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GRAPHICAL ABSTRACT 19 

 20 

 21 

ABSTRACT 22 

Rivers are heavily fragmented by man-made instream barriers such as dams and weirs. This hyper-23 

fragmentation is a major threat to freshwater biodiversity and restoration policies are now adopted 24 

worldwide to mitigate these impacts. However, there is surprisingly little feedback on the efficiency of 25 

barrier mitigation measures in restoring riverine connectivity, notably for non-migratory fish species. 26 

Here, we implemented a “before-after genetic monitoring” of the restoration of 11 weirs in France using 27 

a dedicated genetic index of fragmentation (the FINDEX), with a focus on five fish species from two genera. 28 

We found that most obstacles actually had a significant impact on connectivity before restoration, 29 

especially the highest and steepest ones, with an overall barrier effect of about 51% of the maximal 30 

theoretical impact. Most importantly, we demonstrated for the first time that mitigation measures such 31 

as dam removal or fish pass creation significantly and rapidly improved connectivity, with –for some 32 

barriers- a complete recovery of the genetic connectivity in less than twelve months. Our study provides 33 

a unique and strong proof-of-concept that barrier removal is an efficient strategy to restore riverine 34 
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connectivity and that molecular tools can provide accurate measures of restoration efficiency within a 35 

few months.  36 

Keywords: Genetic monitoring; Restoration; Weirs; Low-head dams; FINDEX; Fish passes; Dam removal; 37 

Genetic connectivity; Potamodromous  38 
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1. INTRODUCTION 39 

Anthropogenic activities exert strong pressures on natural ecosystems, which alter both their 40 

physical and biological properties (Crutzen, 2006). This is especially the case for rivers that are highly 41 

fragmented by man-made instream barriers such as dams, weirs, water mills, etc. (Grill et al., 2019). In 42 

Europe for instance, more than one million obstacles have been reported (Belletti et al., 2020), 43 

representing 0,74 barriers per kilometer. Riverscape fragmentation affects the quality, the quantity and 44 

the accessibility of natural habitats, and thus prevents organisms to fulfill their life-cycle (Taylor et al., 45 

1993). It is considered one of the most important threat to freshwater biodiversity (Sala, 2000). Given 46 

this “hyper-fragmentation” of rivers, the restoration of longitudinal (i.e., upstream-downstream) 47 

connectivity to promote fluxes of individuals and genes is hence considered a crucial step to recover the 48 

integrity of river ecosystems (Baguette et al., 2013; King & O’Hanley, 2016). Connectivity restoration is 49 

moreover the subject of restrictive legislations in many countries, such as in Europe with the Water 50 

Framework Directive (2000/60/EC), on which is based the EU’s biodiversity strategy for 2030 aiming at 51 

restoring at least 25,000 km of rivers to a free-flowing state (COM/2020/380).  52 

The restoration of longitudinal connectivity implies barrier mitigation measures: the removal of 53 

obstacles, or, when removal is not an option (Blanchet & Tedesco, 2021; Lejon et al., 2009; Magilligan et 54 

al., 2017), the equipment of obstacles with natural or artificial fish passes (Seliger & Zeiringer, 2018; 55 

Silva et al., 2018). However, the actual efficiency of these barrier mitigation measures to restore genetic 56 

and/or demographic connectivity (Lowe & Allendorf, 2010) appear somehow unpredictable, depending 57 

on the type of river, the type of obstacle, the chosen type of restoration, as well as the timescale and 58 

the species considered (Rodeles et al., 2020). Dam removal has been found beneficial for the rapid 59 

recovery of some diadromous fish species (mainly salmonids) whose upstream migratory movements 60 

and thus spatial distribution were limited by the presence of barriers (Ding et al., 2019). However other 61 
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organisms such as potamodromous fish (but also macroinvertebrates, macrophytes, etc.) may not 62 

(immediately) benefit from such removal (Brenkman et al., 2019; Gillette et al., 2016). Similarly, fish 63 

passes often show uneven levels of permeability across species, depending on pass design and 64 

maintenance as well as environmental conditions (Birnie‐Gauvin et al., 2019; Harris et al., 2017; Noonan 65 

et al., 2012). These effects are yet still poorly documented, notably in the case of low-head structures 66 

(weirs, water-mills, sluices…) that do not benefit from the same attractivity as large dams in terms of 67 

public interest and research funding (O’Connor et al., 2015). Low-head structures are actually largely 68 

understudied when compared to their prevalence and the restoration efforts they represent (Belletti et 69 

al., 2020; Ryan Bellmore et al., 2017). Classical methods for the assessment of connectivity restoration 70 

efficiency, such as capture-mark-recapture, telemetry and monitoring of spatiotemporal changes in the 71 

composition of fish communities (Rodeles et al., 2020; Silva et al., 2018), cannot be systematically 72 

deployed at large management scales, especially for practitioners who are generally constrained by time 73 

and budget. For low-head barriers, mitigation measures are often undertaken opportunistically (Poff et 74 

al., 2003; Tonitto & Riha, 2016), with limited or coarse ecological monitoring of the system before 75 

restoration (Barry et al., 2018) and no (or limited) evaluation of the outcome in most cases (Cooke et al., 76 

2019; Rodeles et al., 2017). 77 

One challenge for practitioners is notably the lack of rapid and efficient connectivity assessment 78 

tools allowing both the a priori quantification of the individual impact of instream obstacles and the a 79 

posteriori quantification of the efficiency of implemented measures (removal or equipment; Cooke et 80 

al., 2019). If molecular tools are now commonly considered for the a priori assessment of barrier 81 

effects (Abernethy et al., 2013; Coleman et al., 2018; Dehais et al., 2010; Gouskov et al., 2016; Liu et al., 82 

2020; Meldgaard et al., 2003; Prunier et al., 2018; Raeymaekers et al., 2009), there is still a surprising 83 

paucity of genetic studies dedicated to the temporal monitoring of changes in connectivity after 84 

restoration (Ding et al., 2019). Only a handful of recent studies could be identified, all focusing on the 85 
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effect of the creation (Liu et al., 2020; Vega‐Retter et al., 2020) or the removal (Fraik et al., 2021) of 86 

large dams on gene flow (but see Weigel et al., 2013). As a result, and despite the importance for 87 

practitioners and managers to assess (and communicate) the relevance of their actions for natural 88 

ecosystems, there are still very few indications that (i) current mitigation measures (barrier removal or 89 

fish pass creation) deployed worldwide are improving genetic connectivity (sensu Lowe & Allendorf, 90 

2010) and (ii) that molecular approaches are efficient and operational tools to prioritize local restoration 91 

actions and assess their efficiency. 92 

In this study, we implemented a “before-after genetic monitoring” of the restoration of 11 weirs 93 

in France using a recently developed genetic index of fragmentation (the FINDEX; Prunier et al., 2020). The 94 

FINDEX provides, independently for each obstacle, an absolute and standardized estimate of (species-95 

specific) genetic connectivity, while taking into account two confounding factors: the age of the obstacle 96 

and the size of populations on either side of the obstacle. Considering two common potamodromous 97 

fish genera, our objectives were (i) to quantify the initial impact of obstacles and thus to determine 98 

whether restoration was actually needed in the first place, and (ii) to quantify the gain in connectivity 99 

resulting from implemented restoration actions.  100 

  101 
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2. MATERIALS AND METHODS 102 

2.1. Instream obstacles 103 

The study took place at the scale of the French national hydrographic network. In close 104 

coordination with the French Office for Biodiversity (OFB) and French Water Agencies, we identified 11 105 

obstacles (low-head dams <4m high) whose restoration was scheduled for the coming years (Figure 1; 106 

Table 1). These obstacles were located in the three largest French river basins (Garonne, Loire and 107 

Seine). On the basis of the consultation of old aerial photos and maps (French Ordnance Survey maps 108 

and cadastral plans), completed by surveys of local agencies, we estimated that they were constructed 109 

(or reconstructed after destruction or abandonment) between the 15th and the 20th century (Table 1). 110 

The obstacles ranged from 0.8 to 3.5m high and showed various slopes (Figure 1). Two of them were 111 

already equipped with a fish pass (Table 1). Each obstacle was described according to its height (< or ≥ 112 

2m high) and slope (< or ≥ 45°) using a unique synthetic factor ‘Typology’ with four levels (‘low and 113 

gentle’, ‘low and steep’, ‘high and gentle’, ‘high and steep’). The restoration actions were conducted 114 

between 2015 and 2019 and in most cases (9 out of 11) consisted in the dismantlement of the obstacle. 115 

Note that we could not statistically assess the specific effects of fish passes on connectivity in the 116 

following analyses because there were too few of them, either before or after restoration. 117 

 118 

2.2. Biological models and Before-After sampling sessions 119 

We focused on five common potamodromous species from two genera: minnows (Phoxinus sp.: P. 120 

phoxinus in the Seine, P. fayollarum in the Loire and P. dragarum in the Garonne watershed) and 121 

gudgeons (Gobio sp: G. gobio in the Loire and the Seine and G. occitaniae in the Garonne watershed). 122 

Within each genus, species are allopatric (Denys et al., 2020) but were here considered to have very 123 

similar life history traits and movement behaviors (Keith et al., 2011). These species are small 124 

insectivorous cyprinids (maximal body length of 140 and 200mm, in minnows and gudgeons 125 
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respectively) that show distinct foraging strategies: minnows preferentially feeds in the water column, 126 

whereas gudgeons feed on the bottom (Keith et al., 2011). We selected these species because they are 127 

widespread and abundant and hence easy to catch for practitioners, which make them ideal models for 128 

an operational tool such as the FINDEX.   129 

Sampling operations ‘Before’ and ‘After’ restoration were performed using electrofishing, until a 130 

maximum of 30 adult individuals of each species were captured on either side of obstacles. Fish were 131 

captured in the direct downstream and upstream vicinity of each obstacle (Prunier et al., 2020), starting 132 

from the downstream site to avoid accidental upstream to downstream movements of individuals. A 133 

piece of pelvic fin was sampled on all individuals and stored in 96% alcohol. All fish were returned alive 134 

to their sampling site. Electrofishing and fin sampling was performed according to legal authorizations 135 

and permits.  136 

Both genera could be sampled at all sites except in DADRai (gudgeons only) and GLASou (minnows 137 

only). The sampling sessions after the restoration occurred on average 9.7 (± 3.9 SD) months after the 138 

end of the restoration (from 44 days in VIAPig to 427 days in CEOSal; Table 1). These after-restoration 139 

timelags could not be homogenized better, owing to logistic and administrative difficulties (e.g., high 140 

water levels preventing safe fieldwork). 141 

 142 

2.3. Genotyping and FINDEX computation 143 

We considered 19 and 15 microsatellite markers in minnows and gudgeons, respectively. DNA 144 

extraction, genotyping and assessment of null alleles and gametic disequilibrium followed previously 145 

published procedures (Prunier et al., 2018, 2020; Appendix S1). For each dataset (combination of one 146 

obstacle and one genus; n = 20 since only one genus could be sampled at GLASou and DADRai; Table 2) 147 

and each passage (‘Before’ and ‘After’), we computed the FINDEX and the standard deviation of the FINDEX 148 

as detailed in Prunier et al. (2020) using a dedicated R-based pipeline. Briefly, the FINDEX corresponds to 149 
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the rescaling of pairwise measures of genetic differentiation within their theoretical range of variation 150 

given effective population sizes (approximated from expected heterozygosity) and the number of 151 

generations elapsed since barrier creation. The FINDEX is therefore a standardized (across barriers and 152 

species) index expressed as a percentage, with values lower than 20% representing fully permeable 153 

structures and values higher than 90% representing total barriers to gene flow (see Prunier et al., 2020 154 

for details). FINDEX values are computed along with a standard deviation SDF (or a 95% confidence interval 155 

CI95%) that takes into account biological uncertainty stemming from nF = 4 parameters (two mutation 156 

rates and two metrics of genetic differentiation; Prunier et al., 2020). We considered a generation time 157 

of 2 years in minnows and 2.5 years in gudgeons to compute the number of generations elapsed since 158 

barrier creation (Kottelat & Freyhof, 2007).  159 

 160 

2.4. Barrier effects and restoration efficiency  161 

We adopted a meta-analytical approach (Borenstein, 2009), considering each dataset 162 

(combination of one obstacle and one genus; n = 20) as an independent study providing two effect sizes 163 

(FINDEX values before and after restoration ± SDF). Six datasets were non-informative (FINDEX = 0 and SDF = 164 

0 before restoration) and were thus discarded, resulting in 14 datasets, of which three were associated 165 

with a non-significant barrier effect (see results). The interpretation of the FINDEX being meaningful 166 

(barrier effect expressed as a percentage of maximum fragmentation), the FINDEX value before 167 

restoration was directly used as the observed effect size F±SEF of barrier effect in each dataset, with 168 

𝑆𝐸𝐹 = 𝑆𝐷𝐹/√𝑛𝐹. We used the raw difference ΔF(±SEΔ) between FINDEX values computed after 169 

(‘treatment’) and before (‘control’) restoration as the observed effect size of restoration for each 170 

dataset (Equations 4.2 and 4.6 in Borenstein, 2009). The raw difference ΔF can be directly interpreted as 171 
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the (positive or negative) change in the amount of fragmentation following restoration and was thus 172 

preferred over the standardized mean difference Hedges’ g (Borenstein, 2009). 173 

We used random-effect meta-regressions with moderators (metafor::rma.mv R-function; Harrer 174 

et al., 2021; Viechtbauer, 2010) to compute the overall true effect sizes of the barrier effects 𝐹̅ and of 175 

the restoration of obstacles 𝛥𝐹̅̅̅̅  (n = 14), while taking into account different possible sources of variation 176 

in effect sizes: within-datasets (i.e., SEF or SEΔ), between-datasets and, possibly, across different 177 

covariate modalities. Considered covariates were ‘Genus’ (two levels: minnows or gudgeons), ‘Typology’ 178 

(four levels: see above), as well as, in the case of 𝛥𝐹̅̅̅̅ , the ‘timelag’ (two levels: < 1 year or > 1 year) 179 

between the restoration operation and the second sampling session. To account for within-dataset 180 

variability (SEF or SEΔ), we used dataset ID as an outer random grouping factor. To allow residual 181 

heterogeneity to differ across covariate modalities, each covariate was successively defined both as a 182 

moderator and an inner random grouping factor. Models were run with a diagonal variance-covariance 183 

matrix as a random effect structure. Covariates identified as significant moderators were then kept as 184 

inner random grouping factors in final models without moderator to get final estimates of the true 185 

effect sizes 𝐹̅ and 𝛥𝐹̅̅̅̅  along with their respective 95% confidence interval CI95%.   186 
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3. RESULTS 187 

Altogether, a total of 1049 and 1038 genotypes could be obtained from the various sampling 188 

sessions (through space and time) in minnows and in gudgeons, respectively, with an overall mean of 189 

26.1 (± 3.2 SD) genotypes per genus, sampling site and sampling session. The mean number of loci 190 

across datasets was 15.7 (± 1.8 SD) and 14.4 (± 0.8 SD) in minnows and in gudgeons, respectively.  191 

FINDEX values ranged from 0 to 68.1 % (mean: 27.7 ± 25.8 SD) before restoration, with a significant 192 

barrier effect detected in 11 out of 20 datasets (Table 2). Genera showed highly contrasted responses to 193 

obstacles: all obstacles but GLAMou and LEZVil had a significant impact on connectivity before 194 

restoration, but only VIAPig and GLAPas did impact both genera simultaneously (Table 2; Figure 2). 195 

Accordingly, ‘Genus’ was not identified as a significant moderator of the overall effect size 𝐹̅ (Table 3). 196 

Only ‘Typology’ did significantly influence 𝐹̅, with steep obstacles higher than 2 m showing an overall 197 

effect size 𝐹̅ 40 % (CI95% = [14.2; 65.8]) higher than gentle weirs lower than 2 m (Table 3; Figure 3). Once 198 

all possible sources of variation in effect sizes were taken into account (both within-datasets and 199 

between modalities of typology), the final true effect size of fragmentation 𝐹̅ was of 51.4 %, a value 200 

significantly different from 0 and higher than the FINDEX significance threshold of 20% (CI95% = [45.1; 201 

57.7]).  202 

Except when obstacles had no effect before restoration (FINDEX < 20%), in which case restoration 203 

had no effect either (FINDEX < 20% after restoration; 5/10 obstacles in gudgeons and 4/10 obstacles in 204 

minnows), restoration systematically led to a significant decrease in FINDEX values (as indicated by non-205 

overlapping confidence intervals; Figure 2), with FINDEX values after restoration ranging from 0 to 49.1 % 206 

(mean: 13.7 ± 17.8 SD).  This decrease led to the full recovery of connectivity (FINDEX < 20% after 207 

restoration) in 3/5 obstacles in gudgeons and 2/6 obstacles in minnows. The observed effect sizes of 208 

restoration ΔF ranged from -55.4% to +11.7% (mean: -14 ± 18 SD; Table 2). Neither ‘Genus’, ‘Typology’ 209 
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or ‘Timelag’ were identified as significant moderators of the overall effect size of restoration 𝛥𝐹̅̅̅̅  (Table 210 

3, Appendix S2). The final overall effect size of restoration 𝛥𝐹̅̅̅̅  was of -21.7%, a value significantly 211 

different from 0 (CI95% = [-30.2; -13.2]). Overall, the effect of restoration was thus the same across 212 

genera, did not depend on the typology of the obstacle and, interestingly, was independent from the 213 

timelag between the restoration and the second sampling session. In other words, we found evidence 214 

that genetic connectivity could be recovered (entirely in some cases, partly in most cases) in just a few 215 

months after restoration.  216 

 217 

  218 
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4. DISCUSSION 219 

Quantifying the impact of instream barriers on potamodromous fish species as well as the 220 

efficiency of mitigation measures is primordial in the context of restoration planning, so as to properly 221 

allocate limited resources towards the most impactful obstacles, inform trade-offs between ecological 222 

and socio-economic issues, and refine restoration techniques (Hermoso et al., 2012; Rodeles et al., 223 

2020; Silva et al., 2018). Quantification is yet a difficult task, notably because of technical and financial 224 

constraints preventing the parallel monitoring of multiple obstacles and because of the relative lack of 225 

operational tools allowing valid comparisons across both contexts and species (Cayuela et al., 2018). The 226 

response of freshwater organisms to connectivity restoration has often been studied at the community- 227 

or at the population-levels (Brenkman et al., 2019; Frey, 2021; Magilligan et al., 2021; Muha et al., 2021; 228 

Stanley et al., 2002; Sun et al., 2021), rarely at the genetic level (Fraik et al., 2021), and our study is the 229 

first to document the systematic and rapid recovery of gene flow over a series of independent 230 

restoration actions. In this study, we used a standardized genetic index of fragmentation to quantify 231 

both the impact of 11 low-head dams on gene flow in five freshwater fish species, and the efficiency of 232 

mitigation actions in restoring genetic connectivity.  233 

Before restoration, we found a significant barrier effect in 11 out of 20 datasets, with two 234 

obstacles showing no impact on any genus and two obstacles significantly impacting both genera. 235 

Surprisingly, out of nine obstacles with genetic data in both genera, five showed large discrepancies in 236 

genus response to fragmentation, with either only gudgeons or only minnows significantly impacted 237 

(Figure 2). These discrepancies illustrate how barrier effects can be highly species- or genus-dependent 238 

(Amaral et al., 2021; Blanchet et al., 2010; Prunier et al., 2018), and thus hardly predictable given our 239 

limited knowledge about fish movement behavior and capacities (Baudoin et al., 2014; Thurow, 2016). 240 

In absence of a dedicated fish pass, individuals are supposed to take advantage of drowned conditions, 241 
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that is, of periods where water level rises above the height of the dam, to cross the obstacle (Keller et 242 

al., 2012). However, such propitious conditions of obstacle drowning might not be encountered every 243 

year, at all localities, and equally across all species/individuals, depending on their swimming behavior 244 

and capabilities in various environmental conditions and to the timing of submersion compared with the 245 

timing of individual movements (Carpenter-Bundhoo et al., 2020; Holthe et al., 2005; Keller et al., 2012). 246 

This may explain why FINDEX values differed so much across datasets, and why the overall effect size of 247 

fragmentation 𝐹̅ was unrelated to the considered genus. However, 𝐹̅ was significantly influenced by the 248 

typology of obstacles, with high and steep obstacles showing an overall effect size 𝐹̅ 40% higher than 249 

low and gentle obstacles (Table 3, Figure 3). This finding is in line with classical expectations about the 250 

impact of dam typology (e.g., Januchowski-Hartley et al., 2019) and conclusions from other studies (e.g., 251 

Amaral et al., 2019; Keller et al., 2012; Zigler et al., 2004), as well as with the obstacle drowning 252 

hypothesis: the highest dams (≥ 2 m) might rarely be drowned (leading to the increase in 𝐹̅), but, in 253 

presence of a gentle slope (< 45°), they might become partly crossable by some individuals, at least at 254 

intermediate drowning conditions, so that only the highest and steepest obstacles have an overall 255 

significant effect size (𝐹̅ = 54.6%; Figure 3). This result should of course be confirmed and refined with 256 

additional datasets, but it provides a relevant and meaningful benchmark for practitioners to adjust 257 

restoration planning even in the absence of any individual quantification of barrier effects.  258 

With this effect of typology taken into account, we estimated the true effect size of fragmentation 259 

as of 𝐹̅ = 51.4 %: in other words, we might expect a 51 % decrease in gene flow in presence of a low-260 

head dam (irrespective of the species or the context). Given these different findings, it appears that a 261 

preliminary diagnosis based on a standardized genetic tool such as the FINDEX may actually help managers 262 

quantify and compare barrier effects across species and obstacles, and thus orientate their restoration 263 

efforts towards the most problematic structures (Prunier et al., 2020), keeping in mind that the most 264 

impactful obstacles might be the highest and steepest ones, but that more seemingly anodyne obstacles 265 
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might also be particularly impacting for some species. Of course, we willingly acknowledge that other 266 

ecological and socio-economic indicators should be considered in restoration planning as well (Hermoso 267 

et al., 2012). It is also noteworthy that the FINDEX might help evaluate the species-specific efficiency of 268 

fish passes, an important step to drive future technical developments (Foulds & Lucas, 2013): the two 269 

considered fish passes before restoration appeared beneficial in all situations except for minnows at 270 

SIOBre (Figure 2), illustrating the challenge of locally designing passes adapted to different fish species 271 

with distinct life-history traits and requirements (Birnie‐Gauvin et al., 2019; Silva et al., 2018).  272 

Our most striking result concerns the efficiency of mitigation measures. All restoration actions led 273 

to a significant reduction of barrier effects, provided there was an actual barrier effect in the first place. 274 

We quantified an overall 22% decrease in fragmentation levels following restoration. This means that 275 

mitigation measures may allow the full recovery of genetic connectivity for any initial fragmentation 276 

level of up to 42% (i.e., 20% < FINDEX ≤ 42%), a value to be compared to the overall effect size of 277 

fragmentation 𝐹̅= 51% before restoration. Most interestingly, this systematic gain in connectivity was 278 

achieved within a few months after restoration only. For instance, weir removal led to the full recovery 279 

of genetic connectivity at three localities (LEZCas, VIAPig and GLAPas), indicating that it ensured the full 280 

mixing of individuals, and thus of allelic frequencies, within a year, and even within two months only at 281 

VIAPig. However, not all restoration actions proved equally efficient within the same timeframe, the 282 

recovery of connectivity being only partial in several situations. This is the case of the two (new or 283 

improved) fish passes at SERHau and SIOBre that resulted in an 8 to 12% recovery in genetic connectivity 284 

in minnows within a year. These reductions are highly encouraging, but it is still unknown whether 285 

recovery is still ongoing: further temporal monitoring is needed to detect migration-drift equilibrium 286 

and determine the final gain in connectivity following restoration. Furthermore, and although weir 287 

removal is expected to be more efficient than fish pass creation as a restoration option (Birnie‐Gauvin et 288 

al., 2019; Sun et al., 2021), other removal actions only led to a partial recovery of connectivity, 289 
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sometimes even after a year (e.g., at CEOSal in minnows). The migration behavior of fish being still 290 

poorly documented and likely to deeply differ across species and contexts, it probably explains why the 291 

true effect size of restoration was unrelated to the considered genus, the typology of the obstacle or the 292 

timelag between restoration and sampling. We can only speculate on why close-range genetic mixing 293 

would sometimes take so long despite the absence of any obstacle to movement. For instance, weir 294 

removal might result in profound changes in upstream and downstream habitat characteristics 295 

(Bednarek, 2001; Doyle et al., 2005), locally inducing a temporary repelling effect on fish. It has also 296 

been suggested that, in some conditions, fragmentation might lead individuals to adjust their life-history 297 

strategies towards residency (Branco et al., 2017), which might further delay genetic connectivity after 298 

removal. Nevertheless, we expect the full recovery of genetic connectivity in the coming years, which 299 

will however require further genetic monitoring of these situations.  300 

  301 
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5. CONCLUSION 302 

Our study provides a strong proof-of-concept that barrier removal and, probably to a lesser extent, fish 303 

pass creation, are efficient mitigation strategies to restore riverine genetic connectivity in just a few 304 

months. We also illustrated how before-after genetic monitoring based on a standardized tool such as 305 

the FINDEX constitute a promising support for practitioners in the planning and the monitoring of 306 

restoration. We believe that the large-scale deployment of this methodology in the future, with a 307 

growing number of case studies, will make it possible to lift the veil on the complex links between 308 

individual crossing success, life history traits of organisms and barrier typologies. 309 

 310 
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FIGURES AND TABLES 535 

Table 1: Main characteristics of obstacles (‘Lon’: longitude; ‘Lat’: latitude; ‘Height’ (in m), ‘Slope’ and 536 

presence of a ‘fish pass’), details about mitigation measures (type and date of actions) and timelag (in 537 

days) between mitigation measures and second sampling sessions. 538 

 539 

Obstacle characteristics Mitigation measures  

Code River Lon Lat Creation 
Height 

(m) 

Slope 

(°) 

Fish 

pass  
Action Date 

Timelag 

(days) 

CEOSal Ceor 2.57634 44.18213 1800 0.8 > 45° No Removal Jul-2016 427 

LEZCas Lézert 2.24649 44.18545 1400 1.1 < 45° No Removal Oct-2017 353 

GLAMou Gland 4.09026 49.92292 1800 1.2 > 45° No Removal Jul-2019 303 

VIAPig Viaur 2.18924 44.13735 1400 1.2 > 45° No Removal Aug-2017 44 

LEZVil Lézert 2.26765 44.19599 1800 1.9 < 45° Yes Removal Oct-2017 353 

DADRai Dadou 2.11982 43.78091 1800 2.0 > 45° No Removal Jun-2017 119 

SENBur Senouire 3.41640 45.27123 1500 2.2 < 45° No Removal Sept-2015 406 

GLAPas Gland 4.07951 49.92529 1800  2.6 > 45° No Removal Jul-2019 303 

SIOBre Sioule 3.29729 46.33353 1500 2.6 < 45° Yes Fish pass restoration  Oct-2015 376 

GLASou Gland 4.11903 49.92129 1800 3.0 > 45° No Removal Nov-2016 344 

SERHau Serein 3.60304 47.92156 1830 3.5 > 45° No Fish pass creation Oct-2017 226 

 540 

 541 
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Table 2:  For each dataset (that is, a combination of one obstacle and one genus), observed effect sizes 543 

of barrier effects (F±SDF) both before and after restoration and observed effect sizes of restoration (∆F± 544 

SE∆), respectively. Note that SDF = 2 x SEF. Significant effect sizes (see Figure 2) are in bold and indicated 545 

with a star. The last column ‘Recovery’ indicates whether the restoration action (Removal or Fish pass 546 

creation) led to the partial or the full recovery of connectivity, when applicable. 547 

 548 

Obstacle 
code 

Genus 

Barrier effect 
Restoration efficiency 

Before restoration After restoration 

F SDF  F SDF  Action ∆F SE∆  Recovery 

CEOSal Gudgeons 0.00 0.00  0.00 0.00  Removal 0.00 0.00  / 

 Minnows 64.42 1.59 * 35.52 2.22 * Removal -28.91 1.37 * Partial 

LEZCas Gudgeons 27.25 6.26 * 0.00 0.00  Removal -27.25 3.13 * Full 

 Minnows 0.00 0.00  11.66 12.47  Removal 11.66 6.23  / 

GLAMou Gudgeons 0.00 0.00  0.00 0.00  Removal 0.00 0.00  / 

 Minnows 4.27 4.57  0.00 0.00  Removal -4.27 2.28  / 

VIAPig Gudgeons 32.48 0.99 * 12.41 3.70  Removal -20.07 1.91 * Full 

 Minnows 29.80 4.59 * 8.35 8.93  Removal -21.45 5.02 * Full 

LEZVil Gudgeons 0.00 0.00  10.39 11.14  Removal 10.39 5.57  / 

 Minnows 2.32 2.63  0.00 0.00  Removal -2.32 1.31  / 

DADRai Gudgeons 68.09 1.58 * 26.82 1.20 * Removal -41.27 0.99 * Partial 

SENBur Gudgeons 54.75 1.02 * 48.22 1.87 * Removal -6.53 1.07 * Partial 

 Minnows 14.59 15.60  0.00 0.00  Removal -14.59 7.80 * / 

GLAPas Gudgeons 55.42 2.24 * 0.00 0.00  Removal -55.42 1.12 * Full 

 Minnows 42.88 2.87 * 0.00 0.00  Removal -42.88 1.43 * Full 

SIOBre Gudgeons 0.00 0.00  0.00 0.00  Fish pass 0.00 0.00  / 

 Minnows 51.84 2.57 * 39.46 1.61 * Fish pass -12.38 1.52 * Partial 

GLASou Minnows 49.26 0.76 * 32.51 4.77 * Removal -16.75 2.42 * Partial 

SERHau Gudgeons 0.00 0.00  0.00 0.00  Fish pass 0.00 0.00  / 

 Minnows 57.33 1.31 * 49.10 2.05 * Fish pass -8.23 1.22 * Partial 

 549 

 550 
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Table 3: Results of random meta-analyses for the overall effect sizes of fragmentation 𝐹̅ and of 552 

restoration ∆𝐹̅̅̅̅ . In presence of a moderator, EST is the estimate of the overall effect size for the 553 

intercept (INT) and the deviation from the intercept for the alternate modalities, with the moderator as 554 

a random effect. In absence of moderator (indicated with a slash), EST is the final estimate of the overall 555 

effect size taking into account all sources of variation (including the previously identified significant 556 

moderators as random effects, when applicable). Also provided are the number n of datasets in each 557 

modality, the standard error (SE) and CI95% (ci.low and ci.high) around EST, the Wald-Type Z statistic 558 

(Zval) and the associated p-value (pval), and the QM test of moderator effect (QM statistic and 559 

associated p-value). 560 

Overall 
effect 
size 

Random effects Moderator 
Modalities 
(INT = Intercept) 

n EST SE ci.low ci.high Zval pval 

Test of 
moderator 

QM pval 

𝐹̅ 

Species|Dataset Genus Gudgeons (INT) 5 47.72 7.63 32.77 62.67 6.25 <.0001   

  Minnows 9 -12.26 10.91 -33.65 9.13 -1.12 0.261 1.26 0.261 

Typology|Dataset Typology Low and gentle (INT) 2 14.62 12.46 -9.80 39.05 1.17 0.241   

  Low and steep 4 18.18 17.53 -16.18 52.53 1.04 0.300   

  High and gentle 3 26.84 17.55 -7.56 61.25 1.53 0.126   

  High and steep 5 40.00 13.15 14.22 65.78 3.04 0.002 11.45 0.010 

Typology|Dataset   14 51.42 3.22 45.12 57.72 16.00 <.0001   

∆𝐹̅̅̅̅  

Species|Dataset Genus Gudgeons (INT) 5 -30.14 8.50 -46.80 -13.47 -3.54 0.000   

  Minnows 9 13.24 9.60 -5.57 32.06 1.38 0.168 1.90 0.168 

Typology|Dataset Typology Low and Gentle (INT) 2 -14.62 12.46 -39.05 9.80 -1.17 0.241   

  Low and Steep 4 -4.03 13.57 -30.62 22.56 -0.30 0.766   

  High and Gentle 3 4.81 12.73 -20.13 29.75 0.38 0.705   

  High and Steep 5 -18.32 15.25 -48.22 11.57 -1.20 0.230 7.79 0.051 

Timelag|Dataset Timelag <1year (INT) 10 -24.04 5.67 -35.16 -12.92 -4.24 <.0001   

  >1year 4 8.35 7.74 -6.81 23.51 1.08 0.281 1.16 0.281 

1|Dataset   14 -21.71 4.35 -30.24 -13.18 -4.99 <.0001   

  561 
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Figure 1: Geographic localization of studied instream barriers (black dots) in the main French 562 

watersheds.  563 

 564 
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 Figure 2: Main results of the before-after genetic monitoring. For each obstacle (in columns), bars 566 

represent FINDEX values with 95% confidence intervals as computed before (in green) and after (in purple) 567 

restoration in gudgeons (panel A) and minnows (panel B). Slashes indicate no data in both A and B. 568 

Outlined bars represent significant barrier effects (FINDEX > 20%). Green stars indicate a significant change 569 

in FINDEX values after restoration (non-overlapping confidence intervals). Double purple stars indicate the 570 

full recovery of connectivity following restoration (see details in Table 2). Panel C also provides few 571 

details about obstacles (in green) and restoration (in purple) for direct comparisons with FINDEX values 572 

(see Table 1). Obstacles are sorted by their increasing height. Note that FINDEX values actually increased 573 

after restoration in two datasets (LEZVil in gudgeons and LEZCas in minnows), but that new values were 574 

lower than 20 % and non-significantly different from 0 (and thus from FINDEX values before restoration) 575 

according to CI95%, a phenomenon owing to the stochasticity of genetic approaches 576 

 577 
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Figure 3: Overall effect sizes 𝐹̅ of fragmentation for each modality of typology and overall true effect size 590 

𝐹̅ taking all significant sources of variation (within datasets and across modalities) into account. Washed 591 

out bars indicate that the effect size of fragmentation is not significant (𝐹̅ > 20% or CI95% including 20%; 592 

Prunier et al., 2020). 593 
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APPENDIX S1: DNA EXTRACTION AND GENOTYPING 599 

 600 

Genomic DNA was extracted using a salt-extraction protocol (Aljanabi & Martinez, 1997). A subset of 15 601 

and 19 autosomal microsatellite loci from Grenier et al. (2013) were amplified and genotyped in gudgeons 602 

(BL1-153, Gob15, Gob16, Gob22, LC293, Lco4, MFW1, Ca1, CypG24, Gob12, Gob28, Lsou5, Rvla21177, 603 

Smv03 and Lro12) and minnows (BL1-153, Ca3, CtoA-247, CtoG-075, CypG9, LSou8, LleA-071, LleB-072, 604 

Ppro-132, Rru4, BL1-44, BL1-84, BL1-98, LC27, LceC1, LleC-090, Lsou5, MFW1 and Rhca20), respectively, 605 

following PCR conditions described in Grenier et al. (2013). 606 

Each combination of a genus, an obstacle and a sampling session (n = 40) was considered a unique 607 

genotypic dataset, with corresponding genotypes coded in the genepop format (Rousset, 2008). For each 608 

dataset, we assessed the presence of null alleles and checked for gametic disequilibrium using the null.all 609 

function (R-package PopGenReport; Adamack & Gruber, 2014) and the test_LD function (R-package 610 

genepop; Rousset, 2008), respectively. Any locus showing significant gametic disequilibrium and/or 611 

evidence of null alleles was discarded before FINDEX calculation (see Table 2 in main text for outputs). 612 
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APPENDIX S2: THE EFFECT OF TIMELAG ON THE OBSERVED EFFECT SIZES OF RESTORATION ∆F 614 

The observed effect sizes of restoration ∆F (±CI95%) did not show any significant trend when increasing the 615 

timelag between restoration and sampling. 616 

 617 

 618 
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