed framework can reduce the site effects on 

the GMV maps. First, we performed linear discriminant analysis (LDA), a classic dimensionality 

reduction technique, to project the GMV measurement into two coordinates with the scanning site as 

a prior classification label. LDA is commonly used to project features into a lower dimension space 

by maximizing the distance between classes and minimizing the variation within each class. In this 

study, the site effect was reflected by the clustering of data from the same site. Second, we used one-

way analysis of variance (ANOVA) to quantitatively test for significant site differences in the GMV. 

The significance level of the voxel-wise comparison was set to a voxel-level p < 0.001 with a cluster-

level Gaussian random field (GRF)-corrected p < 0.05. 

2.4.2 Interpretability of the encoders 

To assess whether each kind of encoder (i.e., site-factor and brain-factor) captured the corresponding 

features, we examined the output images by blocking their opposite input of the decoder in turn. To 

interpret the site-factor encoder, we set all values of the brain-factor feature maps to zero, and feed 

them into the decoder. The image synthesized in this case can be understood to contain only the site-

factor representation (i.e., 𝐼𝑠𝑖𝑡𝑒). Assuming that each site-factor encoder captures the characteristics 

of the scanner, the inter-site variance of 𝐼𝑠𝑖𝑡𝑒 should be spatially similar to the inter-site variance in 

the original GMV images. Thus, we first calculated the variance of each voxel of 𝐼𝑠𝑖𝑡𝑒 and averaged 

the GMV variance maps of each subject across sites. We then applied Spearman’s correlation to 

examine the spatial correlation of these two variance maps. 

To interpret the brain-factor encoder, we fed the decoder with brain-factor feature maps and empty 

site-factor feature maps (i.e., feature maps with 0 values), and the image synthesized in this case can 

be understood to contain only the brain factor representation (i.e., 𝐼𝑏𝑟𝑎𝑖𝑛). To examine whether the 
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brain-factor encoder truly captures these individual heterogeneity-related representations, we first 

assessed Spearman’s correlation for each voxel between the original GMV and age across subjects, 

preserving those voxel groups 𝑆𝛼 whose GMV was significantly correlated with age. Then, we also 

preserved those voxel groups 𝑆𝛽 with a significant correlation between 𝐼𝑏𝑟𝑎𝑖𝑛 and age. The overlap 

between 𝑆𝛼 and 𝑆𝛽 was then calculated by 
𝑆𝛼∩𝑆𝛽

𝑆𝛼∪𝑆𝛽
. Second, the similarity between the original 

GMV and 𝐼𝑏𝑟𝑎𝑖𝑛 was calculated for each subject according to the Spearman’s correlation 

coefficient. 

2.5 Comparison between DeRed and other harmonization methods 

Several harmonization methods have been proposed to remove site effect differences in recent 

multicenter studies, including general linear model harmonization (GLM), global scaling 

harmonization (GS), and ComBat harmonization (see SI for a detailed description of these methods). 

To examine the advantages of our proposed methods, we compared DeRed with these harmonization 

methods in terms of site effect removal, GMV distribution coherence, intra-subject similarity 

improvement and inter-subject difference reservation. A leave-one-subject-out cross-validation 

strategy was utilized for each method. Briefly, we excluded the data of the i-th subject at all sites, 

trained the framework with the remaining 72 scanned images from the other subjects, and applied the 

trained model to harmonize the data from the i-th subject. This procedure was repeated nine times to 

select each subject as the test data in turn. 

2.5.1 Site effect removal 

To test whether site effects could be removed by all the methods, we used ANOVA on the 

harmonized GMV maps for each method. The significance level of the voxel-wise comparison was 

set to a voxel-level p < 0.001 with a cluster-level GRF-corrected p < 0.05. Furthermore, we used 

Wilcoxon signed-rank tests to compare the F values between the original and harmonized data, and 

between harmonization results from different methods. 

2.5.2 GMV distribution consistency  

For the original data and harmonized data of each method, we first calculated the average GMV map 

across subjects and estimated their probability distribution for each site. We then estimated the 

averaged bidirectional KL divergence between each pair of probability distributions for different 

sites. The KL divergence was further compared between the original and harmonized data and 

between harmonization results from different methods with Wilcoxon signed-rank tests. 

2.5.3 Inter-subject difference reservation  

The difference across subjects was calculated using the Euclidean distance of the original GMV 

maps within each site and further averaged across all sites to obtain a reference inter-subject 

difference matrix. Then, for each harmonization results from different methods, we calculated the 

inter-subject difference matrix within each site. Spearman’s correlation was further used to estimate 

the correlation between each matrix and the reference matrix. A significant correlation coefficient 

indicated the preservation of inter-subject differences. 

2.5.4 Intra-subject similarity improvement  

For each subject, we calculated the Spearman’s correlation coefficient between the GMV map of any 

pair of sites among the nine sites as the intra-subject similarity. These correlation coefficients were 

then compared using Wilcoxon signed-rank tests between the original and harmonized data and 

between harmonization results from different methods. 
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3 Results 

3.1 Site effect removal of DeRed 

We first visualized the heterogeneity in the original and harmonized GMV maps across nine sites by 

projecting their dominant features into a 2D space using LDA decomposition. The site-clustered 

distribution of the LDA features indicated noticeable inter-site heterogeneity for the original GMV 

maps (Fig. 3a). Specifically, data from HUH and HKH were the most distant from other datasets, 

which might essentially be due to their unique scanner models (GE Signa HDxt for HUH and 

Siemens Sepctra for HKH). However, the harmonized data showed a relatively homogeneous 

distribution, implying the effective removal of the site effect (Fig. 3b). Subsequent statistical analysis 

confirmed this finding that one-way ANOVA revealed a significant site effect across the nine sites on 

the original GMV maps, primarily in the medial temporal and occipital cortices, the insula, and the 

cerebellum (Fig. 3c, voxel-level p<0.001, GRF-corrected p<0.05). In contrast, no significant site 

effect was observed in the harmonized GMV maps derived from our proposed DeRed framework 

(Fig. 3d, voxel-level p<0.001, GRF-corrected p<0.05). To further illustrate the order of scan 

properties (e.g., MRI manufacturer, scanner type, and phase coding) that contribute to the site effect, 

we performed a hierarchical clustering on regions showing significant site effect across nine sites. 

We found that the manufacturer of the scanner was the most distinguish factor for the site effect (Fig. 

S1). 

3.2 Interpretability of the encoders 

We examined the feature representation of the site-factor and brain-factor encoders by blocking their 

respective opposite outputs. As illustrated by randomly chosen data (e.g., sub-01 at YC1) in Fig. 4a, 

the outputs from the site-factor encoders were decoded into a field map with abstract boundaries of 

the brain and blurry texture on the background. In contrast, images decoded from the brain-factor 

encoders showed the detailed structure of the gray matter anatomy, which was highly similar to that 

of the original GMV maps. Further quantitative analysis showed that the inter-site variance of 𝐼𝑠𝑖𝑡𝑒 

was significantly spatially correlated with the inter-site variance of the original images in the log-log 

coordinates (Fig. 4b, Spearman’s correlation, ρ=0.42, p<0.0001), suggesting that the site-factor 

encoder captures the variance of actual physical factors across the scanner. For the 𝐼𝑏𝑟𝑎𝑖𝑛, we first 

found that they were significantly spatially correlated with the original GMV maps for each 

individual in each site (Spearman’s correlation, ρ=0.993 ± 0.002, all p<0.0001). We then examined 

the overlap of clusters showing significant correlations with those in the original data. In the original 

data, we found that the GMV was significantly positively correlated with age in the right precuneus, 

inferior frontal gyrus, and the left parahippocampus, and negatively correlated with age mainly in the 

dorsolateral prefrontal, visual, and lateral temporal cortices (voxel-level p<0.001, GRF-corrected 

p<0.05). The 𝐼𝑏𝑟𝑎𝑖𝑛 showed similar distributed brain-age correlations at all nine sites (Fig. 4c, 

overlap ratio of the significant voxels: 75.54% ± 2.43%). Together, these results suggest that the 

brain-factor encoders successfully captured the biological details of the individual GMV maps. 

3.3 DeRed showed better harmonization performance than conventional methods 

We compared the performance of the proposed DeRed harmonization framework to that of several 

conventional methods, including GS, GLM, and ComBat. First, we found that the significant site 

effects in the original data could be entirely eliminated by DeRed and ComBat but partly retained 

significant in the data processed with GS and GLM (Fig. 5a, ANOVA, voxel-level p<0.001, GRF-

corrected p<0.05). Further between-method comparisons showed that the site effect (F value 

estimated in ANOVA) was significantly lower in the harmonized data from DeRed than in those 

from other methods (Fig. 5b, Wilcoxon signed-rank tests, p<0.001, Bonferroni-corrected).  

Second, we found that the probability distributions of the averaged GMV maps were divergent across 

the nine sites, and the distributions of the harmonized data tended to be more consistent (Fig. 6a). 
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Quantitatively, the harmonized data derived from all methods showed a significantly lower KL 

divergence than the original data, and data derived from DeRed exhibited the lowest KL divergence 

among the harmonization methods (Fig. 6b, Wilcoxon signed-rank tests, p <0.001, Bonferroni-

corrected). 

Finally, the inter-subject distance matrix for each site derived from the harmonized data for each 

method was significantly correlated with the original averaged matrix (Fig. 7a and Fig. S2, 

Spearman’s correlation, ρ=0.90 ± 0.04, all p<0.0001), indicating that all harmonization methods 

maintained the inter-subject differences in the GMV. Moreover, we found the intra-subject similarity 

on the GMV was significantly increased for all harmonization methods (Wilcoxon signed-rank tests, 

p <0.05, Bonferroni-corrected). Importantly, DeRed demonstrated the statistically highest intra-

subject similarity among all harmonization methods (Fig. 7b, Wilcoxon signed rank tests, p <0.05, 

Bonferroni-corrected), indicating that the proposed framework has the greatest ability to increase 

intra-subject consistency across sites.  

 

4 Discussion 

In this paper, we proposed a DL-based harmonization framework for multisite MRI data named 

DeRed, which was further trained with a traveling-subject dataset. Taking the commonly used GMV 

metric as an example, the proposed framework showed good performance in eliminating the 

divergence in the GMV across different sites. Notably, the encoders embedded in the framework 

successfully captured both the abstract textures of site factors and the concrete biologically related 

brain features. Moreover, the proposed framework exhibited outstanding performance relative to 

conventional harmonization methods in site effect removal, data distribution homogenization, and 

intra-subject similarity improvement. Together, the proposed method offers a powerful and 

extendable DL-based harmonization framework for multisite neuroimaging data with high 

interpretability, facilitating the improvement of the reliability and reproducibility of multisite studies 

for brain development and brain disorders. 

Compared with traditional statistics-based harmonization methods, the advantages of the proposed 

DL-based framework can be formulated from several perspectives. First, instead of taking a single 

metric as an independent variable, the DL model comprehensively extracts the global and local 

imaging information by integrating information from spatially neighboring units (e.g., voxels in a 

brain map) through a series of convolution and pooling operations (Bau et al., 2020). Many studies 

have suggested that adjacent voxels reflect closer correlations both in the anatomical structure and in 

the physiological mechanism (Cao et al., 2017b; Cigdem et al., 2019). These individual-specific 

anatomical details embodied within the MR images are repeatable across multisite measurements and 

should not be ignored during the harmonization process. Second, both DL-based methods and 

statistics-based methods attempt to explore the mapping relationship during the harmonization 

process. However, harmonization processes guided by statistical strategies, such as GLM and GS, 

seem to be limited in the ability to map linear polynomial functions. In our work, we employed the 

residual block inside the proposed framework, which has been shown to be especially important for 

fitting a more accurate function map mixed with a variety of high-dimensional and nonlinear 

characteristics between the MR images and the site effect representations (Lusch et al., 2018). Third, 

statistics-based harmonization frameworks scrupulously rely on the prior assumption. For example, 

ComBat describes the site effect of each voxel via additive and multiplicative factors, which are 

assumed to follow the normal distribution and inverse gamma distribution respectively (Johnson et 

al., 2007). Nevertheless, the site effect reflected within the MR images can be understood as a 

heterogeneous mixture caused by the action of an asymmetrical magnetic field and complex 

neurophysiological activity (Vovk et al., 2007), which is difficult to generalize adequately with 
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simple probability distributions. Compared with statistics-based methods, the proposed 

harmonization framework driven by the pixel-to-pixel loss function, is not limited to the prior 

distribution assumption, allowing the harmonization results of DeRed to demonstrate a better 

probability consistency across sites. 

In the current study, we mainly employed the voxel-based GMV, a commonly used structural brain 

measurement to validate our proposed framework. It should be noted that the proposed DL-based 

representation disentanglement and reconstruction strategy can be referenced to other multisite 

harmonization processes for structural and functional brain metrics in diverse formats. Regarding the 

volumetric images, our proposed framework can provide a robust contribution by fine tuning its 

network architecture. Similar designs to the encoders and the decoders embedded in DeRed were 

adopted to extract the latent representations and remove the artefacts in T1-w and T2-w MR images 

in a previous study (Liu et al., 2021). For those data in a network format, such as the structural and 

functional connectivity matrices, the graph convolutional network (GCN) can be integrated in the 

proposed framework. Many studies have applied the GCN to reveal functional brain network 

similarity, comprehensively considering its topological property (Ktena et al., 2018) and to more 

efficiently predict the longitudinal development of cognitive performances (e.g., motor and cognitive 

scores) of preterm infants by recognizing the local and global topology patterns of their structural 

brain network (Kawahara et al., 2017). Illuminated by existing studies, the GCN can be used to 

depict complex topological mechanisms and identify abstract high-dimensional information, 

indicating that the application of the GCN may help to capture the site-specific topological effect, 

from which multisite structural and functional brain network harmonization can be reasonably 

performed. 

Several issues should be further considered. First, the proposed framework was trained on a 

traveling-subject dataset to minimize sampling bias across scan sites. However, the traveling-subject 

MRI data collection design is generally lacking in many multisite databases. Therefore, we intend to 

adopt random bootstrap sampling to produce a biological-matching dataset from each site (Kim et 

al., 2021) and further expand the proposed framework for unpaired inter-site datasets. Second, the 

traveling-subject dataset used in this work was acquired from a group of healthy participants aged 

from 24 to 32 years and the biological validation was limited due to the lack of cognitive or clinical 

evaluations; thus, the generalizability of DeRed to MRI data acquired from special populations (e.g., 

children and adolescents or patients with brain disorders) needs to be further validated. Studies have 

revealed significant development effects and disorder-related disruptions in brain structure and 

functions (Gilmore et al., 2018; van den Heuvel and Sporns, 2019). Therefore, the specific 

optimization strategy for harmonization methods needs further investigation for these special 

populations. Third, similar to most DL method, the proposed DeRed framework comprised several 

convolution and pooling operations. Therefore, the harmonized data could be objectively smoothed 

with neighboring information during encoding and decoding. Although this procedure overcomes 

local noise during harmonization, further validations for data distribution and design optimization for 

the DL network are required. Finally, in the current study, we preliminarily established a multisite 

harmonization network based on the DeRed framework, and its expandability needs further 

evaluation. Considering the bidirectional connectedness of this network, data can be harmonized to 

any node (e.g., site) in the network. Moreover, a new site could be easily included in the 

harmonization network by training a DeRed model between it and any existing sites.   
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Figure legends 

Figure 1 

 
Fig. 1 Architecture of the DeRed framework and center-spoke harmonization network. (a) The 

DL-based representation disentanglement framework. The site-factor and brain-factor features are 

extracted from original MR images by the encoders, and the decoder synthesizes harmonized MR 

images by combining these two features. (b) Center-spoke harmonization network with the target site 

located at the center. This harmonization network supports the bidirectional migration of MRI 

between the target site and the source sites.  
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Figure 2 

 
Fig. 2 Architecture of the encoders and decoder. (a) Architecture of the site-factor encoder and 

brain-factor encoder. The Sout i and Bout i models represent the feature maps extracted by the i-th site-

factor and brain-factor residual block, respectively. (b) Architect of the site-factor residual block (S 

Block) and brain-factor residual block (B Block). (c) Architecture of the decoder, which integrating the 

outputs from both site-factor and brain-factor encoders. 
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Figure 3 

 

Fig. 3 Site effect in data before and after harmonization. (a) and (b) illustrate LDA projection of 

GMV before and after harmonization. A datapoint represents a projected GMV measurement from a 

subject, its color represents the site from which it originates and its shape represents the subject to 

which it belongs. (c) and (d) illustrate the site effect identified by one-way ANOVA in the original 

and harmonized GMV respectively, sliced along the transverse anatomical orientation. There were no 

significant differences across sites for all voxels after DeRed harmonization.  
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Figure 4 

 
Fig. 4 Interpretability of site-factor and brain-factor encoders. (a) Appearance of site-factor and 

brain-factor feature map. the first row represents the decoder outputs containing only site-factor 

representations of YC1. The second row represents the decoder outputs containing only brain-factor 

representations of subject-01. The last row represents the original GMV map of subject-01 from 

YC1. (b) Log-log correlation plot between the original GMV variance and the variance of the site-

factor feature maps. Each variance measurement is transformed by natural logarithm conversion. The 

color depth reflects the dot density within a single hexagon. (c) Age-correlation overlap clusters 

between brain-factor representation and the original GMV. The voxels in red (blue) regions indicate a 

positive (negative) age correlation (p<0.05) in both the original GMV and the brain factor 

representation. These voxels colored green indicate a single age correlation in either the original 

GMV or brain-factor representation. 
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Figure 5 

 
Fig. 5 Site effect removal of different harmonization methods. (a) Site effect identified by ANOVA 

in data before and after harmonization (voxel-level p<0.001, GRF-corrected p<0.05). (b) Comparison 

of site effect (F value) in data before and after harmonization by different methods; all harmonization 

results show a lower F values than the original state (Wilcoxon signed-rank tests, p<0.05, Bonferroni-

corrected, labeled by black asterisk), and the F values of DeRed harmonized data are significantly 

lower relative to those of other methods (Wilcoxon signed-rank tests, p<0.05, Bonferroni-corrected, 

labeled by red asterisk). 
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Figure 6 

 

Fig. 6 Divergence in the GMV distribution across different sites before and after 

harmonization. (a) GMV distribution in different sites. Each curve represents the probability 

distribution of the GMV measurement for all voxels averaged across subjects in a site. (b) Boxplots 

of KL-divergence across sites before and after harmonization by different methods. All 

harmonization data showed a lower JS-divergence compared with the original data (Wilcoxon 

signed-rank tests, p<0.05, Bonferroni-corrected, labeled by black asterisk). DeRed demonstrated a 

significantly lower KL-divergence relative to the compared methods (Wilcoxon signed-rank tests, 

p<0.05, Bonferroni-corrected, labeled by red asterisk).  
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Figure 7 

 

Fig. 7 Inter-subject difference maintenance and intra-subject similarity improvement before 

and after harmonization. (a) Inter-subject difference matrix before and after harmonization at each 

site. The difference matrices were averaged across sites before harmonization. The color depth of i-th 

row and j-th column grid for each matrix represents the Euclidean distance between the i-th and j-th 

subjects. Spearman’s correlation coefficient is illustrated by 𝜌 (p<0.001). (d) Boxplots of intra-

subject similarity across sites before and after harmonization by different methods. The 

harmonization results with higher self-identifiability relative to the original data are labeled with 

black asterisks. DeRed demonstrated a significantly improved intra-subject similarity (p<0.05) over 

all comparison methods based on the paired Wilcoxon signed-rank test, with a red asterisk.  
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Tables  

 

 

Table 1. Details of the scanning parameters in the traveling-subject dataset 

Site ATV COI HKH HUH KPM KUS KUT SWA YC1 

Manufacturer Siemens Siemens Siemens GE Philips Siemens Siemens Siemens Philips 

Platform Verio Verio Spectra Signa HDxt Achieva Skyra TimTrio Verio Achieva 

Magnetic field strength (T) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Number of channels per coil 12 12 12 8 8 32 32 12 8 

Phase encoding PA AP PA PA AP AP PA PA AP 

Echo time (ms) 2.98 2.98 2.38 1.928 3.31 2.98 3.4 2.98 3.176 

Repetition time (ms) 2300 2300 1900 6788 7.1 2300 2000 2300 6.99 

Flip angle (°) 9 9 10 20 10 9 8 9 9 

Image dimension 240×256×256 176×240×256 224×320×320 180×256×256 170×256×256 224×232×256 240×256×208 240×256×256 200×256×256 

Pixel dimension 1×1×1 1×1×1 0.81×0.75×0.75 1×1×1 1×1×1 1×1×1 0.9375×0.9375×1 1×1×1 1×1×1 

 

Abbreviations: ATV, Siemens Verio scanner at the Advanced Telecommunications Research Institute International; COI, Center of Innovation at 

Hiroshima University; HKH, Hiroshima Kajikawa Hospital; HUH, Hiroshima University Hospital; KPM, Kyoto Prefectural University of 

Medicine; KUS, Siemens Skyra scanner at Kyoto University; KUT, Siemens Tim Trio scanner at Kyoto University; SWA, Showa University; 

YC1, Yaesu Clinic scanner 1; PA, posterior to anterior; AP, anterior to posterio 
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