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Abstract

Fluorescence microscopy, a central tool of biological research, is subject to inherent
trade-offs in experiment design. For instance, image acquisition speed can only be
increased in exchange for a lowered signal quality, or for an increased rate of photo-
damage to the specimen. Computational denoising can recover some loss of signal,
extending the trade-off margin for high-speed imaging. Recently proposed denoising on
the basis of neural networks shows exceptional performance but raises concerns of errors
typical of neural networks. Here, we present a work-flow that supports an empirically
optimized reduction of exposure times, as well as per-image quality control to exclude
images with reconstruction errors. We implement this work-flow on the basis of the
denoising tool Noise2Void and assess the molecular state and three-dimensional shape
of RNA Polymerase II (Pol II) clusters in live zebrafish embryos. Image acquisition
speed could be tripled, achieving 2-second time resolution and 350-nanometer lateral
image resolution. The obtained data reveal stereotyped events of approximately 10
seconds duration: initially, the molecular mark for initiated Pol II increases, then the
mark for active Pol II increases, and finally Pol II clusters take on a stretched and
unfolded shape. An independent analysis based on fixed sample images reproduces this
sequence of events, and suggests that they are related to the transient association of
genes with Pol II clusters. Our work-flow consists of procedures that can be implemented
on commercial fluorescence microscopes without any hardware or software modification,
and should therefore be transferable to many other applications.

Keywords: Image Processing, Reliable Deep Learning, Fluorescence Mi-
croscopy, Gene Regulation, Transcription

Introduction 1

Light microscopy is one of the most central tools of biological research, whether a 2

biologist aims to get the first glimpse of a given cellular process or to quantitatively 3
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test the validity of hypotheses [1]. A specific area of application is the visualization of 4

fluorescently labeled molecules. The design of such experiments is subject to inherent 5

limitations [2, 3], requiring a trade-off between acquisition speed, signal-to-noise ratio 6

(SNR), and prevention of photo-damage to the specimen [4]. These parameters cannot 7

be optimized separately. For instance, to increase acquisition speed, exposure time 8

must be reduced, leading to lower SNR [5, 6]. SNR can be recovered by, for example, 9

increased power of the light used to excite fluorescence in the sample, resulting however 10

in increased photo-damage. 11

While the experimental parameters during acquisition are subject to firm trade-off 12

relationships, computational processing of images after acquisition can recover image 13

quality. These approaches allow, for example, a further reduction of exposure times 14

followed by computational reconstruction of low-SNR images. Conventional approaches 15

for reconstruction of low-SNR images include projection methods [7], deconvolution filters 16

[8, 9], and denoising methods [10, 11]. In the past decade, deep learning methods have 17

become widely used in a variety of image processing applications, often outperforming 18

conventional approaches [12]. In biological microscopy, deep learning has been successfully 19

used for image classification [13–15], segmentation [16, 17], and restoration [18–21]. Initial 20

deep learning approaches used standard deep networks to restore fluorescence microscopy 21

images, requiring training data sets of matched low-quality and high-quality images. 22

For example, networks can be trained on a reference data set with high SNR (“ground 23

truth”), so as to restore matched images with low SNR (“noisy data”) [22]. One obstacle 24

to the wide-spread application of such reconstruction approaches is the requirement for 25

matched high-quality training data [23, 24]. These data are laborious or sometimes even 26

impossible to obtain in a fashion that is sufficiently matched to noisy data. An alternative 27

is provided by Noise2Noise (n2n) techniques, which enable the training of deep networks 28

from matched pairs of noisy images [25, 26]. The requirement for any matched images is 29

fully removed in the Noise2Void (n2v) technique, where learning and removal of noise 30

are carried out based on a single noisy image data set [26, 27]. Reconstruction based on 31

a single noisy data set also allows per-image training, thus compensating for day-to-day 32

variability of, for example, fluorescence labeling or fine-adjustment of optical parts. 33

A second obstacle to the wide application of deep learning methods is the possibility 34

of errors in the reconstructed fluorescence images [23, 24]. These errors manifest as 35

deviations between the high-quality ground truth images and the images reconstructed 36

from low SNR data. A dilemma arises, where the effective application of deep learning 37

networks can only proceed without acquisition of ground truth data, but ground truth 38

data are required to assure the experimenter that reconstruction is error-free. In this 39

work, we develop a pragmatic work-flow for the quality-controlled adjustment and 40

application of n2v for denoising in high-speed fluorescence microscopy. In this work-flow, 41

for every acquired view of a given sample, a small data set with high-quality data is 42

recorded to control reconstruction quality, followed by full time-lapse acquisition of only 43

compromised data. We demonstrate the applicability of this work flow in the analysis 44

of fluctuations in molecular clusters in live zebrafish embryos. Our analysis reveals 45

a close coordination between post-translational modifications of RNA polymerase II 46

(Pol II) and changes in the three-dimensional (3D) shape of these clusters on the scale 47

of a few seconds. These observations are confirmed by an alternative experimental 48

approach, where still images from chemically fixed cells are sorted based on an additional 49

fluorescence marker for genes that transiently engage with the molecular clusters. Our 50

approach provides a guideline for other microscopists interested in the quality-controlled 51

application of ground-truth-free image reconstruction methods. The approach can be 52

implemented on any fluorescence microscope typically used for time-lapse recordings 53

without the need of software development or hardware control beyond the standard 54

functionality. 55
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Results 56

Quantification of image reliability and effective resolution in re- 57

constructed microscopy images 58

The structural reliability and effective spatial resolution of reconstructed images can 59

be assessed by a combination of widely used metrics. The structural reliability can be 60

assessed via the structural similarity index metric (SSIM). SSIM quantifies the similarity 61

between two images and returns a value between 0 and 1 [28, 29]. SSIM values close to 62

1 indicate that two images are very similar, lower SSIM values indicate images that are 63

less similar. One application is the comparison of two images obtained with the same 64

acquisition and post-processing steps, providing a quantification of the reliability of the 65

obtained images. Using SSIM, we can, for example, demonstrate how changes in image 66

acquisition settings, such as the reduction of exposure time, can compromise image 67

reliability (Fig. S1). Applying n2v to pairs of reconstructed super-resolution microscopy 68

images, we can illustrate how denoising can increase image reliability (Fig. 1A,B). SSIM 69

can also be used to assess whether reconstructions of low-quality images obtained with, 70

for example, low exposure times can approximate high-quality images (Fig. 1A,B). The 71

assessment of image reliability via SSIM is, however, not sensitive to localized differences 72

between images, as are typically introduced at edges during denoising procedures. Such 73

local occurrences of unreliable reconstruction are readily detected by the local SSIM (Fig. 74

S3) [30]. The combination of SSIM and local SSIM thus allows an assessment of image 75

reliability based on paired images, as well as the similarity between a reconstructed and 76

a corresponding high-quality image. 77

A key aspect of performance in microscopy is the effective image resolution. The 78

effective image resolution is determined by both the optical resolution of a given imaging 79

instrument, and by the ratio of photons emitted by the structure of interest over polluting 80

photons, often referred to as SNR. This effective resolution can be quantified via Fourier 81

ring correlation (FRC) [31, 32]. FRC evaluates the similarity of a pair of images in 82

frequency space, so as to determine the spatial frequency up to which the images are 83

consistent with each other (Fig. 1C). The inverse of this spatial frequency is then taken as 84

the effective spatial resolution (Fig. 1D). Applying the FRC metric to our super-resolution 85

microscopy data reveals that, indeed, n2v-denoising can recover effective resolution in 86

low-quality images (Fig.1D, Fig. S2). Taken together, SSIM and FRC can objectively 87

assess image reliability and effective resolution in matched pairs of reconstructed images. 88

Optimization of exposure time for high-speed time-lapse imaging 89

While denoising with n2v can, in principle, reconstruct images acquired with reduced 90

exposure time (texp), for a given experiment it is not known a priori just how far texp 91

can be reduced while ensuring a sufficient image reconstruction. To demonstrate how 92

SSIM and FRC can guide the choice of texp, we carried out live sample microscopy of 93

cells obtained from buccal smears (“human cheek cells”) for a range of exposure times, 94

texp = 20, 40, 70, 100, 150 ms (Fig. 2A). For each texp, a n2v-network was separately 95

trained on a pair of images and the effective resolution for these reconstructed images 96

was assessed (Fig. 2B). For texp = 70 ms, of 70 ms or higher, an effective resolution 97

of ∼ 200 nm was attained for the reconstructed images (Fig. 2C). This resolution was 98

not further improved by longer exposure times, but could not attained for shorter 99

exposure times (Fig. 2C). This FRC-based assessment suggest texp = 70 ms as an 100

optimal exposure time. We controlled the structural reliability of the reconstructed 101

images by local SSIM, finding reconstruction errors for texp = 20 ms (Fig. S3A-G). 102

Considering both the FRC and local SSIM results, all texp ≥ 40 ms seem structurally 103

reliable, while only texp ≥ 70 ms allows maximal effective image resolution after image 104
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Fig 1. Metrics for the reliability and effective resolution in Noise2Void-reconstructed images.
A) Representative micrographs of the DNA distribution in a nucleus in a fixed zebrafish embryo, recorded
with a stimulated emission depletion (STED) super-resolution microscope. The same image plane was
recorded twice at low quality, once at high quality, and two Noise2Void-reconstructed images were prepared
from the low-quality images. B) SSIM values for pair-wise comparison (image 1 vs. image 2) and
comparison against the high-quality image (image 1 vs. high-quality and image 2 vs. high-quality) for the
low-quality images and the reconstructed images. C) FRC curves calculated based on a low-quality image
pair and the corresponding reconstructed image pair. D) FRC-based effective resolution for four pairs of
low-quality images and the corresponding pairs of reconstructed images.

reconstruction. In this setting, the experimenter can therefore choose between faster 105

acquisition (texp = 40 ms) or higher effective resolution (texp = 70 ms), all while ensuring 106

a high certainty of structural reliability. 107

A two-phase acquisition protocol for quality-controlled denoising 108

of time-lapse recordings 109

To integrate the metric-based assessment of n2v-processed images with the recording 110

of high-speed time-lapse data, we propose an acquisition protocol that contains two 111

distinct phases and is carried out at every position in a given sample (Fig. 3A). In the 112

first phase (A, assessment), all image data required for the application of SSIM and FRC 113

metrics are recorded (Fig. 3B). In particular, for each of the image planes that make 114

up the acquired 3D volume, the following images are obtained: one low-quality image 115

(texp), two high-quality images recorded with a longer reference exposure time (tref ), 116

followed by two more low-quality test images (texp). In the second phase (B, time-lapse), 117

a sequence of 3D volumes is acquired with only a single low-quality images for each of 118

the image planes, reducing the time spent for the acquisition of a 3D volume (Fig. 3B). 119

The data acquired by this two-phase acquisition protocol allow a comprehensive 120

quality control assessment for every recorded position. Specifically, we first train a n2v 121

network for each position, with which we reconstruct the low-quality test images 1 and 122

2. We can then assess the effective resolution using the FRC metric and additionally 123

control the reconstructed image for reconstruction errors using SSIM and local SSIM. 124

For positions where a sufficient effective resolution is achieved by the reconstruction, 125

and a sufficiently low level of reconstruction error is found, the trained n2v-network 126

is then applied to the time-lapse data from phase B, thus providing n2v-reconstructed 127

time-lapses with per-position quality-control. 128
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Fig 2. Metric-based estimation of how far image quality can be compromised to allow
recovery of effective resolution by denoising. A) Representative micrographs of nuclei of human cheek
cells for different camera exposure times (texp, as indicated), all high-quality images were acquired at the
same position but with an exposure time of 200 ms. Images are maximum-intensity projections, DNA was
labelled by Hoechst 33342. B) FRC curves calculated from a pair of matched low-quality images, from a
pair of reconstructed images, and a pair of high-quality images for the different texp. C) Effective resolution
for the indicated texp, n = 5 nuclei per texp, values are shown with mean.

High-speed imaging reveals coordinated changes of phosphoryla- 129

tion and morphology of RNA polymerase II clusters 130

To demonstrate the applicability of our proposed protocol for quality-controlled n2v- 131

supported live imaging protocol, we attempted to visualize changes in the molecular 132

state as well as the 3D shape of macro-molecular clusters enriched in Pol II. To this 133

end, we recorded microscopy images from live zebrafish embryos with an instant-SIM 134

microscope [33]. We visualized Pol II that is recruited to macromolecular clusters (Pol 135

II Ser5P) or has transitioned towards production of RNA transcripts (Pol II Ser2P) by 136

fluorescently labeled antibody fragments (Fabs). These Fabs provide good sensitivity in 137

zebrafish embryos and do not perturb embryonic development in any obvious fashion 138

[34–36]. To establish exposure times, we first adjusted imaging parameters so as to obtain 139

images that reveal cluster shape in the Pol II Ser5P channel on the microscope’s live 140

display without any processing. We chose this reference exposure time as tref = 200 ms, 141

resulting in an overall time of 6 s that is required to obtain a full 3D image stack. Using 142

tref = 200 ms, we recorded image data in line with the two-phase acquisition protocol, 143

with the phase B spanning a total time of 2 min. Specifically, we recorded data for four 144

different exposure times (texp = 10, 20, 50, 100 ms, Fig. S4A-C). For all texp, we achieve 145

an effective resolution of 400 nm (lateral) or better after n2v-based reconstruction, 146

which compares favorably to an effective resolution of approximately 700 nm in the 147

high-quality images (Fig. S4D). Analysis by local SSIM suggests that reconstructions 148
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Fig 3. A two-phase acquisition protocol to combine acquisition of quality control images with
high-speed time-lapse imaging. A) Image data were acquired at multiple positions in a sample, thus
obtaining multiple viewpoints containing several objects of interest (nuclei, indicated in green). B) For each
position, a sequence of two acquisition phases is carried out. In phase A, for each z position, a low-quality
image, two high-quality reference images, and two low-quality test images are recorded. Low-quality images
are recorded at a shortened exposure time (texp), high-quality images at a reference exposure time resulting
in images of the desired quality (tref ). Acquisition phase A obtains the images required for Noise2Void
model training as well as the assessment of effective image resolution and reconstruction errors. In phase B,
only single low-quality images are recorded with the shortened exposure time (texp), resulting in an
increased rate of acquisition compared to acquisition with full exposure time (tref ). Acquisition phase B
obtains only low-quality images, which are reconstructed after the experiment is completed.

for texp ≥ 20 ms offer a reliability similar to a comparison between two high-quality 149

images, reconstructions of images obtained with texp = 10 ms are prone to reconstruction 150

errors (Fig. S4E). Accordingly, we selected images acquired with texp = 20 ms (effective 151

lateral resolution ∼ 400 nm) and texp = 50 ms (effective lateral resolution ∼ 350 nm) for 152

further analysis, which provided full 3D image stacks at a time resolution of 1 s and 2 s, 153

respectively. 154

As previously observed, clusters seen in the Pol II Ser5P channel were persistent 155

during the entire phase B acquisition period [36]. The n2v-processed Pol II Ser5P 156

time-lapse images were thus segmented to detect Pol II-enriched clusters, each cluster 157

was then tracked over the whole time-lapse based on spatial proximity in consecutive 158

time points (Fig. 4B). Based on the Pol II Ser5P-derived segmentation masks, Pol 159

II Ser5P and Ser2P intensities as well as shape quantifiers (elongation and solidity) 160

could be determined for each time point (Fig. 4A). The resulting time courses exhibit 161

fluctuations, and the question arises whether a systematic relationship exists between 162

the different quantities (Fig. 4C). Indeed, cross-correlation analysis that was anchored 163

on cluster elongation reveals a systematic relationship (Fig. 4D). The cross-correlation 164

analysis reveals an initial increase in Pol II Ser5P intensity, followed by a transient 165

increase in Pol II Ser2P intensity ∼ 5 s later, and a transient decrease in Pol II Ser5P 166

intensity another ∼ 5 s later. These changes are accompanied by an initial rounding up 167

of clusters (solidity increase), followed by transient unfolding (solidity decrease) ∼ 10 s 168

later. These cross-correlation analysis results are obtained at both texp = 50 ms (Fig. 169

4) and texp = 20 ms (Fig. S5), indicating that our findings are not mere coincidence. 170

Our observations are representative of a stereotypical sequence of events, which occurs 171

repeatedly and is therefore detected by the cross-correlation analysis: Pol II Ser5P 172

intensity increases and the cluster rounds up due to the rapid recruitment of Pol II to 173

a given cluster, Pol II Ser5P intensity decreases and Pol II Ser2P intensity increases 174

as some of the recruited Pol II proceeds into transcript production, while the cluster 175

gets elongated and unfolded due to a shape perturbation resulting from transcript 176

production. Previous work indicates that transcribing Pol II and the resulting nascent 177
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RNA transcripts induce distinct rearrangements in molecular clusters, explaining a 178

potential source for the shape perturbation [35–38]. Notably, these works suggest that 179

changes in Pol II state and cluster organization come about due to transient engagement 180

of genes with Pol II-enriched clusters, leading to the induction of genes and to their 181

release from these clusters. 182

Fig 4. Noise2Void-accelerated imaging reveals coordinated changes in shape and
phosphorylation levels of RNA polymerase II clusters on the scale of seconds. A) Representative
series of time-lapse images showing a single RNA polymerase II cluster in the Pol II Ser5P channel (single
image plane from the middle z position of the cluster, exposure time texp = 50ms, effective time resolution
for full 3D volume acquisition of 2 s) The Pol II Ser2P channel is not shown because only average intensity,
not shape was quantified from this channel. B) Example shapes to illustrate how elongation and solidity
represent object shape. C) Time courses of Pol II Ser5P intensity, Pol II Ser2P intensity, elongation, and
solidity for the example time-lapse shown in panel A. D) Cross-correlation analysis of the temporal
coordination of Pol II Ser5P intensity, Pol II Ser2P intensity, and solidity with elongation. Gray lines
indicate the time-shifted correlation for single cluster time courses, thick lines indicate the mean, and the
gray region the 95% bootstrap confidence interval. Analysis based on n = 30 tracked clusters, recorded from
one sphere stage embryo. E) Summary of the coordinated changes in phosphorylation and cluster shape
suggested by the cross-correlation analysis. A stereotypical sequence of events can be seen: cluster Pol II
Ser5P intensity transiently increases (red) and the cluster becomes rounder, then cluster Pol II Ser2P
transiently intensity increases (blue), until finally the cluster transiently unfolds and becomes elongated.

Pseudo-time analysis from fixed sample images also detects coor- 183

dinated changes in phosphorylation and cluster shape. 184

To verify the conclusions obtained by the fluctuation analysis, we assessed changes 185

in cluster state by an independent approach based on the interaction with a gene. 186

Specifically, we fixed zebrafish embryos in the sphere stage, and fluorescently labeled 187

a panel of 8 genes as well as Pol II Ser5P and Pol II Ser2P (Fig. 5A). Fixation of 188

samples prevents live imaging, thus removing the temporal information from the images. 189

In exchange, images with distinctly higher signal can be obtained without the need of 190

n2v-processing, and the location of the labeled gene can be used as additional information 191

that is not available in our live imaging data. The analysis of the obtained image data 192

was therefore based on gene-Pol II cluster interaction pairs. An interaction pair is 193

constructed by the detection of the location of a labeled gene, and by logical association 194

of this gene with the Pol II Ser5P cluster that is closest in space (Fig. S6A,B). For each 195

interaction pair, fluorescence intensities of the gene, fluorescence intensities of the the Pol 196
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Fig 5. Pseudo-time analysis of data from fixed embryos relates transient engagement and
activation of a gene to the phosphorylation and shape changes observed in live embryos. A)
Example images of Pol II Ser5P (magenta signal) clusters sorted by a pseudo-time progress coordinate (s,
periodic, defined on the interval [0, 1)), which is calculated based on interaction with the gene klf2b (green
represents oligopaint fluorescence in situ hybridization signal for klf2b). Center positions (weighted
centroid) are indicated for the Pol II Ser5P cluster (white circle with black filling) and the gene (black circle
with white filling) and connected with a white line for illustration. For details of the reconstruction, see Fig.
S6. For an overview containing all eight genes that were assessed, see Fig. S7. B) Pol II Ser5P and Ser2P
intensity, elongation, and solidity of Pol II Ser5P clusters sorted by pseudo-time s. A total of n = 186
clusters from N = 4 independent samples, obtained in two independent experiments, were included in the
analysis. C) Cross-correlation analyses for different register shifts in the coordinate s, the register shift is in
units of data points by which the coordinate s was shifted. Gray regions indicate 95% bootstrap confidence
interval.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.05.471272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.05.471272
http://creativecommons.org/licenses/by-nc-nd/4.0/


II cluster, distance between both objects, and shape properties of the Pol II cluster were 197

combined into a vector representing the interaction pair. Principal component analysis 198

of these pairs revealed a cyclical pattern, based on which a pseudo-time coordinate was 199

constructed (Fig. 5B and Fig. S6C). The assignment of a pseudo-temporal order to 200

image data obtained from fixed samples has been used previously, for example for the 201

nanoscale assessment of endocytosis [39, 40]. Ordering the interaction pairs along the 202

pseudo-time coordinate allowed the extraction of time-shifted correlations (Fig. 5C), 203

which directly mirrored those we obtained from on our live imaging data (Fig. 4D). We 204

suspected that the location of a gene that interacts with Pol II Ser5P clusters provides 205

the crucial information for successful pseudo-time reconstruction (Fig. S7, genes foxd5, 206

klf2b, zgc:64022 ). Indeed, when we attempted pseudo-time reconstruction on the full 207

panel consisting of eight genes, we found that for genes that only rarely come close 208

to Pol II Ser5P clusters, the pseudo-time approach failed to reproduce the correlation 209

analysis results (Fig. S7, genes vamp2, ripply1, drll.2, gadd45ga, iscub). In the case 210

of successful pseudo-time reconstruction, our results suggests that a gene visits a Pol 211

II Ser5P cluster in close coordination with changes that occur in the Pol II cluster. 212

Specifically, genes engage in close contact when cluster Pol II Ser5P intensity increases, 213

and detach at a time when clusters undergo transient elongation (Fig. 5A,B and Fig. 214

S7, genes foxd5, klf2b, zgc:64022 ). The time-scales of this interaction can be estimated 215

by a comparison of the distance between the cross-correlation maximum and minimum 216

in the cluster Pol II Ser5P signal (∼ 50 steps in pseudo-time, corresponding to ∼ 10 s 217

in the cross-correlation analysis based on live-imaging results) and the total number 218

of observed interaction pairs (169, 186, 191 for foxd5, klf2b, zgc:64022, respectively), 219

implying in an average duration of ∼ 36 s between two consecutive interaction events. 220

To conclude, the correlation analysis based on pseudo-time reconstruction provides an 221

independent confirmation of the coordination between Pol II phosphorylation levels and 222

cluster shape obtained by n2v-supported live imaging. This agreement suggests that 223

these two approaches provide complementary views of the same, stereotyped sequence of 224

changes in molecular properties and the shape of Pol II clusters. 225

Discussion 226

In this study, we describe how the quality of images that are reconstructed by deep- 227

learning algorithms can be controlled for, addressing the specific case of unsupervised 228

denoising by Noise2Void. We implemented our approach of quality control towards the 229

acceleration of high-speed imaging, where camera exposure times are reduced and the 230

resulting loss of signal quality is recovered by n2v-denoising. We then apply our approach 231

to the example of imaging the molecular state and the shape of RNA polymerase II 232

clusters in live zebrafish embryos. Our work illustrates how, in a practical application 233

setting, the performance improvements from deep-learning algorithms in fluorescence 234

microscopy can be combined with a high level of confidence in the reconstructed images. 235

We specifically apply our quality-control approach to an unsupervised denoising 236

technique, the deep learning-based tool Noise2Void [27]. Currently, reconstructions that 237

map from noisy to high-quality data on the basis of paired training image data offer the 238

highest reconstruction performance [22]. In many practical settings, such pairs of noisy 239

and high-quality images cannot be obtained. An alternative is offered by reconstructions 240

based on matched pairs composed of noisy images only (Noise2Noise [26]). Further 241

developments now offer the possibility to reconstruct high-quality images directly from 242

single noisy images (Noise2Self [41] and Noise2Void [27]). A self-supervised approach 243

seems ideally suited to reconstruction tasks where fluorescence labeling exhibits strong 244

variability, optical components are changed between different experiments, or sample 245

properties vary on a day-to-day basis. These characteristics are typical of biological 246
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microscopy applications, highlighting the applicability of self-supervised reconstruction 247

methods in this area. A crucial assumption of self-supervised denoising approaches is that 248

the noise in each pixel is an uncorrelated sample from the same probability distribution. 249

Newer variants of these algorithms explicitly adjust the probability distribution of 250

the noise to different parts of the image, thus improving the results where additional 251

information on the noise characteristics is available [19, 42, 43]. Yet other variants model 252

the structure of the signal itself [44]. These newer variants of self-supervised denoising 253

could provide further improvements in reconstruction performance, while retaining most 254

of the pragmatic applicability of self-supervised reconstruction methods. 255

We base our assessment of image quality on two metrics, (local) SSIM and FRC. 256

More generally, metrics for image quality assessment belong to three main groups of 257

functionality. The first group includes methods assessing the quality of images against 258

a corresponding reference image (high-quality image). These methods are called full- 259

reference, emphasizing the need for high-quality reference data [28, 45]. SSIM and 260

consecutive similarity (CSS) metric, which is a variation of SSIM [46], are in this 261

category. We used (local) SSIM, which provides an error map by structurally comparing 262

the reconstructed image with the reference image, and based on that error map controlled 263

for reconstruction defects. The second group, called reduced-reference, contains methods 264

which are not using matched reference images, but rather general knowledge of properties 265

and statistics that are typical of a set of reference images [47]. Natural scene statistics 266

(NSS) is one major method in this category [45]. The underlying hypothesis of all 267

NSS-based method is that all the original images are “natural” and that a distortion 268

process introduces some unnaturalness that can be quantified by deviation from models of 269

natural signals. Due to the day-to-day variability of the signals produced by fluorescence 270

microscopy of biological samples, modeling natural signals appears challenging. The 271

third category of image quality assessment methods is called no-reference, because quality 272

assessment proceeds without a matched reference image or other prior knowledge [48]. 273

Fourier ring correlation (FRC) is in this category and we used it to assess the spatial 274

resolution of the reconstructed images. Based on the achieved spatial resolution, we 275

could decide how far exposure times could be reduced while still supporting successful 276

denoising. One tool that implements several of these metrics for the assessment of local 277

anomalies in super-resolution microscopy data is SQUIRREL [49]. The quality scores 278

and error mapping provided by SQUIRREL can, in principle, also be applied to images 279

reconstructed by deep-learning methods. 280

The image acquisition protocol we propose consists of a phase during which all 281

necessary data for quality control are collected for a single time point (phase A), followed 282

by high-speed time-lapse imaging with compromised image quality (phase B). This 283

protocol seems appropriate for the acquisition of short bursts of images, where the main 284

limitation lies in how many images can be acquired in a short amount of time. For other 285

imaging challenges, different protocols could be developed. In a different situation where, 286

for example, photo-bleaching limits the acquisition of long time courses, excitation light 287

levels could be reduced, and the compromised signal could be recovered by denoising. In 288

such an experiment, quality control points could be placed at regular intervals over the 289

course of acquisition. In a setting where, for example, sample structure or the level of 290

fluorescence labeling changes significantly over the course of recording, a quality control 291

phase at the beginning and at the end of the experiment might be advisable. Besides 292

the implementation of additional control points in the experimental procedure, such 293

extensions of our simple two-phase protocol would need no further modification to the 294

quality control approach we used in our work. 295

Our live-sample microscopy recordings reveal a stereotypical sequence of events, 296

where the Pol II recruitment and pause-release steps of transcriptional induction are 297

closely coordinated with changes in the shape of Pol II clusters. While previous studies 298
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achieve high spatial or temporal resolution, our approach combines high resolution in 299

time as well as in space. Our temporal resolution of 1-2 seconds for a full 3D stack 300

is comparable to previous assessments of Pol II localization [50, 51]. These studies, 301

however, do not monitor the specific phosphorylation states associated with Pol II 302

regulation. Imaging of these phosphorylation states was previously performed with an 303

effective time resolution of 1 min for a single gene [38] or 10 s for an engineered gene 304

array [52] for the acquisition of full 3D volumes. By fitting of kinetic models of Pol II 305

regulation, these studies suggest rates of promoter escape of 2-2.5 min and production 306

of the first 1 kb of transcript length within 2.5 min (assuming an elongation rate of 307

0.4 kb per minute). Photobleaching experiments assessing endogenous Pol II combined 308

with computational modeling indicated 2.3 s for initiation and 42 s of pausing at the 309

promoter, as well as an elongation rate of 2 kb per minute [53]. Lastly, another study 310

suggests that 6.3 s are sufficient for Pol II to loosely associate with an induced gene as 311

well as proceed into elongation [50]. While these estimates for the duration of induction 312

and pause-release imply a broad spectrum of kinetics, our estimates of 2-3 s for promoter 313

escape and approximately 36 s for the duration of one complete gene-cluster interaction 314

cycle fall within the previously estimated range for promoter escape and RNA production. 315

Besides temporal coordination, also relative distances have been assessed, for example 316

between Pol II clusters and nascent mRNA [38] and between enhancers, Pol II, and 317

the transcription start site [54, 55]. In these studies, nascent mRNA is displaced one 318

hundred to several hundred nm relative to sites harboring transcriptional regulators 319

and recruited Pol II. This displacement is in line with our observations that genes that 320

undergo elongation are located outside of Pol II Ser5P clusters. In contrast to previous 321

work, our approach reveals the full shape of the Pol II Ser5P clusters. Taken together, 322

the kinetics of single-gene induction suggested by our live-sample experiments seem in 323

line with previous work, and the spatial organization of clusters and interacting genes 324

directly correlates with previous work assessing relative distances of different components 325

of the transcriptional machinery. 326

Our pseudo-time reconstruction revealed that the changes in Pol II phosphorylation 327

and cluster shapes are temporally coordinated with the visit of genes to the Pol II clusters. 328

Previous work suggests that the Pol II clusters in early embryonic development form on 329

regulatory chromatin regions, including super-enhancers [36, 56, 57]. Accordingly, our 330

data seem to directly show single genes that undergo transcriptional activation during a 331

visit to Pol II-enriched cluster that contain regulatory chromatin regions. Different models 332

for such enhancer-promoter communication in transcriptional control were proposed [58– 333

60]. The stereotypical sequence suggested by our data fits most closely to a condensate 334

hit-and-run model, where genes transiently interact with enhancer-associated condensates 335

for transcription initiation, and leave from the condensate in association with the onset 336

of transcriptional elongation [60]. A condensate hit-and-run model can also explain 337

earlier observations suggesting cyclic interactions, where genes repeatedly engage with 338

and depart from Pol II-enriched clusters [61]. Such a model also could support the 339

proximity-dependent activation of Shh by its enhancer ZRS [62, 63]. The activation 340

of genes by enhancers was also found to not require direct contact, but can occur over 341

a distance of 200 nm or more [64, 65]. These observations, together with evidence in 342

support of the condensate hit-and-run model, allow speculations about a liquid-bridge 343

model of enhancer-gene communication. In such a liquid-bridge model, genes transiently 344

become embedded within an enhancer-associated condensate, allowing the transfer of 345

transcriptional machinery, including Pol II, to the gene promoter [60, 66, 67]. While 346

previous work indicates that the onset of RNA production at newly activated genes 347

results in their exclusion from the enhancer-associated condensates [37, 68–71], the 348

initial engagement with the enhancer-associated condensates is less well understood. 349

Such an engagement would, however, be naturally explained by the formation of small 350
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condensates at promoters. Such condensates could emerge, for example, at CpG-rich 351

regions that are placed directly upstream of promoter regions of many developmental 352

genes and were found to contribute to gene-promoter contacts in three-dimensional space 353

[72]. 354

Materials and Methods 355

Live imaging of primary cell culture of human cheek cell 356

Cells were obtained by a buccal smear with a P1000 pipette tip. Short-term primary 357

cell cultures were then created by adding the pipette tip to a micropipette and pipetting 358

up and down several times in 2 ml of PBS (Dulbecco’s formulation) with 0.8 mM CaCl2 359

and 4 µM Hoechst 33342. 500 µl of this primary cell culture were transferred to one 360

well of an 8-well ibidi µ-Slide (8-well glass bottom #1.5 selected D263 M Schott glass). 361

The ibidi slide was sealed with parafilm to prevent evaporation and incubated for 1 h at 362

room temperature to ensure flattening of the cell nuclei before microscopy. Participants 363

provided free and informed consent. Procedures were reviewed and accepted by the 364

Karlsruhe Institute of Technology ethics committee. Raw image data were stored in an 365

anonymous fashion and are not for public release. 366

Zebrafish husbandry 367

All zebrafish husbandry was performed in accordance with the EU directive 2010/63/EU 368

and German animal protection standards (Tierschutzgesetz §11, Abs. 1, No. 1) and 369

is under supervision of the government of Baden-Württemberg, Regierungspräsidium 370

Karlsruhe, Germany (Aktenzeichen35-9185.64/BH KIT). Embryos used for the different 371

experiments were obtained through spontaneous mating of adult zebrafish. Collected 372

embryos were dechorionated with Pronase, washed 3 times with E3 embryo medium, 373

once with 0.3x Danieau’s solution, and subsequently kept in agarose-coated Petri dishes 374

or 6-well plates in 0.3x Danieau’s solution at 28.5oC. 375

STED microscopy of DNA in fixed zebrafish embryos 376

Following protocols from our previous work [73], sphere-stage zebrafish embryos were 377

fixed overnight in 0.3X Danieu’s solution supplemented with 2% formaldehyde and 378

0.2% Tween-20 at 4◦C, permeabilized for 15 min using 0.5 % Triton X-100 in PBS, 379

washed three times with PBS supplemented with 0.1% Tween-20, and mounted in 380

TDE-media supplemented with 10x SPY-595 DNA fluorescence stain under selected 381

#1.5 glass cover slips. STED microscopy was performed using a Leica TCS SP8 STED 382

microscope (Leica Microsystems, Wetzlar, Germany) with a 775 nm depletion line and 383

a motorized-correction 93x NA 1.30 glycerol objective (HC PL APO 93X/1.30 GLYC 384

motCORR). 100% 3D-STED depletion was used. 385

Live imaging of RNA Pol II CTD phosphorylation in zebrafish 386

embryos 387

One-cell-stage embryos were dechorionated with pronase in 0.3x Danieau’s solution and 388

covalently labeled fragments of antibodies (Fab) were micro-injected into the yolk. In 389

each embryo, 1 nl of Fab mix (0.2 µl 1 % Phenol Red, 1.5 µl A488-labelled anti-Pol 390

II Ser2P Fab, 3.3 µl JF646-labelled anti-Pol II Ser5P Fab, Fab stock cencentration 391

approximately 1 mg/ml) was injected. The embryos were mounted for microscopy in 392

0.7% low-melting agarose in 0.3x Danieau’s solution in ibidi 35 mm imaging dishes (#1.5 393
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selected glass cover slips) at 512-cell stage of development, images were acquired at the 394

sphere stage. 395

Oligopaint FISH and immunofluorescence in fixed whole embryos 396

Embryos were fixed in the sphere stage of development (4% formaldehyde, 0.2% Tween-20 397

in 0.3x Danieau’s, fixation overnight at 4◦C), permeabilized (0.5% Triton X-100 in PBS, 398

15 min), washed in PBS with 0.1 % Tween-20 (PBST) for 2 minutes, and treated with 399

0.1 N HCl for 5 min. A sequence wash steps followed: twice with 1 ml 2x saline sodium 400

citrate buffer with 1% Tween-20 (2xSCCT), once with 2xSCCT+50 % formamide for 2 401

min at room temperature, and once with preheated 2xSCCT+50% formamide at 60oC 402

for 20 minutes. Liquid was replaced with a hybridiziation mix: 50 µl formamide, 25 µl 403

4x hybridization buffer (40 % dextran sulfate, 8xSSC, 0.8 % Tween-20), 2 µl 20 µg/µl 404

RNase A, 10 µM oligopaint probes labeled with Alexa 594, and ddH2O added to reach 405

a total volume of 100 µl. Denaturation at 90 oC for 3 min was followed by overnight 406

hybridiziation at 37◦C. Hybridization was followed by the following wash steps: four 407

times with preheated 2xSSCT at 60oC and twice with 2xSSCT at room temperature, 408

5 min incubation time for each step. Before proceeding with the immunofluorescence 409

protocol, the samples were additionally washed three times with 1 ml PBST for 5 minutes. 410

Samples were blocked with 4% BSA in PBST, 30 minutes at room temperature, followed 411

by incubation of primary antibodies (mouse anti-Pol II Ser5P (4H8, 1:300) and rabbit 412

anti-Pol II Ser2P (EPR18855, 1:300)) in 4% BSA-PBST overnight at 4◦C. Samples 413

were washed three times for 5 min with PBST, once with 4% BSA-PBST, and again 414

incubated overnight, 4◦C with secondary antibodies (goat anti-mouse conjugated with 415

STAR RED (1:300) and goat anti-rabbit conjugated with Alaxa 488 (1:300)) in 4% 416

BSA-PBST. Finally, samples were washed three times with 1 ml PBST and mounted in 417

Vectashield H-1000 under #1.5 selected cover glass. 418

An overview of the oligopaint probe sets is shown in table 2. Full oligo sequences and 419

scripts used in probe design are provided as a supplementary file. The raw image data 420

and analysis scripts are provided in the form of Zenodo repositories, see Data Availability 421

statement. 422

Staining of a repetitive region to establish fluorescence in-situ hybridization 423

To test the FISH procedure without the need of a full oligopaint library, a single probe 424

against a repetitive region was designed. The zebrafish genome was screened for long 425

repetitive regions using BLAST. A region containing 100 repeats on chromosome 25 426

was selected (repeat sequence: 5’- CCGACGCATCTTCGTGCTGG CTTACATACTC- 427

CGCTGCACC AATGACTTGAATTGCAGCCT TGGGCGTATGCTGCTC). Probes 428

were produced by the same protocol used for actual oligopaint production, using a primer 429

Alexa Fluor 594-conjugation at the 5’ end (Thermofisher). Primer sequences are shown 430

in Tab. 1). 431

OligoPaint probe library 432

Genes were chosen based on their Pol II Ser5P ChIP-Seq from Zhang et al., 2014 433

[74]. For each gene, Pol II Ser5P ChIP-Seq peaks in the promoter region (2 kb region 434

upstream from the gene) was called using MACS2 [75]. For each peak, a p-value, q-value 435

(Benjamini-Hochberg corrected p-value) and a signal value (fold enrichment of peak 436

against background) was calculated. The peaks with p-value < 10−5, q-value < 10−4 437

and signal value > 3 were chosen. For these genes RNA-Seq data from White et al. 438

2017, were compared [76]. Only genes without high maternally provided RNA levels 439

were considered, as indicated by low RNA counts for developmental stages preceding the 440
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Primer Sequence Melting
5’ to 3’ temp.

Chr25-Forward CCGACGCATCTTCGTGCTGG 53oC
Chr25-Reverse with TAATACGACTCACTATAGGGG 65oC

T7 promotor sequence AGCAGCATACGCCCAAGGC
Chr25-Forward Alexa594-CCGACGCATCTTCGTGCTGG 70oC
with Alexa 594

Table 1. Primers used for PCR. Sequence (5’ to 3’) and melting temperature of each
primer.

high stage. Further, genes were hand-picked to cover a range of different RNA counts 441

at the sphere stage. The scripts used for the gene selection process are provided as a 442

supplementary file. OligoPaint libraries were designed using the OligoLego program [77]. 443

Sequences of 32 nucleotides were mined from the zebrafish genome and are provided 444

by the program (Tab. 2). Each probe set was designed to cover approximately 25 kb 445

upstream and 25 kb downstream the gene, with density of 4 probes/kb where possible. 446

The OligoPaint probe library was ordered from Twist Bioscience. The text file used 447

to order the oligo pool is attached as a supplementary file. Associated amplification 448

primers are listed in Tab. 3. 449

Genes Labeled length Number of probes
foxd5 158 kb 804
klf2b 250 kb 816

zgc:64022 252 kb 810
vamp2 160 kb 845
ripply 190 kb 808
drll.2 210 kb 862

gadd45ga 180 kb 845
iscub 120 kb 837

Table 2. Genes chosen for OligoPaint DNA FISH, with the size of the labeled genomic
region and number of OligoPaint probes covering the gene region.

Primer Sequence Melting
5’ to 3’ temp.

Universal Forward CGGCTGCCGCTAAGAGTCTC 53oC
Forward with Alexa594-CCGACGCATCTTCGTGCTGG 63,5oC

Alexa Fluor 584
Universal Reverse GAGCAGCATACGCCCAAGGC 53oC

foxd5 GGGAGGGTGTGTGGTCGCTT 53oC
klf2b CCGAGGCGCATGTGTATCCC 53oC

zgc:64022 CTGATTCGACCCGCCCTGGA 53oC
vamp2 GTCTGCCACCCTTCGCATGG 53oC
ripply1 GGCTCCAGCTAACACGCGGA 53oC
drll.2 CTCCGTACTGCCGCGATTCC 53oC

gadd45ga CGCATTCATCCACCGCCGAT 51oC
iscub GGGTCGCTACAAGTGCGCTC 53oC

Table 3. Sequence (5’ to 3’) of primers used for PCR for chosen genes for OligoPaint
FISH and according melting temperatures.
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Instant Structured Illumination Microscopy (instant-SIM) 450

By using a VisiTech instant-SIM high-speed super-resolution confocal microscope, mi- 451

croscopy data were recorded from live human cheek cells as well as live and fixed zebrafish 452

embryos. Microscopy data from live human cheek cells, live and fixed zebrafish embryos 453

were recorded using a commercial implementation of the instant-SIM high-speed super- 454

resolution confocal microscopy principle (VisiTech iSIM) [33]. The microscope was build 455

on a Nikon Ti2-E stand. For live imaging a Nikon Silicone Immersion Objective (NA 456

1.35, CFI SR HP Plan Apochromat Lambda S 100XC Sil) and for fixed imaging a Nikon 457

Oil Immersion Objective (NA 1.49, CFI SR HP Apo TIRF 100XAC Oil) were used. 458

Laser at 405 nm, 488 nm, 561 nm and 642 nm were used for excitation. The acquisition 459

settings were kept constant across all samples of a given experimental repeat . 460

461

Optimizing the exposure time for high-speed time-lapse imaging: In the 462

process, on the one hand, time lapse recordings with a short exposure time of 150 ms, 463

100 ms, 70 ms, 40 ms or 20 ms were recorded every 5 seconds (21 loops), on the other 464

hand, successive recordings with different exposure times (short, long, long, short, short) 465

were recorded, in which “long” corresponds to an exposure time of 300 ms. For each 466

exposure time a different cell nucleus was recorded. For each nucleus, on the one hand 467

successive recording with different exposure times (short, long, long, short, short), on 468

the other hand, time lapse images with the corresponding short exposure time for a total 469

duration of 2 minutes, were recorded (see table 4). For each exposure time images from 470

three embryos were recorded. 471

Condition Exposure time Full z-stack interval Number of z-stacks
High-quality 200 ms 6 s 21
Shortened 100 ms 3 s 41
Shortened 50 ms 2 s 61
Shortened 20 ms 1 s 121
Shortened 10 ms 1 s 121

Table 4. Time-lapse parameters for high-speed imaging of Pol II clusters in live
zebrafish embryos. total duration of time-lapse was 2 min.

Noise2Void processing of STED microscopy data 472

For each nucleus, a pair of low-quality images a high-quality image were acquired. 473

We first trained an n2v-network on the low-quality images 1 and reconstructed both 474

low-quality images using this n2v-network. 475

Noise2Void processing of cheek cell microscopy data 476

For each acquired position, we trained an n2v-network on the first low-quality image 477

and reconstructed both low-quality images with the trained network. Procedures were 478

reviewed and accepted by the Karlsruhe Institute of Technology ethics committee. Raw 479

image data were stored in an anonymous fashion and are not for public release. 480

Metrics for image assessment 481

The SSIM metric for the comparison of images x and y is given by

SSIM(x, y) =

{
2µxµy + C1

µ2
x + µ2

y + C1

}α
×
{

2σxσy + C2

σ2
x + σ2

y + C2

}β
×
{

2σx,y + C3

σxσy + C3

}γ
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where C1, C2 and C3 are constants with the default value of 0.01 and 0.03, C2/2
respectively. With three constant α, β and γ (default values are (1, 1, 1)), the contribution
of each term can be defined. µx and µy are the mean over each of the images’ pixel
intensities, σx and σy are the standard deviations, and σx,y the covariance of the two
images’ pixel intensity values. The first, second and the third term are respectively
called luminance (mean), contrast (standard deviation) and structural (covariance). As
the standard deviation of an image is not usually affected by denoising [46], in our
experiment, we only focused on luminance and structural term and we investigated how
luminance and structural terms of SSIM depend on the duration of photon collection in
integrating versus averaging mode detectors. We observed that, for integrating detectors,
the mean term influences the SSIM value, so that structural reliability cannot be directly
compared if this term is included in the calculation of the SSIM value (Fig. S1A-D). For
SSIM and local SSIM analysis, we therefore only consider the structural term, given by

SSIM(x, y) =
2σx,y + C3

σxσy + C3

In local SSIM experiments, we used a Gaussian kernel with standard deviation of 12 482

pixels for weighting the neighborhood pixels around a pixel. 483

The Fourier ring correlation (FRC) analysis is based on the cross-correlation of two
images in frequency space, and relies on the assumption that the two images are two
independent reconstructions of the same object with independent noise realizations.
The spatial frequency spectra of the two images are first divided into bins, which
are in turn sorted by location within ring-shaped regions relative to the center of the
Fourier spectrum polar coordinates. The FRC curve then is calculated based on the
cross-correlation of the power values over all bins for a given ring radius, r, as follows:

FRC(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r(F1(ri))2 ·

∑
ri∈r(F2(ri))2

where F1, F2 are the Fourier transforms of two images and ri refers to all frequency 484

space bins that fall within a given ring radius r. The cut-off spatial frequency is the 485

smallest r value for which the FRC(r) value drops below the widely used threshold 486

value of 1/7. Up to the spatial frequency given by 1/r, the object is considered to be 487

reliably resolved. 488

Analysis of morphology fluctuations in RNA polymerase II clus- 489

ters 490

Input images are recruited RNA polymerase II (Ser2P and Ser5P) in live zebrafish 491

embryos visualized with antibody fragments (Fab) labelled with Janelia Fluor (Kimura 492

Lab, Tokyo Tech), consisting of two channels, Pol II Ser2P and Pol II Ser5P, recorded by 493

our proposed phase-AB imaging protocol (Fig. 3) with phase B spanning a time of 2 min. 494

Data are specifically recorded for four different exposure times (texp = 10, 20, 50, 100 ms) 495

(Fig. S4A). 496

Noise2Void denoising We run the n2v script on Google Colab at the beginning of 497

every exposure time for channel 2 (Pol II Ser5P) images. The patches which are 498

given to the network are of size (16, 64, 64), while 4
5 of the patches were used to 499

train the network and 1
5 of all patches were used for the validation. We leave the 500

network to be trained on each image for 70 epochs with the neighbourhood radius 501

= 10. After assessing the n2v-processed images with FRC and local SSIM (Fig. 502

S4), time-lapse Ser5P series recorded by 20 and 50 ms exposure time were selected 503
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and reconstructed using the trained network. The Pol II Ser2P time-lapse series 504

left unchanged. 505

Median filter After n2v-recovery of Pol II Ser5P series, to recover the signal a median 506

filter of size 100 pixel is conducted on both Pol II Ser2P and Ser5P images. 507

3D segmentation We used an adaptive threshold based on the neighbourhood of size 508

[101, 101] to segment each focus of Pol II ser5p images in 3 dimensions. Adapt 509

threshold is a local threshold calculated based on the local mean intensity (first- 510

order statistics) in the neighbourhood of each pixel. The Pol II Ser5P foci are 511

segmented in 3 dimensions and the equivalent area in Pol II Ser2P images is also 512

masked. 513

Foci tracking Then, each focus is to be tracked over time. The distances between foci 514

are used as the metric of tracking. Tracking was continued if a focus disappeared 515

at tn and again appeared at tn+1. We then extracted and saved the foci which 516

lasted longer than 70 s for the further analysis. 517

2D segmentation We then picked the middle plane of each 3D focus and segment 518

the middle plane in 2 dimensions. The plane which is used for 2D segmentation 519

is rough of size (100 × 100) pixels. An adaptive threshold is again used for 2D 520

segmentation (Fig. 4B and Fig. S5A). 521

Shape quantification For each focus, we reported four properties (Ser2P mean inten- 522

sity, Ser5P mean intensity, solidity, area and elongation) (Fig. 4C and Fig. S5B). 523

If the focus lost at tn and again appeared at tn+1, the average quantification 524

of the focis at tn−1 and tn+1 is instead considered. The elongation property is 525

calculated by the division of the major axis and the minor axis of the focus. For the 526

calculation of Ser2p mean intensity property, the corresponding Ser5P segmented 527

area in Ser2P images is considered. For Ser5P intensity property, the intensities of 528

central pixels (rough of size 9× 9 pixels) is averaged. 529

Correlation analysis In this step, time lagged ([−20, 20]) cross correlation between 3 530

pairs of (Ser5P intensity, elongation), (Ser2P intensity, elongation) and (Solidity, 531

elongation) are quantified (Fig. 4D, Fig. S5C). 532

Pseudo-time analysis from single time point fluorescence images 533

In this analysis, we work with still images of Pol II clusters, which were obtained from 534

fixed zebrafish embryos. While these do not allow tracking Pol II clusters over time, 535

the additional oligopaint fluorescence label can be used as information to sort images 536

along hypothetical timeline. The pseudo-time analysis used for this sorting approach 537

works under the assumption that, in cases where genes engage with Pol II clusters for 538

transcriptional activation, a stereotyped sequence of events occurs that includes changes 539

in Pol II phosphorylation, cluster shape changes, and association of the gene with a 540

given cluster. Based on this assumption, the goal of this analysis is to reproduce such a 541

stereotypical sequence by sorting Pol II cluster-gene pairs detected from an ensemble of 542

still images 543

Nuclei were segmented by Otsu thresholding of blurred (Gaussian blurring, σ = 544

1.0µm) and background-subtracted (after Gaussian blurring, σ. = 10µm). Only nuclei 545

with a volume greater than 40µm3 and a solidity greater than 0.7 were retained for 546

further analysis. Pol II clusters were segmented inside each nucleus separately by robust 547

background thresholding (2 standard deviations above intensity mean) after background 548

subtraction (3.0µm) from the Pol II Ser5P channel. Only Pol II clusters with a volume 549

greater than 0.03µm3 were retained for further analysis. Oligopaint-labeled genes were 550
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detected by robust background thresholding (6 standard deviations above intensity mean) 551

of smoothed (Gaussian blurring, σ = 100 nm) and background-subtracted (Gaussian 552

blurring, σ = 5µm) images of the oligpaint channel. Only objects with a volume greater 553

than 0.05µm3 were retained for further analysis. 554

Gene-cluster interactions should be detectable by spatial proximity of a given gene to 555

a Pol II cluster. The analysis thus connects any detected gene to the nearest neighboring 556

Pol II cluster (Euclidean distance, Fig. S6B), resulting in a cluster-gene pair. These 557

cluster-gene pairs are from here on treated as single observations, the remaining task is 558

to sort these cluster-gene pairs into a coherent sequence. Only gene-cluster pairs with a 559

cluster volume greater than 0.2µm3 were retained for further analysis. 560

The sorting of cluster-gene pairs is based on a mapping of correlated changes in the 561

properties of cluster-gene pairs. Specifically, each cluster-gene pair is represented as a 562

point an 8-dimensional feature space (R7) defined by the gene and cluster properties 563

(S6B). Application of a principal component analysis (PCA) to this ensemble of R8
564

coordinates allows an effective reduction of dimensionality, and provides a mapping 565

into distinct regions in the space spanned by the two first principal components (Fig. 566

S6C). Plotting the projections of cluster volume and gene Ser5P level (check what the 567

support lines actually are) into this PCA plot, an orthogonal coordinate system can 568

be defined (Fig. S6C). Using only linear transformations (rotation and reflection), the 569

cluster volume can be used as one axis of the coordinate system, and the gene Pol Ser5P 570

placed to the left side of the plot. Inside this plot, data points can now be directly 571

sorted in clock-wise order, providing a pseudo-time sorted dataset (Fig. S6C). This 572

pseudo-time sorting is only successful when a gene engages in close contact with Pol II 573

clusters with an increased frequency (centroid-centroid distance threshold for contact 574

detection of 200 nm); genes that only engage Pol II clusters less often do not exhibit a 575

useful pseudo-time sorting (Fig. S6D). 576

For the pseudo-time-sorted data points, a periodic progress coordinate s ∈ [0, 1) can
be defined, assigning to each data point i a coordinate

s = ni/N,

where ni is the pseudo-time sorted index of the data point i in a data set consisting of 577

a total of N data points. This progress coordinate can, in turn, be used to carry out 578

cross-correlation analyses, based on a pseud-time shift ∆s (Fig. S7). For genes with 579

high frequencies of engagement with Pol II clusters, this cross-correlation analysis closely 580

reproduces the relationship between cluster morphology and Pol II Ser5 phosphorylation 581

seen in our live imaging experiments (Fig. S7 foxd5, klf2b, zgc::64002 ). For genes 582

with lower frequencies of engagement, the clear patterns of correlation between cluster 583

elongation and Pol II Ser5 phosphorylation are not detected (Fig. S7 vamp2, ripply1, 584

drll.2, gadd45ga, iscub). 585

Data Availability 586

Scripts and raw data are available at the following URLs. 587

Microscopy data and scripts for analysis of local SSIM and FRC in live zebrafish 588

embryos: https://doi.org/10.5281/zenodo.5568871 589

Python scripts for assessment of different SSIM terms for integrating vs. averaging 590

photon collection: https://doi.org/10.5281/zenodo.5569195 591

Scripts for SSIM and Fourier ring correlation analysis of Noise2Void-reconstructed 592

STED images: https://doi.org/10.5281/zenodo.5569432 593

Microscopy data of RNA Pol II CTD phosphorylation in live zebrafish embryos: 594

https://doi.org/10.5281/zenodo.5566880 595
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Scripts used for morphology fluctuations analysis in Pol II clusters: 596

https://doi.org/10.5281/zenodo.5569475 597

Matlab scripts used in the analysis of oligopaint-immunofluorescence image data: 598

https://doi.org/10.5281/zenodo.5524939 599

Microscopy data for the gene drll.2 : https://doi.org/10.5281/zenodo.5266592 600

Microscopy data for the gene iscub: https://doi.org/10.5281/zenodo.5266736 601

Microscopy data for the gene vamp2 : https://doi.org/10.5281/zenodo.5266903 602

Microscopy data for the gene gadd45ga: ttps://doi.org/10.5281/zenodo.5268538 603

Microscopy data for the gene foxd5 : https://doi.org/10.5281/zenodo.5266995 604

Microscopy data for the gene klf2b: https://doi.org/10.5281/zenodo.5268833 605

Microscopy data for the gene ripply1 : https://doi.org/10.5281/zenodo.5268779 606

Microscopy data for the gene zgc::64022 : https://doi.org/10.5281/zenodo.5268683 607
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Bleckwehl, Helena G. Asenjo, Patricia Respuela, Sara Cruz-Molina, Maŕıa Muñoz- 867
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Fig S1. Structural similarity is a metric of proper structure. Figures are DNA distribution in a
nucleus in a fixed zebrafish embryo, obtained by stimulated emission depletion (STED) microscopy. A)
Depending on the microscope detector type and settings, photons can be accumulated over time without
normalization (integrating detector) or with normalization (averaging detector). To illustrate how the
different terms of the structural similarity index metric (SSIM) depend on the duration of photon collection
in the integrating type detector, images were acquired with line-repeat scans in the accumulation mode,
using increasing numbers of line repetitions (1, 2, 4, 8, 16), accumulation steps. B) In the integrating detector
case, the luminance (mean) as well as the structural (covariance) term of the SSIM depend on the number of
accumulation steps. Overall SSIM values contain contributions from both terms, so that an assessment of
structural reliability would be obscured by changes in overall image intensity. SSIM values were calculated
based on n = 6 images obtained by a reduced number of accumulation steps and a reference image obtained
with the highest number of accumulation steps (16). Individual values are shown with the mean. C) To
illustrate how the different terms of the SSIM metric depend on the duration of photon collection in the
averaging detector type, DNA images were acquired with the detector is left open to collect photons at each
pixel for longer times (dwell time t), then the photon count is normalized by the dwell time t. D) In the
integrating detector case, the luminance term is constant and close to the value of 1.0. Only the structural
term changes with increasing t, so that also the overall SSIM values directly reflect structural reliability for
a given t. SSIM values were calculated based on n = 6 images obtained for a given t, combined with a
matching image recorded with the highest t = 10ms. Individual values are shown with the mean.
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A B

Fig S2. Fourier ring correlation can quantify improvements in effective image resolution
obtained by Noise2Void reconstruction. A) DNA distribution in micrographs of nuclei in a fixed
zebrafish embryo, obtained by stimulated emission depletion (STED) microscopy. Low quality image 1 and
2 are acquired with identical acquisition settings. Reconstructed image 1 and 2 are obtained by Noise2Void
reconstruction from the low quality images 1 and 2, respectively. The high quality image was acquired in
the same scanning sequence as the low quality images, but included accumulation by repeated line-scanning
to improve image quality. B) Fourier ring correlation (FRC) analysis to determine the improvement in
effective resolution of reconstructed images relative to the unprocessed low quality images.
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Fig S3. Local structural similarity index metric can show faulty reconstructions. A)
Representative micrographs of nuclei of human cheek cells in which DNA was labelled by Hoechst 33342.
Images are maximum intensity projections of full volumetric stacks acquired with different exposure time
(texp) as indicated B) Noise2Void-processed images corresponding to panel A. C) High-quality images
acquired at the same position, but with texp = 200 ms. D) Local structural similarity index metric (SSIM)
map for the comparison between reconstructed images and high-quality images. E) Local SSIM map for the
comparison between two high-quality images acquired at the same position, suggesting that there is no
structural mismatch in the area of interest. F) An example of a faulty reconstruction, indicated by a
structural mismatch inside the area of interest. G) Average SSIM values based on 5% lowest local SSIM
value of the 5% brightest pixels. n = 4, 5, 5 values from N = 5 different nuclei.
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Fig S4. Metric-based assessment to show how far the signal-to-noise of the image can be
compromised while still allowing Noise2Void recover signal-to-noise ratio post-acquisition. A)
Representative micrographs of recruited RNA polymerase II (Pol II Ser5P) in live sphere-stage zebrafish
embryos, visualized with antibody fragments (Fab) labelled with Janelia fluor 647. Images are single image
planes and were acquired with different exposure times texp as indicated. Intensity scale from black to white
adjusted to the 0.01-th and the 99.99-th percentile B) Corresponding images after Noise2Void-based
reconstruction. C) Corresponding high quality reference images captured with an texp of 200ms. D)
Effective resolution as determined by FRC analysis for low quality images, reconstructed images, and high
quality images for the indicated texp. n = 4, 3, 3 values from N = 3 different embryos are shown with the
mean. E) Average SSIM values based on the 5% lowest local SSIM values of the 5% brightest pixels.
n = 4, 4, 3 values from N = 3 different embryos are shown with the mean.
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Fig S5. Coordinated changes in RNA polymerase cluster phosphorylation and shape are
reproduced by Noise2Void-accelerated imaging with a different exposure time. A) Representative
series of time-lapse images showing a single RNA polymerase II cluster in the Pol II Ser5p channel (single
image plane from the middle z position of the cluster, exposure time texp = 20ms, effective time resolution
for acquisition of full 3D volumes 1 s). B) Time courses of the Pol II Ser5P intensity, the Pol II Ser2P
intensity, elongation, and solidity for the example track shown in panel A. C) Cross-correlation analysis
Gray lines indicate the analysis results for individual cluster time-courses, thick lines the mean over all
analyzed clusters, the gray region is the bootstrap 95% confidence interval. Analysis based on n = 27
clusters, recorded from one sphere-stage embryo.
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Fig S6. Single images of clusters from fixed embryos can be sorted in pseudo-time based on
their interaction with visiting genes. A) Example micrographs of a nucleus of a fixed sphere-stage
zebrafish embryo with Pol II Ser5P, Pol II Ser2P, and oligopaint fluorescence in situ hybridization (target
gene foxd5) signal. B) Sketch of properties extracted from Pol II Ser5P cluster-oligopaint nearest neighbor
pairs. C) Overview of the pseudp-time reconstruction procedure in the case of a gene with a high frequency
of visiting Pol II Ser5P clusters (quantified as the fraction f of observations with less than 200 nm distance
between the oligopaint signal and the nearest Pol II Ser5P cluster, d). The top three principal component
(PC) support vectors are displayed (top two PC vectors are sorted so that the top vector has the higher
weight in the volume dimension). The two top vectors are used to plot single observations in a
two-dimensional overview plot. A rotation and inversion transformation are then applied to ensure the
always the volume points exactly North, and the oligopaints Pol II Ser5P intensity towards the West half of
the graph. Values can now be sorted according to angle relative to the direction North, and a running
average over these angles indicates how well the sorted values are distributed away from the coordinate
origin. In the case of the gene foxd5, a clear separation away from the origin can be seen, indicating a
successful sorting by pseudo-time. D) In the case of the gene iscub, which does not frequently associate
closely with Pol II Ser5P clusters, the individual points form a single cloud close to the origin and the
running average line is also close to the coordinate origin, indicating that the attempt of sorting by a
pseudo-time coordinate is not successful.
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Fig S7. Pseudo-time sorting reproduces correlation analysis results only for genes that
frequently associate with RNA polymerase II clusters. Results of the pseudo-time sorting for eight
genes that were labeled oligopaint fluorescence in-situ hybridization. Percentage of contact (f) is calculated
as the percentage of OP-cluster pairs with distance d of 200 nm or less. Shown are the pseudo-time sorted
oligopaint-cluster distance, the Pol II Ser5P and Ser2P signals at the oligopaint-labeled gene (OP S5P, OP
S2P, normalized against the whole nucleus median intensity), the Pol II Ser5P and Ser2P intensity at the
nearest Pol II Ser5P cluster (Cl. S5P, Cl. S2P), cluster volume (Cl. Vol.), cluster elongation (Cl. Elo.), and
cluster solidity (Cl. Sol.). The coordinate s represents the progress in pseudo-time. A register shift in
pseudo-time was used to calculate the cross-correlation between cluster Pol II Ser5P intensity and
elongation, cluster Pol II Ser2P intensity and elongation, and cluster solidity and elongation. Number of
cluster-gene pairs included in the analysis indicated as n for each gene. For each gene, images were recorded
from four samples, distributed over two independent experiments.
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