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Abstract
Peptide identity propagation (PIP) can substan-
tially reduce missing values in label-free mass
spectrometry quantification by transferring pep-
tides identified by tandem mass (MS/MS) spectra
in one run to experimentally related runs where
the peptides are not identified by MS/MS. The
existing frameworks for matching identifications
between runs perform peak tracing and propaga-
tion based on similarity of precursor features us-
ing only a limited number of dimensions available
in MS1 data. These approaches do not produce
accompanying confidence estimates and hence
cannot filter probable false positive identity trans-
fers. We introduce an embedding based PIP that
uses a higher dimensional representation of MS1
measurements that is optimized to capture pep-
tide identities using deep neural networks. We
developed a propagation framework that works
entirely on MaxQuant results. Current PIP work-
flows typically perform propagation mainly using
two feature dimensions, and rely on deterministic
tolerances for identification transfer. Our frame-
work overcomes both these limitations while addi-
tionally assigning probabilities to each transferred
identity. The proposed embedding approach en-
ables quantification of the empirical false discov-
ery rate (FDR) for peptide identification, while
also increasing depth of coverage through co-
embedding the runs from the experiment with
experimental libraries. In published datasets with
technical and biological variability, we demon-
strate that our method reduces missing values in
MaxQuant results, maintains high quantification
precision and accuracy, and low false transfer rate.
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Introduction
Liquid-chromatography-coupled tandem mass spectrometry
(LC-MS/MS) is the leading technology for quantitative anal-
ysis of proteins expressed in complex biological samples.
Proteins in cell or tissue lysates are first prepared for analy-
sis by extracting the protein content, followed by enzymatic
digestion, converting them into peptides. Peptides are sepa-
rated using liquid chromatography which is interfaced with
the source of the mass spectrometer, where they are ionised
and converted to gas phase. The separated and ionised pep-
tide precursors are subjected to mass analysis in a mass spec-
trometer. During conventional data-dependent acquisition
(DDA), peptide ions are sampled for fragmentation and iden-
tified from the spectra produced by tandem mass (MS/MS)
analysis using peptide identification software (Cox et al.,
2011). More recently, high resolution Ion Mobility (IM) has
been incorporated in the instrument platform and providing
an additional dimension for peptide separation. The mass,
charge, retention time and IM collectively can define the
identity of peptides existing in a sample. It is known that
more than 100,000 detectable peptide species elute in single
shotgun proteomics runs (Michalski et al., 2011). In DDA,
however, the mass spectrometer only selects a small subset
(usually 10) of the most abundant peptides for sequencing
by MS/MS at each MS1 survey scan in a run. This compro-
mises consistent identification of peptides across runs, as the
sets of peptide precursor ions selected for sequencing could
be different between runs. The low sampling efficiency and
stochastic nature of intensity-dependent sampling of peptide
ions for MS/MS analysis limits depth of protein coverage
and hinders quantification of low abundance ions in com-
plex samples, leading to the prevalent problem of missing
values.

To alleviate the missing values problem in mass spectrome-
try data, peptide identifications are transferred between runs
to increase the number of peptides and proteins quantified
across runs. This is known as Peptide Identity propagation
(PIP) (Zhang et al., 2016; 2017), or match-between-runs
(MBR) (Cox et al., 2014). When a peptide is sequenced
in a run, its MS1 attributes such as m/z, retention time and
Collision Cross Section (CCS) are available to the exper-
imenter. Data completeness can be improved by transfer-
ring peptide identifications from runs where the peptide is
identified by sequencing (MS/MS) to runs where it is not
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Figure 1. The peptideprotonet model. a) Schematic illustrating the peptideprotonet model. Deep Neural Networks are used to learn new
representations of TIMS-MS1 measurements that align peptide precursor sequences identified by fragmentation in two comprehensive
studies. Through such alignment, the network learns a model of each peptide. The model can be used to determine the identity of
a precursor feature that is detected in MS1 by not sequenced in PASEF, therefore enhancing match-between-run and improving data
completeness. The new representations are known as embedding. b) The embedding space of peptideprotonet colored by precursor charge,
retention time and the study of origin. c) The embedded representations of three peptide precursors are highlighted. The proximity of
embedded representation for peptide precursors identified in both studies indicate the goodness of alignment, hence the model.

sequenced or identified, but is detected at the MS1 level
based on the similarity of the MS1 attributes. Existing iden-
tification transfer approaches transfer sequence information
to a run if a peptide-like signal (precursor feature) is present
for which the MS1 measurements, that is m/z (denoting
mass over charge), retention time and IM, are within a pre-
defined tolerance of MS1 attributes of a peptide identified
by sequencing (Zhang et al., 2016; Yu et al., 2020a; Shen

et al., 2018; Yu et al., 2020b). Peak tracing and sequence
propagation are typically carried out in two dimensions: Yu
et al. (2021) transfer sequence information by peak trac-
ing in m/z - RT dimensions, while Demichev et al. (2021)
propagate precursor identities by peak tracing in m/z - CCS
dimensions. Some approaches such as Zhang et al. (2016)
transfer identifications from the run with the largest number
of identified peptide sequences, whereas Yu et al. (2020a)
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transfer identifications from the top k correlated runs. There-
fore, the accuracy of the existing approaches is limited by
the selection of runs used as a reference for PIP and by
the specified tolerance. These approaches are limited by
the lack of any probability measure that could serve as a
confidence estimate by which likely false positives could be
filtered out. Recently, May et al. (2018) used deep neural
networks and learned an embedding of millions of mass
spectra. The learned embedding has the potential utility to
transfer identifications among nearby spectra in the embed-
ding. However, statistical confidence estimation procedures
for peptide identity propagation remain to be developed for
this approach.

We propose a new approach for identification transfer using
neural networks that involves embedding MS1 attributes
of peptide peaks into a higher dimensional space. This
higher dimensional space (embedding) is learned through
a classification framework, where the classes are peptide
identifications. Since the embedding is learned in a fully-
supervised classification framework, the embedded repre-
sentations of precursor features are optimized to capture
attributes that define the identity of a peptide on the basis of
its MS1 measurements.

Here we present peptideprotonet, a variation of prototypical
networks (Snell et al., 2017) trained in a few-shot learning
framework that learns embedded representations of peptides
based on the MS1 measurements. We refer to the peptides
not sequenced by MS/MS, but detected at the MS1 level as
query precursor features hereafter. The query precursor fea-
tures detected by a peptide signal detection algorithm, such
as MaxQuant, are mapped to an embedding space learned
by the model. The sequence and charge information are then
propagated from identified (sequenced) peptides to query
precursor features based on the similarity of their represen-
tations in the embedding space. The embedding approach
for identification transfer obviates the reliance of PIP on
deterministic tolerance thresholds and choices of reference
runs, performs propagation in more than two or three di-
mensions and assigns confidence scores to each transferred
identification. In addition, the proposed identification trans-
fer approach, Peptide Identity Propagation with Protonets
(PIPP), allows to co-embed multiple runs and peptide identi-
fication libraries to increase depth of coverage and estimate
false-discovery rate (FDR) in identification transfers.

We demonstrate applications of the peptideprotonet model
on precursor features reported by MaxQuant in LC-IMS-
MS/MS (trapped ion mobility mass spectrometry) data. In
contrast to May et al. (2018), our embedding model and
PIP framework does not require access to raw mass spectra,
assigns statistical confidence measures to individual identi-
fication transfers and enables computation of the empirical
FDR. Since MaxQuant is currently the only available soft-

ware that reports all precursor features that it has detected
regardless of the MS/MS outcome of the precursor fea-
ture, and there is currently no other comparable embedding
based PIP approaches, we have compared our results with
MaxQuant MBR algorithm in a number of DDA datasets
acquired by Parallel Accumulation - Serial Fragmentation
(PASEF) with biological and technical variability, using
published MaxQuant results.

Results
Peptideprotonet: an embedding approach to peptide
identity propagation

Peptideprotonet is a new approach for MS1-based peptide
identity propagation between runs of an experiment that
transfers identifications between precursor feature signals
based on the similarity of MS1 attributes in a higher dimen-
sional state space, rather than the 2- or 3-dimensional (m/z
- RT, m/z - CCS, or mz-RT-CCS) search spaces (Prianich-
nikov et al., 2020; Demichev et al., 2021; Yu et al., 2021) in
which existing methods measure similarity. This is achieved
by embedding the MS1 attributes of the precursor features
onto larger dimensions using Neural Networks (Methods
and Materials). The embedding of a precursor feature is a
new, higher-dimensional representation (vector) of its MS1
measurements, and accommodates richer information on
the similarity of precursor features in MS1.

Peptideprotonet is based on the idea that more than 100,000
peptides elute in a single LC-MS run, but the majority are
not accessible for fragmentation. The precursor features
are assumed to have been detected by a feature detector.
Our approach takes precursor features that are detected
by MaxQuant in MS1, but are missing the MS2 informa-
tion, and defines the probability that any such precursor
feature could be assigned to peptides with non-missing MS2
information - that is peptides identified by fragmentation
within the experiment. We trained a deep neural network
model (Methods and Materials) that aligns retention times
for peptides quantified in two large DDA-PASEF datasets
of whole-proteome digests from HeLa, Yeast, Ecoli, CEle-
gans and Drosophila (Figure 1a). This alignment (Figure 1b,
middle panel) is achieved by learning an embedding of pre-
cursor features in which peptides from the same precursor
(sequence-modification-charge) will have similar embed-
ding vectors (Figure 1c, and Methods and Materials). The
model was learned using MaxQuant results (the evidence
tables) and is designed to improve confident identifications
between runs using only the MaxQuant results. On a number
of published datasets with biological and technical variabil-
ity acquired with different retention gradient lengths, we
demonstrate that our embedding-based PIP framework im-
proves data completeness in the MaxQuant results, while
maintaining high quantification precision and accuracy, and
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low false discovery rates (FDR).

The pre-trained model is applied to precursor features re-
ported in the allPeptides.txt results of MaxQuant (MBR
disabled) to obtain the embedded representation of precur-
sor features in a query study. The identifications are then
propagated from features identified by MS2 (reported in the
evidence.txt results) to precursor features for which MS2
information is not available. This propagation is based on
the similarity of their embedding vectors. A confidence
score (probability) is assigned to each propagation. This
entails that less confident propagations can be identified and
discarded from the results. Therefore, unlike existing ap-
proaches, our approach does not rely on arbitrary thresholds
such as ppm and/or RT tolerance between donor and receiver
precursor features, as the propagation is probabilistic.

The nature of the model allows co-embedding of the query
runs (runs from the experiment) with one or more exper-
imental libraries of peptide identifications, for example,
evidence.txt results from a previous study. In the perfor-
mance evaluation results that follow, we co-embed runs
from query (Human or HeLa) studies with HeLa and Yeast
libraries and perform peptide identity propagation in two
passes. In the first pass, propagations with confidence scores
greater than a pre-specified threshold, thr, are assigned to
within-experiment peptides. If the confidence score for a
precursor feature is below the threshold, the feature is com-
pared against peptide identifications from the co-embedded
libraries in the second pass. Any new HeLa identifications
transferred to query study would increase depth of coverage,
if the transferred peptides belong to proteins that were not
originally quantified in the experiment. Furthermore, any
Yeast identifications transferred to HeLa/Human runs are
false positives, and can be used to measure identification
FDR empirically, that is

FDR =
Yid

Yid +Hid
,

where, Yid is the number of Yeast identifications (ids) and
Hid is the number of Human peptide ids. A similar strat-
egy has been recommended in Data Independent Acqui-
sition (DIA), where the reference libraries are augmented
with identifications from other species such as Arabidopsis
(Demichev et al., 2021). The number of Arabidopsis identi-
fications (calls) detected in runs are used to quantify the em-
pirical FDR for identifications. This approach replaces the
conventional target-decoy approaches (Nesvizhskii, 2010)
for FDR estimation in DDA.

Improved data completeness at peptide level

We applied peptideprotonet+PIP to four HeLa cell lysate
replicates searched and quantified by MaxQuant with
MBR disabled (MaxQuant MBR-) (Figure 2a). We used

Figure 2. Peptideprotonet + PIP enhances data completeness in
homogeneous technical runs and a heterogeneous dataset with
biological variability. a) peptide and protein coefficient of varia-
tion (CV) and data completeness in four HeLa cell lysate repli-
cates for different confidence score thresholds are compared to
MaxQuant without Match Between Run (MaxQaunt MBR-). We
used MaxQuant results published by Meier et al. (2018). Note
evaluations are on the same number of identifications. Lower CVs
are desired. b) Heatmap of scaled peptide log-intensity for 7728
peptides quantified completely in control OSCC secretome that
are partially or completely missing in cancer OSCC runs. Gray
areas represent missing values. Less gray areas are desired.

MaxQuant results published by Meier et al. (2018).
MaxQuant results reported 53639 identifications in total.
We defined data completeness as the proportion of total
identifications with no missing values in all replicates. We
observed that data completeness increased from 44% to up
to 83% compared to MaxQuant MBR-, while there was up to
2.3% increase in peptide CV and up to 0.8% increase in pro-
tein CV (peptide CV for MaxQuant MBR- results was 1.2%,
protein CV for MaxQuant MBR- was 2.1%, max peptide
CV in peptideprotonet+PIP results was 3.5% corresponding
to thr=0, and max protein CV in peptideprotonet+PIP was
2.9%). Overall, we observed 39% increase in data com-
pleteness, while peptide and protein CVs remained below
5%, demonstrating high peptide and protein quantification
precision in PIP results.
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We assessed data completeness in a more challenging
dataset with biological variability and small number of
replicates. We identified an oral squamous cell carcinoma
(OSCC) dataset studying T cell populations in tumor mi-
croenvironment. This dataset contains three secretome pro-
teomes of OSCC tumor microenvironment, and three se-
cretome proteomes of non-malignant samples. MaxQuant
MBR- identified 30843 peptides. We defined data complete-
ness as described earlier. Data completeness was increased
from 29% to 78% when peptideprotonet+PIP (k=10, thr =
0) was applied to MaxQuant MBR- results. We identified
a set of 7728 peptides with a measurement in all three con-
trol samples, that were missing partially or completely in
cancer samples (Figure 2b). The set was selected to assess
the performance of the method when missing values are
likely not at random (MNAR). We were able to assign an
intensity value to 52% of these peptides that with likely
MNAR missingness that were not originally quantified in
MaxQuant MBR- results.

Increased depth of coverage and low false transfer
rates

In addition to match between runs by means of within-
experiment peptide identity propagation, peptidepro-
tonet+PIP can be used to increase depth of protein coverage,
and identify proteins that were not originally detected in
MaxQuant results. This is achieved by co-embedding the
query data (dataset of interest) with an experimental library;
for example, a library of identifications, that is MaxQuant
results, from a previous study or experiment.

Lim et al. (2019) evaluated false transfers in MaxQuant
match between run algorithm by designing a two-organism
DDA dataset. This dataset contains 20 replicates from a
mixture of Human (90%) and Yeast (10%) proteins and 20
replicates of Human-only proteins. They evaluated false
transfers by Yeast identifications transferred to Human runs
by match between run. We evaluated false transfer rate in the
presence of biological variability (the T cells OSCC dataset)
and in the absence of biological variability (the ten HeLa
cell lysate replicates) by co-embedding each of the two
datasets with a Yeast library, and quantifying the proportion
of Yeast identifications propagated to Human runs at various
confidence thresholds and for different values of k (Table
1). We used MaxQuant (MBR enabled) results published
by Prianichnikov et al. (2020) for the ten HeLa replicates
dataset. In this case, the library is obtained by (randomly)
down-sampling the Yeast identifications used at the training
step. We also defined coverage per run as the number of
identifications in the run over all identified peptides. We ob-
served that the proportion of Yeast identifications transferred
to the runs was generally below 5% for all possible combi-
nations of k and thr in both datasets, and was higher for
the less strict confidence thresholds such as thr=0.01, that

is propagations with larger than 1% confidence threshold.
Interestingly, we observed that at confidence score of 0.8
(i.e propagations that are more than 80% confident), there
were no Yeast identifications transferred to the query runs,
demonstrating that the peptideprotonet+PIP is a highly ac-
curate framework for reducing the burden of missing values,
and highlighting the importance of confidence measures in
these data.

The two datasets were additionally co-embedded with a ran-
dom sub-sample of HeLa identifications in the training data.
The identifications transferred from the co-embedded HeLa
library that were not previously detected in the experiment
were defined as new identifications. As expected, more new
identifications were transferred to the query runs at less re-
strict thresholds, except for thr = 0, where the framework
only transfers within-experiment identifications and no new
identifications are allowed. The maximum mean coverage
was also observed at this threshold. Interestingly, transfer
of new identifications did not deteriorate the coverage. For
example, in the HeLa cell lysate results with k=5, there
was a median of 2146 new identifications at thr=0.05 and
mean coverage increased from 67% in MaxQuant MBR-
results to 90%. This demonstrates that the addition of new
identifications did not increase the proportion of missing
values.

The median identifications in MaxQuant MBR+ results of
the ten HeLa cell lysate replicates was 42742 identifica-
tions. Peptideprotonet+PIP increased median identification
by 10666 ± 5502 identifications. The Tcells OSCC dataset
was quantified with MaxQuant MBR-, which resulted in
median identifications of 16770 peptides. We observed
an increase of 5504 ± 3154 identifications in peptidepro-
tonet+PIP results.

When thr=0, every precursor feature is associated with a
peptide sequence from the experiment irrespective of confi-
dence score. Therefore, no new identifications are acquired
from co-embedded libraries, and false transfer rate and num-
ber of new identifications are consequently zero. In general
there are less transfers as k increases. This is because the
standard deviation of distances (equation 1) increase as the
search neighbourhood is expanded, confidence probabilities
become smaller and it becomes more difficult to reach a con-
fidence threshold. Further, smaller values of k encourage
local propagations, while larger values of k encourage non-
local propagations (that is transfers from prototypes that are
further away from the embedded representation of precursor
feature). This justifies higher mean coverage and median
identifications for k=5 results in Table 1, as small k encour-
ages local transfers. For k=10 we observed a higher number
of new identifications with more than 80% confidence (i.e.
thr=0.8) compared to k=5, confirming that propagation
tend to be from a larger neighbourhood (non-local) as k
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Table 1. False transfer rate, mean coverage, median total identifications and new identifications found in a run after PIP in the absence of
biological variation (HeLa cell lysate replicates), and when biological variation is present (T cells OSCC dataset). Each of the two datasets
were co-embedded with a Yeast and HeLa library. False transfer rate is the proportion of Yeast identifications in HeLa/Human runs after
PIP. Coverage is number of identifications in the run over all identified peptides. New identifications are HeLa identifications transferred
from the HeLa library that were not previously detected in the experiment. Median identification is median of total identifications per
run after PIP. Lower false transfer rate and higher coverage and identifications are desired. MaxQuant results for the HeLa cell lysate
replicates are published by Prianichnikov et al. 2020.

increases.

Quantification precision comparison using ten HeLa
cell lysate replicates

We used the ten HeLa cell lysate replicates to compare
peptide intensity precision after PIP to MaxQuant MBR+
results (Table 2). We observed up to 2% increase in peptide
coefficient of variation (CV) in evaluations, while peptide
data completeness increased up to 84% compared to 35.5%
in MaxQuant MBR+ results. We also extended the evalua-
tions to protein-level quantification. We defined quantified
proteins as proteins with non-zero and non-missing values
in at least two runs. Protein abundances were calculated
from peptide intensities using top-N approach. We could
quantify on average 763 ± 616 more proteins with peptide-
protonet+PIP compared to MaxQuant (Table 2). For any
choice of k, total peptides, quantified proteins and data com-
pleteness increased as the confidence score threshold was
relaxed. This was, however, associated with increased coeffi-
cient of variation. This could be explained by identifications
being generally intensity-dependent, where CV generally in-

versely correlates with intensity (Liu et al., 2015; Al Shweiki
et al., 2017; Mahoney et al., 2011). The coefficient of varia-
tion, however, was consistently below 5%, concordant with
PIP results in the four HeLa cell lysate dataset by Meier et
al. (2018) (Figure 2a). This demonstrates that peptidepro-
tonet+PIP framework does not compromise the precision
of peptide quantifications, and can substantially improve
data completeness. At thr=0, the number of total identifi-
cations is less than small thresholds such as 0.01 and 0.05
as no new identifications are acquired. This also explains
why the largest proportion of complete data is observed at 0
threshold. On the other hand, at stringent thresholds such
at thr=0.8, the number of total peptides is less than those
for confidence scores between 0.01 and 0.5, as only highly
confident propagations are retained in the results.

Quantification accuracy comparison using a
three-organism hybrid proteome

We used a three-organism proteome to compare peptide
fold-change estimation accuracy in peptideprotonet+PIP re-
sults with MaxQuant MBR+ results, when the ground-truth
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Table 2. Peptide coefficient of variation, number of identifications
and data completeness, and quantified proteins in the ten HeLa cell
lysate replicates. Total identifications is all the identified peptides
in the experiment. Data completeness is the proportion of peptides
with non-NA values in all the runs. Quantified proteins is the
number of proteins with non-zero and non-NA values in at least
two runs. Note that this table complements the coverage and false
transfer rate results for the ten HeLa cell lysate dataset in Table 1.
Lower CV values, larger number of identifications and quantified
proteins, and higher fraction of complete data are desired.

is known (Figure 3). The dataset contains six runs from
two conditions A and B, where a mixture of Human, Yeast
and E.coli proteins are spiked at known ratios. The ratios
in B versus A are 1:1 for Human proteins, 4:1 for E.coli
proteins and 1:2 for Yeast proteins. We applied peptidepro-
tonet+PIP to MaxQuant results published by Prianichnikov
et al. discarding any identifications that were not detected
by MULTI-MSMS, which is equivalent to MBR-. We only
retained propagations with confidence score greater than 0.5
(that is more than 50% confident) in the results. The com-
parison with MaxQuant MBR+ in the evaluations were done
using the full published results by this study. For this dataset,
we defined quantified proteins as proteins with non-zero,
non-missing values in all six runs. Protein abundances were
calculated from peptide intensities using top-N approach.
We observed that our framework could quantify 412 more
proteins than MaxQuant MBR+ at k = 5, and 1015 more
proteins at k = 10 compared to MaxQuant. The peptide
log2 fold-changes in each organism were centered around
the expected ratio. This demonstrates that peptide identity
propagation by peptideprotonet+PIP did not compromise
the accuracy of peptide fold-changes. However, we did
observe more outliers as k was increased.

Discussion
We introduced an embedding-based approached for iden-
tification transfer to match between runs using MS1 mea-
surements. We developed a propagation framework for
DDA-PASEF datasets that only requires MaxQuant results

Figure 3. Protein quantification by MaxQuant and peptidepro-
tonet+PIP in a hybrid Human, E.coli and Yeast proteome. The
proteome ratios in condition B vs condition A are 1:2 (Yeast), 1:1
(Human) and 4:1 (E.coli). Box plots of protein log fold-changes
are shown to the right of each scatter plot. MaxQuant results are
published by Prianichnikov et al. 2020.
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and does not require substantial reprocessing or access to
raw spectral data. Using a number of published datasets
with technical and biological heterogeneity acquired with
different retention gradient lengths, we demonstrated that
our embedding-based PIP framework improves data com-
pleteness in the MaxQuant results and maintains high quan-
tification precision and accuracy.

Our framework overcomes the limitations of existing work-
flows by performing local (small k) and global (large k)
propagation in more than two feature dimensions, dispens-
ing with deterministic tolerances, and assigning probabili-
ties to each transferred identity. In addition, the confidence
scores from PIP results can be used as weights into limma
linear models to account for uncertainty in the assignment of
identifications, and improve power and reliability of differ-
ential abundance analysis. We were unable to evaluate the
performance of this weighting strategy in the present work,
however, as published controlled mixture PASEF datasets
are currently lacking.

Our embedding approach enables quantification of the em-
pirical FDR for peptide identification and increase in depth
of coverage through co-embedding the runs from the ex-
periment with experimental libraries. This flexibility in
co-embedding multiple runs and libraries makes this ap-
proach particularly applicable to dia-PASEF data, and lays
the foundation for future developments in embedding-based
peptide identification.

Materials and Methods
The learning framework for peptideprotonet model

When proteins are digested into peptides in the sample
preparation step, depending on the type of enzymes used
and the pH of the digestion solution, the enzyme can cut the
protein at different sites. Therefore, the generated peptide
sequences can vary from run to run. Indeed, the occurrence
of the same peptide sequence (i.e. the number of runs the
peptide sequence is quantified in) with the same modifi-
cation and charge state can be as low as one. In addition,
retention time gradient length can vary between studies. The
retention time of a peptide is a function of gradient length;
that is the same peptide elutes at different times in 30 minute
(short) gradient length experiments, compared to 120 minute
(long) gradient length experiments. Due to the small and
highly imbalanced number of data points available per iden-
tification (peptide sequence) for training, the model has to
learn from only a few peptide occurrences. This is known as
few-shot learning. We chose Prototypical Networks (Snell
et al., 2017) approach in order to learn embedded represen-
tations of MS1 attributes, as they have proven to be highly
successful in few-shot learning classification tasks.

Prototypical Networks

Prototypical Networks or Protonets, learn an embedding
function fφ : IRD → IRM with learnable parameters φ,
which maps the data points (precursor features in MS1)
from the D-dimensional input feature space into an M-
dimensional embedding feature space, with M > D. During
training, a support set of labelled data points from each
class are presented to the model, which maps them into
the embedding space. A prototype embedding vector ck is
then computed for each class k, by averaging the embedded
vector representations of the points in the support set for
class k:

ck =
1

Sk

∑
(xi,yi)∈Sk

fφ(xi)

where Sk = {(x1, y1), . . . , (xN , yN )} is a small set of Nk
labeled examples from class k where each xi ∈ RD is the D-
dimensional feature vector of an example (precursor feature
in MS1) and yi ∈ {1 . . .K} is the corresponding class
label (peptide sequence). For a query point x and a given
distance metric d, a distribution over classes is computed
by a softmax over distances to prototypes in the embedding
space:

pφ(y = k|x) = exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), ck′))

Prototypical Networks learn the parameters φ, of the map-
ping fφ into the M -dimensional embedding space, by min-
imising the negative log-probability:

J(φ) = − log pφ(y = k|x)

That is, the parameters of the mapping function are learnt
such that the distance between the M -dimensional repre-
sentations of data points from the same class and the mean
vector of their embedding, ck, is minimized.

However, we observed that the learned embedding con-
tains information on gradient length differences when two
datasets were combined at training using the conventional
protonet loss (Figure S1) - that is identifications belonging
to the same class (modified sequence/charge) that exist in
both datasets are not close on the embedding. Instead, we
observed that embedding vectors of the identifications from
the same study were very close to each other on the em-
bedding space (Figure S1a). We addressed the dependence
between the representations of data points from the same
study by replacing the loss J(φ) with a conditional loss.
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The peptideprotonet model

We replace the loss J(φ) with J(φ|z):

J(φ|z) = − log pφ(y = k|x, z)

= − log
exp(−d(fφ(x), ck|z))∑
k′ exp(−d(fφ(x), ck′ |z))

,

where d(x, x∗|z) denotes the conditional distance; that is
the Euclidean distance between two embedding vectors x
and x∗, conditional on z, where z represents the study.

The conditional loss, which is inspired by conditional Vari-
ational Autoencoders (cVAEs) (Sohn et al., 2015), breaks
the dependence between the representations of identifica-
tions from the same study and encourages instances from
the same peptide class across the studies to be embedded
more closely in the embedding space. In our particular case,
we augment the embedding learned by fφ with a categorical
encoding of the study from which the support and query
points are sampled at each episode. The conditional loss
encourages φ to learn features that can reliably predict the
same peptide identification in both short and long gradient
data acquisitions.

Peptideprotonet is a supervised classification model. The
embedding network consists of two linear layers (64 units
and 10 units, respectively), with a single ReLU activation
between layers, and is optimized with the Adam optimizer.
The model were trained in 1-shot, 5-query, and 164-ways.
At the validation and test steps the model operated in 1 test-
shot, 5 test-query and 5 test-ways. That is - every time the
model was presented with 1 support instance and 5 query
instances from 164 peptide sequences at the training. At the
test and validation time, the performance of the model was
assessed in correctly embedding 1 support instance and 5
query instances from 5 peptide sequences. The model was
trained for 300 epochs. For the few-shot classification, we
randomly selected 90K labels (peptide sequence-charge) in
the dataset for training and 20K for the validation dataset.

Peptide Identity propagation in the embedding space

Let v = fφ(x) denote the M-dimensional representation
of query peptide x. We propagate peptide sequences from
identified peptides to query peptides in each individual run
based on the Euclidean distance of the representation fφ(x)
of the query peptide x to a set of peptide prototypes, and
agreement of the charges of query peptide and the proto-
type - that is the closest prototype to fφ(x), weighted by the
charge agreement between query and prototype. Let Nv be
the set of peptide prototypes within a (k-nearest neighbors)
neighborhood of v, and c denote a prototype in neighbor-
hood Nv. Let n denote the number of prototypes in Nv.
We compute standard deviation of distances between query

embedding vector and the prototypes:

stdv,Nv
=

√∑
c∈Nv

‖c− v‖2

n
,

We then apply a Gaussian Kernel to the Euclidean distances:

Dv,c,Nv
= e
− ‖c−v‖2

2×stdv,Nv , (1)

Let Y be the peptide label (i.e. peptide se-
quence/charge/modification). Let η denote the charge state.
The probability that a query peptide belongs to peptide se-
quence k, given that the prototype ck is in the neighborhood
Nv and the embedding vector is determined as:

p(Y = k|X = v,Nv) =
I[η(k) = η]×Dv,ck,Nv∑
i∈Nv

I[η(i) = η]×Dv,ci,Nv

,

where η(i) is the charge state of the ith prototype in the
neighborhood, and η is the charge state of the query peptide.
This ensures that the prototype selected for label propagation
has the same charge state as the query peptide.

The peptide sequence with highest probability is assigned
as the sequence of the query peptide:

ŷ′v = argmax
k

p(Y = k|X = v,Nv)

The uncertainty in the assignment is estimated using:

uv,k,Nv
= 1− p(Y = k|X = v,Nv)

finally, if uncertainty is larger than a user-specific value,
κ, the query precursor feature is considered as out-of-
distribution ( that is, the precursor feature does not belong
to any of the identifications) and is discarded:

y′c =

{
ŷ′c if uv,k,Nv

≤ κ
discard otherwise

(2)

While the uncertainty score, uc,k,Nc
, and the confidence

score, p(Y = k|X = c,Nc), are complementary, the earlier
is useful for statistical modeling, whereas the latter is useful
to express how certain we are about a transferred identi-
fication. For example, the uncertainty score can be used
as precision weights in limma’s linear models to improve
Empirical Bayes moderated t-statistics and differential abun-
dance testing results. In this work, we mostly use the term
confidence score to reflect the confidence in identification
transfer.
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Two-pass operation to increase depth of coverage

The PIP framework can be extended beyond propagation
of identifications between runs in a query dataset (match
between run): to increase the depth of coverage. This is
achieved by co-embedding the runs in a query dataset with
one or more experimental libraries, similar to Data Indepen-
dent Acquisitions (DIA), where experimental or predicted
libraries are used to maximise identifications detected in all
runs. Our propagation workflow operates in two-passes: in
the first pass, if the confidence score for a precursor feature
associated with a peptide sequence from the experiment is
larger than 1− κ threshold, the assignment is approved. If
the confidence score is less than the threshold, the (embed-
ded representation of) precursor feature is compared against
(embedded representations of) identifications from the co-
embedded libraries in the second pass. If the confidence
score for an assignment from the co-embedded library was
within the 1− κ threshold, the peptide is transferred from
the library to the query run. Peptides from new proteins
that are not originally detected in the experiment can be
transferred to runs by this approach, resulting in increase in
depth of coverage. Note that in the paper, we have used thr
to refer to the κ parameter for simplicity.

Datasets

MODEL TRAINING USING WHOLE-PROTEOME DIGESTS
OF FIVE ORGANISMS AND HELA FRACTIONS ACQUIRED
ON DIVERSE GRADIENT LENGTHS

We used 312 runs containing whole-proteome digests from
five species (HeLa, Yeast, CElegans, Drosophila and Ecoli)
published by (Meier et al., 2021) and 112 HeLa cell lysate
and HeLa fractions runs published by (Meier et al., 2018)
to train our model. The datasets are both acquired on tim-
sTOF Pro mass spectrometer. (Meier et al., 2021) used a
number of different enzymes to generate peptide fractions.
They have used various gradient lengths of 30 min, 60 min
and 120 min for data acquisition. In (Meier et al., 2018)
data is acquired in 120 min gradient lengths. Details of
sample preparation and data generation can be found in the
original publications. We used the evidence.txt files gener-
ated by MaxQuant that were published by the authors to
train our models (The ProteomeTools results were left out
from Meier et al. data). Contaminants and Reverse Com-
plement identifications, if any, were discarded. Charge one
identifications, if any, were discarded. We only retained
the feature with highest intensity, if multiple ions were re-
ported for a peptide. Since our model training framework
(1-shot, 5-query) required at least six training examples
for any given peptide, peptides with six or more instances
across the two datasets were retained in the training data.
This resulted in a collection of 230,060 peptides and 34,411
proteins, available for training. We selected 90,000 peptide

precursors at random for the training set, and 20,000 for val-
idation. There was no intersection between peptides in train-
ing and validation splits. The following attributes were se-
lected from the published evidence tables: Charge , Mass,
m/z, Retention time, Retention length, Ion
mobility index, Ion mobility length and
Number of isotopic peaks. These attributes were
scaled to have mean zero and unit standard deviation prior
to model training. Our model learns a 10-dimensional rep-
resentation of these attributes.

ASSESSMENT OF QUANTIFICATION PRECISION USING
FOUR HELA CELL LYSATE REPLICATES

We used the four HeLa cell lysate replicates published by
Meier et al to evaluate precision and sensitivity of peptide
and protein abundances in PIP results. The runs were ac-
quired on a timsTOF Pro mass spectrometer with 100 ms
accumulation time. Details of sample preparation and data
generation can be found in the original publication. We used
the published allPeptides.txt and evidence.txt results for PIP
analysis (PRIDE accession PXD010012). We only retained
identifications detected by MULTI-MSMS in MaxQuant
results. The evidence tables from MaxQuant and PIP results
were then processed as follow: We only retained the feature
with highest intensity, if multiple ions were reported for a
peptide in the evidence table. Contaminants and Reverse
Complement identifications, if any, were discarded. Charge
one identifications, if any, were discarded. Peptide inten-
sities were log2 transformed and normalized by Quantile
Normalization implemented in limma. Protein abundance
was calculated by Top-N approach, that is we sum the three
highest intensity peptides to quantify the abundance of the
protein. We used this dataset to assess quantification CV at
the peptide- and protein-level, and to examine improvements
in data completeness.

EVALUATION OF QUANTIFICATION PRECISION AND
FALSE TRANSFER RATE USING TEN HELA CELL LYSATE
REPLICATES

We used the ten HeLa cell lysate replicates published by
Prianichnikov et al. (2020) to evaluate peptide precision
and FDR in PIP results. The runs were acquired on a tim-
sTOF Pro mass spectrometer on a 2hr gradient. Details of
sample preparation and data generation can be found in the
original publication. We used the published allPeptides.txt
and evidence.txt results for PIP analysis (PRIDE accession
PXD014777). We only retained identifications detected by
MULTI-MSMS in MaxQuant results. The evidence tables
from MaxQuant and PIP results were then processed as fol-
low: We only retained the feature with highest intensity, if
multiple ions were reported for a peptide in the evidence ta-
ble. Contaminants and Reverse Complement identifications,
if any, were discarded. Charge one identifications, if any,
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were discarded. Peptide intensities were log2 transformed
and normalized by Quantile Normalization implemented
in limma. Protein abundance was calculated by Top-N ap-
proach, that is we sum the three highest intensity peptides
to quantify the abundance of the protein.

ASSESSMENT OF FALSE TRANSFERS IN BIOLOGICALLY
HETEROGENEOUS DATASET OF T CELLS SECRETOME
OSCC

This dataset contains six runs comparing secretome from
tumor microenvironment of Oral squamous cell carcinoma
(OSCC) (n=3) to non-malignant samples (n=3). The study
specifically investigated the T cells population in secre-
tome, hence, it is referred to as T cells OSCC dataset in
this work. The runs were acquired on a timsTOF Pro mass
spectrometer. Raw spectral .d files were downloaded from
accession PXD023049 from PRIDE repository, searched
and quantified by MaxQuant version 1.6.6.0. as per proce-
dures described by the authors on the PRIDE project repos-
itory. Details of sample preparation and data generation
can also be found on PRIDE. We used the allPeptides.txt
and evidence.txt for PIP analysis. The evidence tables from
MaxQuant and PIP results were then processed as follow:
We only retained the feature with highest intensity if mul-
tiple ions were reported for a peptide in the evidence table.
For the heatmap, peptide intensities were log2 transformed
and retained in the study if they were not missing in more
than two samples. Also, the modifications were excluded
from the heatmap analyses. We used this dataset to as-
sess performance in the presence of biological variability in
small experiments, when peptides could be missing not at
random.

EVALUATION OF QUANTIFICATION ACCURACY USING A
THREE-ORGANISM HYBRID PROTEOME DATASET

We used a three-organism proteome dataset to compare
quantification accuracy in MaxQuant MBR+ and PIP re-
sults. This dataset is published by Prianichnikov et al, and
contains six runs from two conditions A and B, in which
Human, Yeast and E.coli proteins are spiked at known ratios.
The expected ratios in B versus A are 1:1 (Human), 1:2
(Yeast) and 4:1 (E.coli) proteins. The data were acquired
on a timsTOF Pro mass spectrometer. Details of sample
preparation and data generation can be found in the original
publication. We used MaxQuant results published by them
with MBR enabled. The PIP analysis was done using the
published allPeptides.txt and evidence.txt results (PRIDE
accession PXD014777). We only retained identifications
detected by MULTI-MSMS in MaxQuant MBR+ results.
We also tried the published MaxQuant MBR- results, but
since there was no difference between the two results, the
MBR+ results were used for consistency. The evidence
table from MaxQuant MBR+ and PIP results were then pro-

cessed as follow: We only retained the feature with highest
intensity, if multiple ions were reported for a peptide in the
evidence table. Contaminants and Reverse Complement
identifications were discarded. Charge one identifications,
if any, were discarded. Protein abundance was calculated by
Top-N approach, that is we sum the three highest intensity
peptides to quantify the abundance of the protein. Protein
abundances were log2 transformed and normalized by Quan-
tile Normalization implemented in limma. Proteins ending
with YEAST in the protein name were classified as Yeast
proteins. Proteins with a ECOLI ending in their names
were classified as E.coli, and the rest of the unannotated pro-
teins were classified as HUMAN proteins, as per original
publication. A pair of samples from conditions A and B
were randomly selected to estimate peptide fold-changes in
B vs. A. Average abundance was computed by averaging
log2 abundances across all runs.
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