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Abstract

Concerns have been raised about the use of relative abundance data derived from next generation

sequencing as a proxy for absolute abundances. In the differential abundance setting compositional

effects are hypothesized to contribute to increased rates of spurious differences (false positives). How-

ever in practice, partial reconstruction of total abundance can be imputed through renormalization

of observed per-sample abundance. Given the renormalized data differential abundance need not be

called on relative counts themselves but on estimates of absolute counts. We use simulated data to

explore the consistency of differential abundance calls made on these adjusted relative abundances

and find that while overall rates of false positive calls are low substantial error is possible. Conditions

consistent with microbial community profiling are the most at risk of error induced by compositional

effects. Increasing complexity of composition (i.e. increasing feature number) is generally protective

against this effect. In real data sets drawn from 16S metabarcoding, expression array, bulk RNA-seq,

and single-cell RNA-seq experiments, results are similar: though median accuracy is high, microbial

community profiling and single-cell transcriptomic data sets can have poor outcomes. However, we

show that problematic data sets can often be identified by summary characteristics of their rela-

tive abundances alone, giving researchers a means of anticipating problems and adjusting analysis

strategies where appropriate.
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Introduction

Warnings about the consequences of compositional effects in sequence count data have been published

repeatedly in the decades since the technology’s advent and its application to a host of biological prob-

lems. The issue relates to a loss of scale information during sample processing, which renders counts of

genes, transcripts, or bacterial species as relative abundances. No consensus solution for this problem

exists. In this work, we use simulated and real data on differential abundance calling to quantify the

discrepancy between differential abundance estimates made on relative versus ”absolute” abundances.

Our simulations show that methods which heuristically rescale sample abundances are often highly con-

sistent across relative and absolute count data and we confirm that the low complexity case, roughly

corresponding to bacterial community profiling, is the most problematic. Further, we show that data sets

which are especially susceptible to distortion by compositional effects can often be predicted on the basis

of ”signatures” of this distortion.

Compositionality in sequence count data

Compositionality refers to the nature of sequence count data as containing relative abundance information

only. In the differential abundance setting, several authors [1, 2, 3] have described the problem this poses:

whereas researchers would like to interpret change in absolute abundances, compositional effects mean

using change in relative abundances as a proxy can lead to false discoveries. A few authors have cited

instances of these false discoveries in real data. Coate and Doyle [4, 5] discussed the issue of transcriptome

size variation in plants and other systems and the impact of this on accurate transcriptome profiling. Nie

et al and Lin et al [6, 7] documented the phenomenon of widespread ”transcription amplification” by the

transcription factor c-Myc and Lovén et al [8] used c-Myc data and parallel RNA quantification assays

to show that substantial differences in total abundance between control and elevated c-Myc conditions

resulted in very different interpretations of apparent differential expression.

Common to these studies of transcriptomes is a recommendation that, where feasible, researchers leverage

RNA spike-ins as controls against which changes in observed abundance can be scaled [9, 10]. But this

practice has fallen short of widespread adoption. While several papers have expressed confidence in

the utility of spike-ins [11, 12, 13, 14, 15], the doubt cast by reports of widespread batch effects [16]

and technical noise [17] have had the effect of reducing researcher confidence in their use. Further, the

introduction of spike-ins is not practical on all platforms.
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Box 1: Measuring relative abundances

Sequence counting has become widespread as a means of census-taking in microscopic biological

systems. Genomic material, typically RNA, is captured and quantified at the component level.

Sampled cells are lysed, messenger RNA is captured and fragmented, transcribed into cDNA,

sequenced, classified, and quantified. The results are relative abundances of gene products in the

cell (in the case of single-cell RNA-seq) or tissue (in bulk RNA-seq). In another instance, whole

bacterial communities are profiled by barcoding of the 16S subunit of the ribosome. Ribosomal

RNA associated with this piece of translation machinery is ubiquitously present across the bacterial

kingdom but variations in the genetic sequence of this component can uniquely identify bacteria to

the species or strain level in well-characterized systems, allowing a researcher to profile bacterial

community composition. Absent measurements of microbial load or transcriptome size, however,

the observed sequence counts in all these cases represent relative abundances.

Sequence count data is compositional due to steps in sample processing. Across domains, samples

are typically normalized to some optimal total amount of genetic material prior to sequencing in

accordance with manufacturer recommendations for best performance. This step removes varia-

tion in total abundance across samples. Saturation of sequencing has been cited [18] as another

mechanism by which abundances are rendered relative: a finite amount of reagent means there

is an upper limit on biological material which can be captured; rare components can be forced

out by a ”competition” to be sampled. These factors withstanding, observed total abundances

would likely still be noisy. Repeated subsampling of small amounts of material and variation in

the efficiency of library preparation steps can distort observed totals.

In transcriptomics and in microbial community profiling, residual variation in observed total abun-

dances across samples is generally taken to be technical noise and most analytics pipelines involve

steps to renormalize observed abundances. The simplest of these is the counts per million (CPM)

transformation which converts observed counts to relative abundances, then scales by 1 million.

Where approaches that rely on spike-ins are undesirable or infeasible, sample renormalization proce-

dures have proliferated. These methods typically assume the existence of a stable set of features and

attempt to normalize compositions in such a way as to recover this stable set across samples. In fact, in

transcriptomics, these methods predominate.

In the setting of microbial community profiling, the prevailing assumption is that typical compositions are
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too simple for renormalization methods to work well (although results in benchmarking studies have been

mixed [19, 20]). Competing approaches have been developed for dealing with compositionality in microbial

sequence count data. Quantitative microbiome profiling [21] and similar approaches combine relative

abundances with complementary measurements of microbial load to reconstruct absolute abundances.

In contrast, so-called compositional methods are also utilized. These involve log relative representations

which can give approximate log-normality, such that workhorse statistical methods for continuous data

may be applied. However, interpretation of these quantities can be challenging (e.g. as with the isometric

logratio [22]).

Though there is evidence from simulated and real data that scale - i.e. increasing complexity of compo-

sition in terms of numbers of genes, transcripts, or bacterial sequence variants - mitigates the problem

of compositionality [2, 20], it remains unclear when it is practical to substitute relative abundances for

absolute abundances. Several fields could benefit from clarity on the nature of the boundary between

”safe” and problematic scales.

In this work, we quantify the discrepancy in differential abundance calling on simulated and real data

sets representative of 16S metabarcoding, bulk RNA-seq, and single-cell RNA-seq experiments. We show

that discrepancy in differential abundance calls is low across a very wide range of settings. The lowest

complexity cases are associated with the greatest error but under these conditions a tradeoff becomes

apparent between specificity and sensitivity: the rate of false discoveries can be kept low at the cost of

lesser sensitivity. Using real data sets with substantial absolute and compositional change, we show that

false positive rates in differential abundance calling in real data tend to be low and that these outcomes

can be predicted using signatures of compositional distortion derived from summaries of sparsity and

feature-level change.

Results

We evaluated the consistency of differential abundance calls between observed (relative) abundances and

absolute abundances. Three methods were used to make differential abundance calls: ALDEx2 [23],

DESeq2 [24], and scran [25]. Using thousands of simulated data sets, we found that consistency of calls

was high overall. A microbial metabarcoding-like setting was associated with the lowest consistency

but high rates of false positive calls were possible for all settings evaluated. The ”transcriptomic” or

high complexity setting was not inherently protective against false positives induced by compositional

effects. In this setting discrepancy was a function of the number of differentially abundant features; the
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scale of the overall change in abundance between conditions was of less importance. In real data sets

representative of more problematic possible cases, we saw moderate-to-high sensitivity - generally highest

for scran and lowest for ALDEx2. Specificity was also high overall. We developed a method for predicting

these outcomes from observed data alone and demonstrate its utility in identifying especially problematic

combinations of data set and differential abundance calling method. We discuss these findings in detail

in the sections below where we first address results in simulated, then in real data.

Results in simulation

We simulated differentially abundant count data in paired sets of absolute and relative abundances,

where the relative data were derived from a resampling procedure. We explored ranges of complexity in

composition and amount of differential abundance, grouping simulations into three partially overlapping

settings: a Microbial setting, characterized by low complexity and high differential abundance; a Bulk

transcriptomic setting with high complexity and low differential abundance; and an intermediate Cell

transcriptomic setting. The full results from almost 6000 simulations are shown in Figure 1. We present

the same results in terms of increasing complexity of composition (expressed as increasing feature number)

in Figure 2. We evaluated the consistency of a small set of popular differential abundance testing methods,

each of which attempts to renormalize per-sample total abundances, generally by rescaling these relative

to a reference quantity. Details on the simulation procedure and analysis methods evaluated are given in

Methods.

We report outcomes in terms of sensitivity (true positive rate) and specificity (100% - false positive

rate). Perfect concordance of differential abundance calls made on observed versus absolute counts would

yield 100% sensitivity and 100% specificity. Sensitivity drops as more differentially abundant features are

”missed” and specificity drops as more erroneous differential calls are made. We highlight key observations

made on simulated data below.

High false positive rates are possible for all methods

We see false positive rates well in excess of single digits for all methods. Low complexity simulations are

the most problematic in this respect. In our lowest complexity setting (100 features), almost a quarter of

simulated data sets exceed a 5% false positive rate for scran and DESeq2. For ALDEx2 this proportion

was over half, at 57%.
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Larger feature number yields more predictable outcomes for all methods and reduces false

positives for ALDEx2

Per-method performance does not inevitably improve with higher complexity of composition. However,

the ultimate drivers of performance become more predictable at scale and we discuss these in the next

section. While large feature number simulations tend toward predictable outcomes, simulations of low-

complexity compositions are volatile: small changes in feature abundance have larger relative effects.

Specificity for ALDEx2 improves markedly as feature number increases. This is likely the result of mean

feature abundance - the quantity ALDEx2 uses to rescale observed sample abundances - stabilizing as

compositions grow larger.

An increasing proportion of differential features drives increased false positive rates in

renormalization-based methods

In Supplemental Figure S4 we summarize results on data sets with a large fold change across simulated

conditions driven by a strict minority of differentially abundant features. Specificity is substantially

higher for these simulated data sets than overall (and often very high when using scran). In other words,

renormalization-based methods perform well where assumptions about large, relatively stable sets of

features are valid, irrespective of the scale of change in total abundance across conditions.

Notably this is not true of methods which do not attempt renormalization. The poor performance of

metagenomeSeq relative to other methods in Hawinkel et al. [19] and Calgaro et al. [20] is presumably

for this reason.

Renormalization-based methods are robust to missing information about changes in scale

The methods we evaluated often performed well where fold change between simulated conditions exceeded

5-fold, so long as this change was driven by a minority of features in the composition. In particular, scran

had a median specificity of 91% under these conditions, suggesting that distortion by compositional effects

can be powerfully mitigated by available renormalization approaches.

Data consistent with microbial community profiling is the most sensitive to compositional

effects and bulk transcriptomic data, the least

We present results for ”settings” corresponding broadly to several experimental modalities in Figure 1.

See Methods for details. These are the Microbial, Bulk transcriptomic, and Cell transcriptomic settings.
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Though the median specificity across all methods and settings was very high (98%), the proportion of

data sets which gave false positive rates in excess of 10% by one or more methods was high as well. In the

Microbial setting, 19% of data sets exceeded this ”high” false positive rate threshold and in the Bulk and

Cell transcriptomic settings, the figure was 11% and 14%. Method-specific performance was as follows.

Differential abundance calling via ALDEx2 in the Microbial setting had the worst performance, with fully

one third of simulated data sets yielding ”high” (¿10%) false positive rates when differential abundance

calls in observed counts were compared to calls made on absolute counts. In the same setting, the top

performer was scran, with 9% of data sets yielding false positive rates in excess of this ”high” threshold.

In the stabler Bulk transcriptomic setting, specificity was improved for ALDEx2 and scran: only 6% of

all data sets exceeded a 10% false positive rate for either method versus almost 20% of data sets when

DESeq2 was applied. The percent of ”high” false positive rate experiments with respect to scran never

exceed single-digits, ALDEx2 performed poorly but improved with scale, and DESeq2’s performance

remained largely consistent across settings.

Sparsity and feature-level change predict outcomes in random forest models

We next predicted sensitivity and specificity from observed data. It is possible to imagine characteristics of

relative abundances which might indicate the presence of distortion by compositional effects: for example,

an increase in the percentage of rare features from one condition to the next - in effect, dropouts. While

we might not expect any single characteristic capable of predicting compositional distortion, composites

of such characteristics might be. We generated ”signatures” of change in the form of combinations of

summary features for each of our thousands of simulated data sets. These summary features included

estimates of the relative sparsity in each of the simulated conditions, the maximum change in relative

abundance between conditions, measures of uniformity of change in feature abundance between conditions,

and many others outlined in Supplemental Table S4. Models were trained on 80% of our simulated data

and performance was evaluated on the held-out 20% of simulations.

We used a measure of feature importance to identify the most informative features for each model. In

almost all cases, the prediction of sensitivity was most improved by a set of features which captured

information about the percent of simulated sequence variants with very low abundance. A large number

of low abundance features was associated with a lower sensitivity. For the prediction of outcomes from

ALDEx2 and DESeq2, features which estimated the apparent correlation of simulated sequence variants

also had strong predictive value.

Specificity prediction was most improved by features encoding information about the percent of sequence
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variants with large apparent fold change between conditions. In general, data sets having a large number

of features with apparent increases in abundance between conditions were associated with higher false

positive rates (and thus, lower specificity). A summary of the top features for each model is given in

Supplemental Tables S1 and S2.

False positive rates are ”ballpark” predictable for ALDEx2 and scran

Accuracy varied by method but was occasionally striking. Outcomes for DESeq2 were the easiest to

predict, with R2 values for observed versus predicted sensitivities and specificities of 86% and 74%

respectively. For ALDEx2 and scran, sensitivity prediction was generally successful, with R2 values

of 80% and 92% respectively. Specificities were difficult to predict for these methods, however, and

observed versus predicted outcomes had R2 values of around 50% in both cases, indicating characteristics

of the observed data can only give ”ballpark” predictions of false positive rates for these methods. See

Supplemental Table S3 for full results on simulated data.

Results in real data

Next, we examined a variety of real data sets across several experimental settings in order to sketch a

picture of outcomes in real data. We collected publicly available data from eight studies [26, 27, 28,

29, 30, 31, 32, 33] and attempted to reconstruct absolute abundances by normalizing observed total

abundances against reference quantities provided in the same published materials. In most cases, these

reference quantities were external RNA spike-in sequences. In others, reconstructed absolute abundances

had already been estimated, as in [26] through quantitative microbiome profiling or QMP [21]. In

one case [32], we normalized against Gapdh, a stable, highly expressed housekeeping gene [34]. We

acknowledge the difficulty in reconstructing absolute abundances and caution that these estimates are

partial approximations. These data sets are summarized in Table 1 and Figure 3 and were selected

because we consider compositional effects possible for all: each case exhibits substantial change between

conditions in terms of overall abundance and composition.

Low sensitivity is possible for all data modalities

Sensitivity was high overall, at 86%, but cases of low sensitivity were observed in every data type: the 16S

metabarcoding data of Vieira-Silva et al. [26], the bulk RNA-seq of Hagai et al. [30], and the single-cell

data of Klein et al. [32].
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Specificity on real data is high

Median specificity was 95% indicating that, inasmuch as these data sets are representative samples of

potential problematic cases, the concordance of calls made on observed versus absolute counts is high.

That said, one of the lowest observed specificities occurred with ALDEx2 on the single-cell data set of

Yu et al. [33], at 69%. In absolute terms, that amounts to over 1800 false positives - genes which were

not confidently differentially expressed between conditions according to the absolute abundance data

but which were differential from the perspective of the observed counts. Such cases of low specificity

appeared to be method-specific as with DESeq2’s high false positive rate on the data of Vieira-Silva et al.

[26], a microbial experiment where relatively few bacterial genera made up the bulk of a highly dynamic

composition.

The observed values for sensitivity and specificity for all methods are given in Figures 4 and 5 along with

predicted ranges for the same quantities.

The noisy Microbial setting challenges all methods

All methods performed poorly on the data of Vieira-Silva et al. [26] in terms of either sensitivity,

specificity, or both. This experiment featured low compositional complexity (70 unique bacterial genera)

and substantial within-condition variation in composition across subjects. Results were notably improved

on the microbial data of Barlow et al. [27], where composition was relatively stable within conditions.

Sensitivity is underpredicted where sequencing depth is low

Predicted intervals were accurate in most cases. Underprediction of sensitivity was an issue with the data

sets of Barlow et al. [27] and Owens et al. [31], where observed total abundances were less than half their

”true” values. In other words, the resolution of observed counts was low relative to absolute counts and

sensitivity was underpredicted accordingly.

Problems with specificity prediction are method-specific

As noted above, specificity was high overall and was generally well-predicted for all methods and data

sets. Exceptions were the combination of DESeq2 on the 16S data set of Vieira-Silva et al. [26], which

featured a small number of highly variable bacterial sequence variants, and ALDEx2 as applied to the

data of Yu et al. [33], where two genes made outsized contributions to overall differences in abundance

between tissue types.
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Discussion

We have evaluated the accuracy of estimates of differential abundance in absolute count data from relative

abundances. While the potential of compositional effects to drive differential abundance has repeatedly

been described in the literature, uncertainty remains about the scope of this problem. Previous authors

[19, 20] have shown that rates of false positives calls can be high. However, while this problem is

typically discussed in terms of estimates made from relative abundances, sophisticated renormalization

techniques are frequently applied to the data, yielding partial approximations of absolute abundances.

We were interested in the performance of these renormalization-based methods applied over a range of

data settings. Our results, in line with those of others [2, 10], indicate that high rates of false discoveries

driven by compositional effects are certainly possible for these methods but that accuracy, especially with

respect to false positive rates, can nonetheless be high overall.

We find that scale (i.e. complexity of composition) does matter. The Microbial setting as we have

characterized it - having simple, volatile compositions - is the most challenging for all methods. But

we observed both low and high accuracy on representative real data sets, suggesting there are tolerable

regimes within this most-challenging setting.

At the higher level of compositional complexity of 1000 features, most methods are fairly consistent in

their calls on relative versus absolute count data. Of almost 2000 simulations in this higher-complexity

setting, only 6.4% of data sets evaluated with scran exhibited false positive rates exceeding 10%. In fact,

DESeq2 and scran were remarkably consistent across all settings. In the differential abundance calling

methods we have considered, the strongest single predictor of consistency of results was the number of

differentially abundant features not the scale of the change between conditions. For renormalization-

based methods, a large fold change in overall abundance driven by a minority of features can often be

rescued, in contrast to the case of relative abundance data.

Our simulated results mirror observations from real data. While the worst false positive rates in real data

were over 25%, these were exceptions to a theme of generally high specificity. Sensitivity, on the other

hand, varied as a function of sequencing depth.

Problematic data sets can often be identified from observed (relative) count data alone: some intuitive

characteristics of the observed count data can forecast problems in differential abundance calling, in

particular sparsity and the prevalence of variable features. The most common defect in prediction was

an underestimate of sensitivity.

From these results, we can establish expectations about whole experimental domains. In metagenomics
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experiments utilizing 16S barcoding, a small number of microbial strains often dominates a composition

and feature number can be quite low. In this setting, accuracy can be poor but workarounds exist.

Firstly, a tradeoff seems to exist between sensitivity and specificity [19, 20]. Low rates of false positives

on differential abundance calls made on relative abundances can be achieved at the cost of sensitivity.

Also, viable methods for estimating changes in overall abundance have been developed in the field of

microbial ecology [21, 9], meaning it may not be necessary to work from relative abundances at all.

Expression profiling is likely less burdened by the effects of compositionality. The relatively deep se-

quencing and complex, stable compositions of bulk RNA-seq data mean accuracy is overall high for

renormalization-based methods. Where large changes in total mRNA or widespread differential expres-

sion is possible, control quantities like RNA spike-ins, though controversial, probably have real utility as

renormalization references.

Differential expression from single-cell expression profiling may be reasonably accurate as well, given its

transcriptomic scale, although results from real data indicate that choice of method is key here. Further,

we note that some single-cell platforms generate library sizes (i.e. total per-sample observed abundances)

which are already roughly proportional to absolute abundances. Brief examples of this are explored in

the Supplement. This is in line a view that abundances in deeply sequenced UMI-barcoded single cells

are likely to be a good proxy for absolute abundances [12, 14]. The effect of compositionality may be

negligible on these platforms.

Several parts in this work invite further exploration. In attempting to reconstruct absolute abundances

in real data sets, we generally utilize spike-ins as control quantities against which to scale total sample

abundances. The resulting reconstruction is undoubtedly noisy and only an approximation of real change

in the system. Further, we note that in our real data sets, choices about the inclusion or omission

of very low abundance features were observed to affect the outcomes of differential abundance testing.

The absence of an optimal strategy for filtering out ”uninteresting,” near-zero-abundance features is a

deficiency.

While our simulated data sets averaged a zero composition of about 20%, in 16S metabarcoding and

single-cell data sets especially, this proportion can be much higher. The filtering procedure referenced

above rendered real data comparable to our simulations in this respect but a more thorough treatment

of the subject would explore a wider range of sparsity in simulation. Also, for simplicity, we refrained

from exploring the effect of varying numbers of samples per conditions. This no doubt affects results

through the certainty of estimates. Lastly, a further important investigation in the spirit of recent work

by Lloréns-Rico et al. [35] would assess the usefulness of partial reconstructions of abundance (e.g. by
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quantitative microbiome profiling or spike-in renormalization) by quantifying the direct effect information

restored on accuracy of downstream analyses.

Methods

We simulated general purpose molecular count data. These abundances are interpretable as a variety

of biological quantities, for example, transcript abundance in a cell or bacterial species abundance in a

microbial community. These counts undergo a sampling step intended to loosely replicate the process

of measurement itself and, crucially, the approximate normalization of total abundance across samples

during that step, giving a second set of count data. We refer to the first set of count data as ”absolute”

counts and the second, resampled set as ”observed” counts. We quantitatively explored the degree to

which this loss of information about changes in total abundance alters the results of a mock differential

abundance analysis by simulating a huge range of settings in our data, where key characteristics like

complexity of composition (e.g. gene number) and fold change across simulated conditions are allowed to

vary widely. Though we report results related to differential abundance testing, we expect our findings

to generalize to other types of analyses.

Simulation model

We designed a simulation framework to generate count data corresponding to two arbitrarily different

conditions, denoted by superscripts in the equations below. First, for p = 1, . . . , P features in the first

condition, a set of log mean abundances was drawn as

θ(1)p ∼ N(m,S2)

where hyperparameters m and S tune the mean and standard deviation of baseline log abundances. A

correlation matrix was drawn as

Ω ∼ Inverse-Wishart(n,Q)

where scale matrix Q was supplied as either the identity matrix (for a minority of simulations) or a dense

correlation matrix with net positive elements. The matrix Ω is subsequently re-scaled to a correlation

matrix and used to draw correlated feature perturbations in a second condition as
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θ(2)p ∼ MVN(θ(1)p ,Ω · a)

where the hyperparameter a exists in order to tune the overall scale of the correlated log perturbations.

Mean abundances on the scale of sequence counts for each condition are calculated as

γ(1)
p = exp(θ(1)p ), γ(2)

p = exp(θ(2)p )

A desired proportion of differentially abundant features c is obtained as follows: features are selected as

differentially abundant with probability c. For those selected features only, the perturbed γ
(2)
p serves as

the mean abundance in the second condition; for all other features, the mean abundance in both the first

and second conditions is given by γ
(1)
p . Let these new vectors be µ

(1)
p , µ

(2)
p . These represent mean the

abundances of P features in two conditions, some of which differ across conditions, others of which are

identical. Replicates i = 1, . . . , 10 are then generated for each condition as follows. A fixed dispersion

parameter for absolute counts is defined as dabs = 1000 and those counts are drawn as

y
(1)
i,p ∼ NegBinom(µ(1)

p · δ, 1000)

where

δ ∼ max(0.1,N(1, g))

(Note that the dispersion parameter has been chosen such that the resulting counts are only barely

overdispersed with respect to a Poisson.) The purpose of the truncated, per-sample multiplier δ is to

re-scale all abundances within a given sample by some factor of approximately 1 but by increasing the

scale of hyperparameter g, increasing replicate noise can be added within a condition. This process is

repeated for the second condition to give a set of absolute counts y
(2)
p .

A new average observed total abundance (or library size) is randomly drawn as

u ∼ Unif(5000, 2× 106)

and realized library sizes for each of the samples are then obtained by sampling

w
(1)
i ∼ NegBinom(u, 100), w

(2)
i ∼ NegBinom(u, 100)
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Finally, observed abundances z are generated through a multinomial resampling procedure similar to

that of [10, 20, 23], using these new library size analogs. Where i and k index different samples prior to

resampling, i′ indexes the sample i after resampling, and total counts for sample i prior to resampling

are given by ni =
∑

yi, we have

zi′ ∼ Mult(πi′ = yi/ni, ni′ = nk)

where superscripts have been suppressed as this procedure is identical across simulated ”conditions.”

The resulting P -length vector of counts for a given sample contains relative but not absolute abundance

information. These vectors are collapsed into a P × 20 count matrix containing 10 replicate samples for

each of two simulated conditions. In order to evaluate the discrepancy of differential abundance calling

on observed versus absolute counts, we apply differential abundance methods to count matrices Z and Y

respectively and score the differences.

Breadth of simulations

In order to generate simulations with a wide variety of characteristics, we swept in a grid over all our

hyperparameters. Feature number P was stepped through values 100, 1000, and 5000. A maximum

feature number of 5000 was chosen as txhese simulations were computationally intensive and major trends

had become apparent at that scale. The degree of feature correlation was encoded in five realizations

of scale matrices Q, encoding fully independent features at one extreme and 50% strongly positively

correlated features at the other extreme. Log mean abundance (m) and the log variance (S) were

independently incremented through low to high values. Likewise, the average log perturbation size (a)

was swept from low to high in five steps, as a proportion of log mean abundance.

Replicate noise g varied from low to high in three steps. And finally, the proportion of differentially

abundant features ranged across 20%, 30%, 50%, 70%, and 90%. Note that because many ”perturbations”

were very small, detectable differential abundance was generally only a fraction of the parameterized

amount and most data sets contain a minority of differentially abundant features. Overall this 5625

simulated data sets were generated with almost continuous variation characteristics of interest.

We suggest that ranges of these parameter settings approximately represent different data modalities.

We term the Microbial setting that with low to moderate feature number (P ≤ 1000) and largest average

perturbation, in accordance with a belief that bacterial communities are often simple (in terms of sequence

variants with more than negligible abundance) and that they are highly variable even at short time scales

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471397doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471397
http://creativecommons.org/licenses/by-nc-nd/4.0/


[36].

We designate the Bulk transcriptomic setting as that with the largest feature number (P = 5000) and

having a lower average perturbation, the rationale being that transcriptomes sampled in aggregate over

many cells are complex but largely stable compositions. Similarly, we define the intermediate Cell tran-

scriptomic setting, approximately representative of single-cell RNA-seq data, to comprise simulations

with moderate to large feature numbers (P ≥ 1000) and moderate perturbation sizes. These categories

are intended as rough outlines and we note that within these settings the realized data varies in terms

of 1) degree of feature correlation, 2) overall abundance, 3) (un)evenness of composition, and 4) within-

condition variation in totals.

Calling differential abundance

Three differential abundance calling methods were used in this study; each relies upon the use of a

reference quantity to renomalize sample total abundances. For ALDEx2 this reference quantity is a

trimmed version of per-sample mean log abundance. DESeq2 rescales samples using a sophisticated

Bayesian model. Implicit in DESeq2’s procedure is an assumption that a large set of stable features

exists against which the observed changes in other features can be adjusted. scran’s procedure follows a

similar rationale, but employs a local rescaling, within clusters of like samples.

For simplicity, we omit from consideration models which lack a rescaling. We also omit zero-inflation

models. Although these are popular in single-cell mRNA sequencing data, the debate continues about

whether these models are appropriate for these data [37, 38].

Finally, differential abundance calls made on observed counts must be evaluated against a reference. At

least two such references are obvious: calls made by the same method on absolute abundances or calls

made by an independent method (a pseudo-gold standard or ”oracle”) on absolute abundances. While

the second scenario (method vs. oracle), allows us to evaluate the performance of all methods relative to

common standard, discrepancy in calls made under these conditions will be at least partially driven by

differences in noise modeling and sensitivity across methods, complicating their interpretation of results.

In the alternative, ”model vs. self” scenario, discrepancy in calls should be largely driven by differences

in the count data itself. In general, we choose to report performance outcomes in this way (model vs.

self) but we include a summary of performance in the model vs. oracle scenario in the Supplement and

show that results are similar across these settings. Details of the simulation and testing procedure and

an overview of simulated data sets are also provided there.

Accuracy (in terms of sensitivity and specificity) was calculated between differential abundance calls made
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on absolute abundances and observed abundances. Three methods were evaluated: ALDEx2, DESeq2,

and scran. ALDEx2 was called using the aldex() from the associated R package [23] using the interquartile

logratio reference. DESeq2 was called using the Seurat wrapper (FindMarkers(test.use = ...)) [24, 39].

scran was called using the method described in the vignette associated with its Bioconductor package [25].

Unadjusted p-values were collected from all methods and multiple test correction applied via p.adjust in

R using Benjamini-Hochberg method.

Predictive modeling

In total, we trained 6 random forest models over 57 summary features, for each combination differential

abundance calling method (ALDEx2, DESeq2, or scran) and accuracy measure (sensitivity or specificity).

All such predictive models were fit with the randomForest package in R [40]. A random forest is an en-

semble of decision trees and this tree-based approach was chosen because, while extensive, our simulations

were not exhaustive. We anticipated that learning sets of decision rules might generalize well to unseen

conditions, in particular feature numbers larger than those we explored in simulation. Feature importance

was measured as ”gain,” or the relative increase in predictive accuracy achieved by the inclusion in the

model of a given feature, as computed by the caret package in R [41].

We show in Supplemental Figure S5 that both simulated and real data sets exhibit comparable variation

in terms of these features. Predictive models built from these summary features attempted to estimate

sensitivity and specificity values explicitly. Details on these models are given in the Methods. All models

were trained on 80% of the simulated data and their predictive accuracy was assessed on the reserved

20%.
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Code availability

All R code related to this study is available on Github at https://github.com/kimberlyroche/codaDE.
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Figures and Tables

Figure 1: Sensitivity and specificity for three differential abundance calling methods in three experimen-
tal settings. Data sets are labeled by proportion of features with at least a 50% increase or decrease in
abundance between conditions. Results shown are for all methods in the a) Microbial, b) Bulk transcrip-
tomic, and c) Cell transcriptomic settings.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471397doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471397
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Sensitivity and specificity for three differential abundance calling methods in three composi-
tional complexity settings. Data sets are labeled by proportion of features with at least a 50% increase
or decrease in abundance between conditions. Results shown are for all methods over a) 100-feature
simulations, b) 1000-feature simulations, and c) 5000-feature simulations.
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Figure 3: Visual summaries of eight real sequence count data sets: metagenomics data from a) Vieira-
Silva et al. and b) Barlow et al.; nCounter array data from c) Song et al.; bulk RNA-seq data from
d) Monaco et al. and e) Hagai et al.; single-cell RNA-seq data from f) Owens et al., g) Klein et al.,
and h) Yu et al. Left panels show absolute abundances for subsets of samples across two experimental
conditions. Right panels show relative abundances for the same samples and conditions. Features (genes
or bacterial sequence variants) with at least 1% relative abundance across all samples are colored; all
other features are gray.
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Source Description No. se-
quence
variants

Approx. fold
change

Approx. per-
cent differen-
tial features

Vieira-Silva et al.
(2019)

16S metagenomics from
human gut samples of con-
trol and Crohn’s disease
patients

70 2.5 24

Barlow et al. (2020) 16S metagenomics from
ketogenic diet and control
mice

78 3.4 19

Song et al. (2021) nCounter array of human
primary lung cancer vs.
brain metastases

773 1.4 45

Monaco et al. (2019) immune cell profiling in
human humans via bulk
RNA-seq

17,261 3.4 28

Hagai et al. (2018) bulk RNA sequencing of
both unstimulated and
mock-viral infected mouse
fibroblasts

13,937 1.5 39

Owens et al. (2016) single cell sequencing of
zebrafish embryos; early
vs. late time course sam-
ples drawn

40,476 3.7 23

Klein et al. (2015) single cell RNA-
sequencing of normally
developing and leukemia
inhibitory factor-treated
mouse ESCs

2,928 2.9 12

Yu et al. (2014) single cell expression pro-
filing of rat brain and liver
tissue

26,871 2.0 36

Table 1: Real 16S metabarcoding, bulk RNA-seq, and single cell RNA-seq data sets corresponding to
the abundances shown in Figure 1. The approximate proportion of differentially abundant features is
estimated by simple thresholding: reconstructed “absolute” features with an average increase or decrease
between conditions of 50% abundance are considered differential here.
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Figure 4: Predicted and observed sensitivity on eight real data sets for three differential abundance
testing methods. a) Vieira-Silva et al., b) Barlow et al. c) Song et al., d) Monaco et al., e) Hagai et
al., f) Owens et al., g) Klein et al., and h) Yu et al. Prediction intervals are enabled by the ensemble
of decision trees in the “forest” and correspond to 50% (thicker line) and 90% (thinner line) consensus
intervals over the predictions of individual trees in the forest.

Figure 5: Predicted and observed specificity on eight real data sets for three differential abundance testing
methods. a) Vieira-Silva et al., b) Barlow et al. c) Song et al., d) Monaco et al., e) Hagai et al., f)
Owens et al., g) Klein et al., and h) Yu et al. Intervals are as described in Figure 4.
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Supplement

Characteristics of the simulated data

The properties of simulated data sets in terms of percent differentially abundant features, change in

abundance across conditions, and percent zero counts are shown in Supplemental Figure S1. Most

simulations featured a minority of differentially abundant features and the distribution of the proportion

of differentially abundant features was very similar across feature number settings (100, 1000, and 5000

features). Fold change in total abundance between conditions was similar across settings as well. The

percent zero counts in our simulations increased as the number of features increased. This is because, on

average, simulations with a larger number of features had larger overall absolute total abundances and

were more likely to be downsampled when ”observed” relative abundances were drawn, yielding dropouts.

Renormalization-based methods mostly concur with a simple negative bino-

mial model of differential abundance

Differential abundance was simulated in a continuous way: for a given feature, count data were drawn

from a negative binomial model in accordance with a per-condition mean abundance for that feature.

Per-feature differences in mean abundance across conditions were often quite small.

We point out in the main text that other alternative references for “true” differential abundance in abso-

lute count data could exist, including a negative binomial generalized linear model (NBGLM). We show in

Supplemental Figure S2 that the number of differentially abundant features in absolute abundance data

detected by a NBGLM generally accords with the number of differentially abundant features identified by

ALDEx2, DESeq2, and scran but that renormalization-based methods called a larger number of features

differential overall.

Using NBGLM calls as a pseudo-ground truth increases the rate of false pos-

itives

We also evaluated the sensitivity and specificity of differential abundance calls made by ALDEx2, DESeq2,

and scran on observed abundances against differential abundance calls made by a negative binomial model

on absolute abundances. We did this in order to compare the relative performance of these methods

against a common reference. In all cases, false positive rates were higher when the NBGLM calls were

used as a baseline. (Compare results in Supplemental Figure S3 to Figure 1 in the main text.) This
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derives from the lesser sensitivity of the NBGLM model. Differentially abundant features which are too

“noisy” to be significantly different in the NB model are often significantly different after adjustment by

ALDEx2, DESeq2, and scran.

Results on simulations with a minority of differentially abundant features

Results on a subset of simulations having a minority of differentially abundant features (as evaluated by

the NBGLM) and an average log fold change between conditions of at least 2.5 are shown in Supplemental

Figure S4. We highlight these as a set of extreme simulations - with respect to the scale of absolute change

between conditions - which should best adhere to the assumptions of the methods evaluated. In each

of these simulated data set a (proportionally) large, reasonably stable subset of features exists. Median

specificity is high under for all methods, across all feature number settings, at 2.5%, though especially for

ALDEx2 in the low-feature number setting, a large number of data sets exhibit high false positive rates.

Estimating absolute and relative abundances in real data sets

All real data sets were downloaded from the public repositories indicated in the published article, except

where noted. For the Vieira-Silva et al. [26] data set, absolute abundances estimated by quantitative

microbiome profiling were available from the authors’ website. These data were rescaled such that the

lowest non-zero count was one. Relative abundances for the same data were simulated by shuffling the

observed library sizes across all samples. We performed this shuffling of total abundances in order to

guarantee any correlation between observed and reconstructed absolute abundances would be eliminated,

giving a “worst case” scenario: relative abundances with no information about changes in scale either

within or between conditions.

Absolute abundances in the Barlow et al. [27] study were estimated by those authors via digital droplet

PCR and relative abundances were provided in the form of proportions. These relative abundances were

scaled up such that the minimum non-zero abundance was one.

nCounter array expression profiles from the Song et al. [28] study were obtained and we noted that

the abundances of positive controls (in the form of ERCC spike-ins) correlated well with observed total

abundances. For that reason, we treated the observed data as absolute counts and derived relative

abundances from these by shuffling the observed total abundances across all samples and resampling, as

in our simulation method.

The Monaco et al. [29] data were published in transcripts per million (TPM) format. Absolute abun-

dances were derived by estimating a scaling factor from ERCC spike-ins present in this data. Estimation
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of the scaling factor from a set of reference quantities (e.g. spike-in abundances) simply involved comput-

ing the mean of all references in each sample to give a per-sample multiplier, then scaling this multiplier

to have a mean of one. The original, TPM-format data were then rescaled on a sample-to-sample basis

using these centered scaling factors. The TPM-format data were used as the relative (observed) counts.

The Hagai et al. [30] bulk RNA-seq data were treated using methods already described above. A

per-sample scaling factor was computed from spike-in sequences and used to rescale samples to give

approximate absolute abundances. Relative abundances were derived using the technique outlined for

the Song et al. data - a shuffling of observed total abundances and subsequent resampling. The Owens

et al. [31] data were treated in exactly the same fashion, with absolute counts given by an ERCC

spike-in rescaling and relative counts derived from a resampling procedure. Distinct “conditions” were

manufactured from the data by selecting early and late samples from this time course data as differential

conditions A and B, respectively.

The expression of the gene Gapdh was used as a rescaling factor for the Klein et al. [32] single-cell data.

This per-sample factor was estimated by the procedure described above and used to rescale samples,

giving absolute abundances. Relative counts were resampled by the previously outlined procedure.

Finally, brain and liver tissue samples were obtained from the Yu et al. [33] expression atlas. The existing

log total abundances correlated well with log ERCC spike-in abundances and those unaltered data were

used as absolute abundances. Relative abundances were derived by resampling.

In general, we removed features with a mean abundance of less than a single count from each of the data

sets before calling differential abundance.

Simulated data “resembles” real data with respect to features of interest

We visualize simulated and real data together in Supplemental Figure S5 in the space of the summary

features used for the prediction of sensitivity and specificity outcomes. Simulated and real data largely

inhabit the same space of variation with respect to these features.

Variable importance in predictive models

In Supplemental Tables S1 & S2, we show the top several most important features (as scored by gain in

accuracy upon feature inclusion) for each of the six predictive models over sensitivity and specificity for

each of ALDEx2, DESeq2, and scran.

In all models over sensitivity, features summarizing the prevalence of low-count elements in the composi-

tion were most informative. For ALDEx2 and DESeq2, an estimate of the correlation of centered logratio
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features - summarizing shared change relative to the mean - was the single most informative feature.

Specificity was more difficult to predict and models leveraged a variety of features for this. The most

informative features were those indicating the proportion of relative abundance, log abundances, or

centered logratio abundances undergoing apparent change across conditions.

Performance of regression models for prediction of sensitivities and specifici-

ties on simulated data

Results from the prediction of sensitivity and specificity are shown in Supplemental Table S3 for sim-

ulated data sets held out from model training. Prediction of sensitivity was broadly accurate for all

methods. Specificity proved more challenging: DESeq2’s specificities are reasonably predictable from the

characteristics of observed data alone but specificity prediction for ALDEx2 and scran only achieved an

R2 of around 0.5.

Library sizes in single-cell data can be informative

We note in the main text that in single cell RNA-seq data observed total abundance (unnormalized

library size) often correlates well with proxies of transcriptome size or total mRNA. For example, using

Gapdh expression as a proxy for total mRNA, we see good correspondence between the abundance of

this putatively stable gene product and observed library size (labeled “total abundance” in Supplemental

Figure S6) in the Klein et al. [32] data. The R2 for Gapdh on total abundance in both the stimulated

and unstimulated cells is greater than 0.5. This positive association is also found between mean spike-in

abundance and library size in the CEL-seq2 data generated by Hashimshony et al. [42] (R2 > 0.5 across

phases of the cell cycle in this experiment).
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Supplemental Figures and Tables

Figure S1: Distributions associated with three characteristics of the 5625 simulated data sets: a) percent
differentially abundant features, b) fold change in total abundance across conditions, and c) percent
zeros.

Figure S2: Differential abundance calls on absolute abundances made by ALDEx2, DESeq2, and scran are
similar to those made by a negative binomial generalized linear model, although these methods are less
conservative than the NBGLM. R2 estimates for the number of differential features called by ALDEx2,
DESeq2, and scran versus the NBGLM are 0.88, 0.91, and 0.92 respectively.
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Figure S3: Sensitivity and specificity results for differential abundance calls made on observed abundances
versus calls made on absolute abundances. Here, calls made on observed abundances using ALDEx2, DE-
Seq2, or scran are compared to calls made on absolute abundances using a negative binomial GLM. Results
shown are for a) 100-feature simulations, b) 1000-feature simulations, and c) 5000-feature simulations.
Data sets having the lowest specificies are generally those with the largest proportion of differentially
abundant features.
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Figure S4: Sensitivity and specificity results for differential abundance calls made on observed abundances
versus calls made on absolute abundances. Only simulations with several fold change in abundance
between conditions and having less than 50% of features differentially abundant are shown. Data sets
are labeled for the scale of fold change realized between simulated conditions. Results shown are for a)
100-feature simulations, b) 1000-feature simulations, and c) 5000-feature simulations.
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Figure S5: A subset of simulated data sets (gray) and real data sets (colored) are plotted in the top 4
principle components associated with their predictive features.

Figure S6: Correspondence between observed total abundances and proxies of absolute abundance: a)
Gapdh abundance positively correlates with observed total abundance in each treatment group in the
Klein et al. data; b) mean ERCC spike-in abundance positively correlates with observed total abundance
in the Hashimshony et al. data set.
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Method Predictive feature Feature rank

ALDEx2 median correlation of CLR features 1

ALDEx2 skew correlation of CLR features 2

ALDEx2 percent features = 1 in B 3

ALDEx2 percent features = 0 in B 4

ALDEx2 percent features ≤ 5 in B 5

DESeq2 median correlation of CLR features 1

DESeq2 percent features = 0 in B 2

DESeq2 percent features ≤ 5 in B 3

DESeq2 percent features = 1 in A 4

DESeq2 percent features = 1 in B 5

scran percent features = 1 in B 1

scran percent features = 1 in A 2

scran percent features ≤ 5 in B 3

scran percent features ≤ 5 in A 4

scran percent features = 0 in B 5

Table S1: Predictive features and their importance rank (1 = most important) in the prediction of
sensitivity.

Method Predictive feature Feature rank

ALDEx2 percent features ≤ 5 in B 1

ALDEx2 percent features with ≤ 0.5 FC in CLR 2

ALDEx2 SD change in log + PC counts 3

ALDEx2 SD change in relative abundance 4

ALDEx2 median correlation of CLR features 5

DESeq2 percent features with ≤ 0.5 FC in log + PC counts 1

DESeq2 percent features with ≤ 0.5 FC in CLR 2

DESeq2 SD change in log + PC counts 3

DESeq2 percent features with ≤ 2 FC in CLR 4

DESeq2 median change in log + PC counts 5

scran percent features with ≤ 0.5 FC in log + PC counts 1

scran percent features with ≤ 0.5 FC in CLR 2

scran median change in log + PC counts 3

scran SD change in log + PC counts 4

scran median relative abundance in B 5

Table S2: Predictive features and their importance rank (1 = most important) in the prediction of
specificity.
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Method Sensitivity R2 Specificity R2

ALDEx2 80% 51%

DESeq2 86% 74%

scran 92% 50%

Table S3: R2 values for observed versus predicted values of sensitivity and specificity for six random
forest models over three differential abundance calling methods.
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Feature symbol Description Category

P number of features general

TOTALS C FC absolute fold change in mean totals (A vs. B) totals

TOTALS C D absolute change in mean totals totals

TOTALS C MAX D max delta in totals totals

TOTALS C MED D median delta in totals totals

TOTALS C SD D SD in totals totals

CORR RA MED median correlation of relative abundances feature correlation

CORR RA SD SD correlation of relative abundances feature correlation

CORR RA SKEW skew correlation of relative abundances feature correlation

CORR LOG MED median correlation of log + PC counts feature correlation

CORR LOG SD SD correlation of log + PC counts feature correlation

CORR LOG SKEW skew correlation of log + PC counts feature correlation

CORR CLR MED median correlation of CLR features feature correlation

CORR CLR SD SD correlation of CLR features feature correlation

CORR CLR SKEW skew correlation of CLR features feature correlation

COMP C P0 A percent features == 0 in A composition

COMP C P0 B percent features == 0 in B composition

COMP C P1 A percent features == 1 in A composition

COMP C P1 B percent features == 1 in B composition

COMP C P5 A percent features <= 5 in A composition

COMP C P5 B percent features <= 5 in B composition

COMP RA P01 A percent features < 0.1% relative abundance in A composition

COMP RA P01 B percent features < 0.1% relative abundance in B composition

COMP RA P1 A percent features < 1% relative abundance in A composition

COMP RA P1 B percent features < 1% relative abundance in B composition

COMP RA P5 A percent features < 5% relative abundance in A composition

COMP RA P5 B percent features < 5% relative abundance in B composition

COMP RA MAX A max relative abundance in A composition

COMP RA MED A median relative abundance in A composition

COMP RA SD A SD relative abundance in A composition

COMP RA SKEW A skew relative abundance in A composition

COMP RA MAX B max relative abundance in B composition

COMP RA MED B median relative abundance in B composition

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471397doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471397
http://creativecommons.org/licenses/by-nc-nd/4.0/


COMP RA SD B SD relative abundance in B composition

COMP RA SKEW B skew relative abundance in B composition

COMP C ENT A entropy in A composition

COMP C ENT B entropy in B composition

FW RA MAX D max change in relative abundance feature-wise change

FW RA MED D median change in relative abundance feature-wise change

FW RA SD D SD change in relative abundance feature-wise change

FW RA PPOS D percent features with + change in relative abun-

dances

feature-wise change

FW RA PNEG D percent features with - change in relative abundances feature-wise change

FW RA PFC05 D percent features with < 0.5 FC in relative abundance feature-wise change

FW RA PFC1 D percent features with < 1 FC in relative abundance feature-wise change

FW RA PFC2 D percent features with < 2 FC in relative abundance feature-wise change

FW LOG MAX D max change in log + PC counts feature-wise change

FW LOG MED D median change in log + PC counts feature-wise change

FW LOG SD D SD change in log + PC counts feature-wise change

FW LOG PPOS D percent features with + change in log + PC counts feature-wise change

FW LOG PNEG D percent features with - change in log + PC counts feature-wise change

FW LOG PFC05 D percent features with < 0.5 FC in log + PC counts feature-wise change

FW LOG PFC1 D percent features with < 1 FC in log + PC counts feature-wise change

FW LOG PFC2 D percent features with < 2 FC in log + PC counts feature-wise change

FW CLR MAX D max change in CLR feature-wise change

FW CLR MED D median change in CLR feature-wise change

FW CLR SD D SD change in CLR feature-wise change

FW CLR PPOS D percent features with + change in CLR feature-wise change

FW CLR PNEG D percent features with - change in CLR feature-wise change

FW CLR PFC05 D percent features with < 0.5 FC in CLR feature-wise change

FW CLR PFC1 D percent features with < 1 FC in CLR feature-wise change

Table S4: R2 values for observed versus predicted values of sensitivity and specificity for six random
forest models over three differential abundance calling methods.
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