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Abstract

Concerns have been raised about the use of relative abundance data derived from next generation

sequencing as a proxy for absolute abundances. For example, in the differential abundance setting,

compositional effects in relative abundance data may give rise to spurious differences (false positives)

when considered from the absolute perspective. In practice however, relative abundances are often

transformed by renormalization strategies intended to compensate for these effects and the scope of the

practical problem remains unclear. We used simulated data to explore the consistency of differential

abundance calling on renormalized relative abundances versus absolute abundances and find that,

while overall consistency is high, with median sensitivities (true positive rates) and specificities (1 -

false positive rates) each of around 0.90, consistency can be much lower where there is widespread

change in the abundance of features across conditions. We confirm these findings on a large number

of real data sets drawn from 16S metabarcoding, expression array, bulk RNA-seq, and single-cell

RNA-seq experiments, where data sets with the greatest change between experimental conditions

are also those with the highest false positive rates. Finally, we evaluate the predictive utility of

summary features of relative abundance data themselves. Estimates of sparsity and the prevalence of

feature-level change in relative abundance data give accurate predictions of discrepancy in differential

abundance calling in simulated data and provide useful bounds for worst-case outcomes in real data.
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Introduction

Warnings about the consequences of compositional effects in sequence count data have been published

repeatedly in the decades since the technology’s advent and its application to a host of biological prob-

lems. The issue relates to a loss of scale information during sample processing, which renders counts of

genes, transcripts, or bacterial species as relative abundances. No consensus solution for this problem

exists. In this work, we use simulated and real data on differential abundance calling to quantify the

discrepancy between differential abundance estimates made on relative versus ”absolute” abundances.

Our simulations show that methods which heuristically rescale sample abundances are often highly con-

sistent across relative and absolute count data and we confirm that the low complexity case, roughly

corresponding to bacterial community profiling, is the most problematic. Further, we show that data sets

which are especially susceptible to distortion by compositional effects can often be predicted on the basis

of ”signatures” of this distortion.

Compositionality in sequence count data

Compositionality refers to the nature of sequence count data as containing relative abundance information

only. In the differential abundance setting, several authors [1, 2, 3] have described the problem this poses:

whereas researchers would like to interpret change in absolute abundances, compositional effects mean

using change in relative abundances as a proxy can lead to false discoveries. A few authors have cited

instances of these false discoveries in real data. Coate and Doyle [4, 5] discussed the issue of transcriptome

size variation in plants and other systems and the impact of this on accurate transcriptome profiling. Nie

et al and Lin et al [6, 7] documented the phenomenon of widespread ”transcription amplification” by the

transcription factor c-Myc and Lovén et al [8] used c-Myc data and parallel RNA quantification assays

to show that substantial differences in total abundance between control and elevated c-Myc conditions

resulted in very different interpretations of apparent differential expression.

Common to these studies of transcriptomes is a recommendation that, where feasible, researchers leverage

RNA spike-ins as controls against which changes in observed abundance can be scaled [9, 10]. But this

practice has fallen short of widespread adoption. While several papers have expressed confidence in

the utility of spike-ins [11, 12, 13, 14, 15], the doubt cast by reports of widespread batch effects [16]

and technical noise [17] have had the effect of reducing researcher confidence in their use. Further, the

introduction of spike-ins is not practical on all platforms.
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Box 1: Measuring relative abundances

Sequence counting has become widespread as a means of census-taking in microscopic biological

systems. Genomic material, typically RNA, is captured and quantified at the component level.

Sampled cells are lysed, messenger RNA is captured and fragmented, transcribed into cDNA,

sequenced, classified, and quantified. The results are relative abundances of gene products in the

cell (in the case of single-cell RNA-seq) or tissue (in bulk RNA-seq). In another instance, whole

bacterial communities are profiled by barcoding of the 16S subunit of the ribosome. Ribosomal

RNA associated with this piece of translation machinery is ubiquitously present across the bacterial

kingdom but variations in the genetic sequence of this component can uniquely identify bacteria to

the species or strain level in well-characterized systems, allowing a researcher to profile bacterial

community composition. Absent measurements of microbial load or transcriptome size, however,

the observed sequence counts in all these cases represent relative abundances.

Sequence count data is compositional due to steps in sample processing. Across domains, samples

are typically normalized to some optimal total amount of genetic material prior to sequencing in

accordance with manufacturer recommendations for best performance. This step removes varia-

tion in total abundance across samples. Saturation of sequencing has been cited [18] as another

mechanism by which abundances are rendered relative: a finite amount of reagent means there

is an upper limit on biological material which can be captured; rare components can be forced

out by a ”competition” to be sampled. These factors withstanding, observed total abundances

would likely still be noisy. Repeated subsampling of small amounts of material and variation in

the efficiency of library preparation steps can distort observed totals.

In transcriptomics and in microbial community profiling, residual variation in observed total abun-

dances across samples is generally taken to be technical noise and most analytics pipelines involve

steps to rescale observed abundances. The simplest of these is the counts per million (CPM)

transformation which converts observed counts to relative abundances, then scales by 1 million.

Where approaches that rely on spike-ins are undesirable or infeasible, sample rescaling procedures have

proliferated. These methods typically assume the existence of a stable set of features and attempt to nor-

malize compositions in such a way as to recover this stable set across samples. In fact, in transcriptomics,

these methods predominate.

In the setting of microbial community profiling, the prevailing assumption is that typical compositions are
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too simple for rescaling methods to work well (although results in benchmarking studies have been mixed

[19, 20]). Competing approaches have been developed for dealing with compositionality in microbial

sequence count data. Quantitative microbiome profiling [21] and similar approaches combine relative

abundances with complementary measurements of microbial load to reconstruct absolute abundances.

In contrast, so-called compositional methods are also utilized. These involve log relative representations

which can give approximate log-normality, such that workhorse statistical methods for continuous data

may be applied. However, interpretation of these quantities can be challenging (e.g. as with the isometric

logratio [22]).

Though there is evidence from simulated and real data that scale - i.e. increasing complexity of compo-

sition in terms of numbers of genes, transcripts, or bacterial sequence variants - mitigates the problem

of compositionality [2, 20], it remains unclear whether there are instances where it is reasonable to sub-

stitute relative abundances for absolute abundances and several fields could benefit from clarity on this

issue. In this work, we quantify the discrepancy in differential abundance calling on simulated and real

data sets representative of 16S metabarcoding, bulk RNA-seq, and single-cell RNA-seq experiments.

In simulations exploring a broad range of differential abundance scenarios, we find median false positive

rates of differential abundance calls made on absolute versus relative counts are around 0.10 and that

false positive rates increase with the proportion of differentially abundant features. The complexity of

composition (number of features) plays little role in observed outcomes. An exploration of sequencing

data collected from twelve external studies reveals similar trends. Further, we show that summaries

of sparsity and the prevalence of apparent feature-level change can provide excellent predictions of the

amount of discrepancy in differential abundance calls in simulated data and can bound expectations of

discrepancy in real data sets.

Results

We simulated differentially abundant count data in paired sets of absolute and relative abundances. In

the absolute abundances, differentially abundant features experienced either an increase or decrease in

abundance - often large - between each of two simulated conditions. Large numbers of differentially

abundant features frequently had the effect of changing the overall total abundance, potentially resulting

in several-fold changes in scale between conditions. These changes in scale were purposely removed from

a paired relative abundances by a simple resampling procedure. Compositional effects would present as

the relative change experienced by non-differentially abundant features.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.12.06.471397doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471397
http://creativecommons.org/licenses/by-nc-nd/4.0/


We explored ranges of complexity in composition and in the amount of differential abundance, grouping

simulations into three partially overlapping settings: a Microbial setting, characterized by low com-

plexity and high differential abundance; a Bulk transcriptomic setting having high complexity and

low differential abundance; and an intermediate Cell transcriptomic setting. The full results from

almost 6000 simulations are shown in Fig. 1, where agreement between differential abundance calls on

absolute and relative abundances for each data set are summarized by means of sensitivity and specificity

statistics, as described below. The same results are presented in simpler terms, as a function increasing

complexity of composition (expressed as increasing feature number), in Supplemental Figs. ?? and ??.

We evaluated the consistency of a small set of widely utilized differential abundance testing methods:

ALDEx2 [23], DESeq2 [24], and scran [25]. Each of these rescales the observed counts against a reference

quantity - typically, a subset of putatively stable features. Where such a stable reference exists, differ-

ences in these rescaled counts should approximate differences in absolute counts. In all cases, baseline or

”true” differential abundance for each feature in the absolute count data was determined by the use of a

simple generalized linear model. This yielded a common standard against which to compare differential

abundance calls made by ALDEx2, DESeq2, and scran. Details on the simulation procedure and these

differential abundance calling algorithms are given in Methods.

We report outcomes in terms of sensitivity (true positive rate) and specificity (1 - false positive rate).

Perfect concordance of differential abundance calls made on observed versus absolute counts would yield a

sensitivity of 1.0 and a specificity of 1.0. Sensitivity drops as more features deemed differentially abundant

from the perspective of the absolute counts fail to appear significantly different in the observed data and

specificity drops as an increasing number of features appear differentially abundant in the observed counts

alone. In simulated data, the primary mechanism of low specificity was the compositional effect: relative

changes in non-differentially abundant features. The sensitivities and specificities we report summarize

agreement and disagreement at the level of whole data sets. We highlight key observations made on

simulated data below.

Simulated data

Moderate specificity was typical but cases of low specificity were observed in all settings

for all methods

Median specificity was moderately high at 0.90 - lowest for DESeq2 in the Microbial setting at 0.86 and

highest for ALDEx2 in transcriptomic settings at 0.92 (see Table 1). However, a minority of simulated
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data sets yielding very large false positive rates were observed in every setting. Data sets with very low

specificity (< 0.5) made up less than 10% of simulated cases in the Transcriptomic settings and more

than 14% in the Microbial setting.

Increasing feature number improves specificity but the effect is modest

For all methods, median specificity was lowest in the Microbial setting and highest in either the Bulk

or Cell transcriptomic setting, as reported in Table 1. Simply increasing the simulated feature number

while fixing all other parameters also resulted in higher overall specificity for all methods (see Table 2)

indicating that feature number mediates this reduced false positive rate. The improvement in specificity

is small, however. In essence larger feature number merely eliminates the very worst outcomes.

Though scran was the top performer, outcomes were similar across methods

scran had the highest overall accuracy with a median sensitivity of 0.93 and specificity of 0.90. Sensitivity

was lower in ALDEx2 (median = 0.77) and specificity was lower in DESeq2 (median = 0.86). All in all,

methods exhibited similar performance in terms of their distributions of sensitivity and specificity across

settings. See Figs. 1 and 2.

Next, we explored characteristics of relative abundances associated - either positively or negatively -

with observed sensitivities and specificities in simulated data. It is possible to imagine characteristics

which might indicate the presence of distortion by compositional effects, for example, an increase in the

percent of rare features from one condition to the next (in effect, dropouts). While we might not expect

any single such characteristic to predict the sensitivity or specificity of calls made on relative versus

absolute abundances, composites of such characteristics might be informative. We describe the strongest

associations we observed below.

Sensitivity is anti-correlated with estimates of sparsity

Large proportions of zero- and one-counts in the simulated relative abundances correlated with low

sensitivity (Spearman’s correlation between proportion zeros and sensitivity, ρ = −0.60). In effect, this

echoes similar findings that decreasing sequencing depth decreases power in genomics studies [14] and

reflects a lesser expected statistical confidence in the observed change of low-count features. Interestingly,

in our simulations, evidence of extremes in terms of the apparent correlation of relative abundances (in

fact, the skew of that distribution of correlations) was also inversely associated with sensitivity (ρ =

−0.51).
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Specificity is strongly anti-correlated with the estimated proportion of differential features

The proportions of features undergoing large fold decreases or large fold increases in abundance relative

to the mean were highly informative with respect to specificity (ρ = −0.67 and ρ = −0.45 respectively).

The standard deviation of the change in log counts between simulated conditions was also anti-correlated

with specificity (ρ = −0.59). In each case, these characteristics supplied evidence of the existence (or

lack) of widespread change in composition. Methods which rescale observed abundances rely on a pool of

stable reference features against which to estimate per-sample ”scaling factors.” The larger the number

of components in the composition apparently changing, the greater the extent to which this rescaling is

impaired.

We utilized these features derived from relative abundance data as well as several dozens more to train

per-method models of both sensitivity and specificity, with the aim of predicting the discrepancy in

relative versus absolute differential abundance calls from features of observed data alone, reasoning that

these ”signatures” might be highly informative. All model features are outlined in Supplemental Table

??. Predictive models were trained on 80% of our simulated data and their performance was evaluated on

the held-out 20% of simulated data sets. Predictions of specificity were more accurate than predictions of

sensitivity (mean specificity R2 = 0.91; mean sensitivity R2 = 0.82). Prediction of outcomes was easiest

for DESeq2, where the R2 values for sensitivities and specificities on held-out data were 0.83 and 0.94,

respectively. Full results are given in Table 3. These results suggested it might be straightforward to

predict discrepancy between differential abundance calls made on absolute versus relative abundances

using characteristics of the relative abundance data alone. However, the study of some representative

real data sets will suggest prediction may be much more difficult in this setting.

Real data

Next, we examined a variety of real data sets across many experimental settings in order to explore

outcomes in real data. We collected publicly available data from twelve studies [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37] and attempted to reconstruct absolute abundances by normalizing observed

total sample abundances against reference quantities provided in the same published materials. In most

cases, these reference quantities were external RNA spike-in sequences. In others, reconstructed absolute

abundances had already been estimated, as in [26] through quantitative microbiome profiling (QMP [21]).

In one case [36], we normalized against Gapdh, a stable, highly expressed housekeeping gene [38] and in

another [31], against paired measurements of cell mass. Visual and textual summaries of these data
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sets are available in Fig. 4 and Table 4. While not exhaustive, these studies illustrate a wide range

of experimental conditions. We acknowledge the difficulty in reconstructing absolute abundances and

caution that these estimates are likely noisy. Rather than call them absolute abundances, we will adopt

the helpful terminology of [9] and call these reconstructions ”nominal abundances” to distinguish them

from some theoretical ground truth. While these quantities are an abstraction, since they derive from real

experiments, we believe they capture some of the real variation in composition and scale we could expect

to see in data from typical experiments and should serve to ground expectations. As with simulated

data, we proceed by comparing differential abundances called on the relative count data (via ALDEx2,

DESeq2, or scran) with differential abundances called on the nominal abundances - our proxy for ”true”

differential abundance.

We have endeavored to include among the real data sets some of the most challenging possible cases for

differential abundance calling from relative count data. Many of the data sets we have selected involve

a large amount of absolute and/or compositional change across experimental or biological conditions.

These data sets help us answer the questions: What is the scale of discrepancy in the worst cases? How

useful are summaries derived from relative abundances in these cases? Could a researcher reasonably

predict error from relative abundance data alone?

Observed sensitivities and specificities for real data sets are given in Table 5.

Low sensitivity, high specificity cases were common

Results of differential abundance calling on the data sets of Vieira-Silva et al., Muraro et al., Hagai et

al., Hashimshony et al., Grün et al., and Kimmerling et al. are shown in Fig. 5 and were characterized

by a combination of high specificity and very low sensitivity. These data consist of five transcriptomic

studies and a single gut microbial data set. In general there was less detectable differential abundance

in these six data sets than in the others we examined (see Table 4) but perhaps more importantly,

this differential abundance was often subtle - small in absolute terms - and therefore difficult to detect.

Features which were significantly differentially abundant in the absolute counts typically fell below the

threshold of significance in the observed data. An example of this from the data of Kimmerling et al. is

shown in Fig. 7.

We attempted to predict sensitivity and specificity for all real data sets using the same features defined for

simulated data and the high specificity associated with these six data sets represented one of the easier-

to-predict outcomes. Predictive intervals for specificity were generally small and outcomes fell within or

above the predicted specificity 0.83 of the time (15 of 18 cases). However, corresponding sensitivities were
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not as well predicted, especially for the single-cell experiments of Hashimshony et al. and Kimmerling et

al. where the models overpredicted the observed sensitivity by as much as 50%.

Methods vary in their ability to handle borderline cases

Results for the data sets of Song et al., Barlow et al., Monaco et al., and Yu et al. are summarized

in Fig. 6. Accuracy of outcomes was mixed, both in terms of sensitivity and specificity, with results

often varying by method. One method tended to outperform the rest in these intermediate cases - more

frequently than not, DESEq2, for example on Yu et al. (Fig. 6j). These data sets generally had a larger

proportion of differentially abundant features, approaching or exceeding 50%, making the task of accurate

renormalization of sample abundances in these cases exceedingly difficult for all methods.

Extreme cases with large absolute change had very low specificity

The data sets of Yu et al., Owens et al., and Klein et al. each had a (sometimes overwhelming) majority of

differentially abundant features in their nominal counts. Experimentally, these studies involved either a

genome-wide perturbation of expression or differences in transcriptome size across conditions. Together,

this group presented the most difficult challenges for accurate renormalization. As a result, though

sensitivity was at its highest in this data, specificity was overall very low, seemingly due to compositional

effects, as seen in a representative example from Klein et al. in Fig. 7.

Two data sets stand out in their superficial similarity and divergent outcomes: the high-specificity count

data of Kimmerling et al. and low-specificity Owens et al. Both experiments involved large biological

perturbations resulting in more than a doubling of transcriptome volume between conditions. However

compositional effects are only apparent in the relative abundances of Owens et al. The differentiating

factor is ostensibly noise: the dispersion of counts in Kimmerling et al. is much greater - that is, the data

are noisier - and confident calls of differential abundance on the observed data are few.

Sensitivity was greatly reduced in the real data sets we studied relative to our simulated data, possibly

due to two factors. We observed a trend of diminishing sensitivity with increasing feature number in our

simulations (see Fig. 2) and the largest real data sets evaluated here have 20,000 or more features. These

data were also noisier than our simulations, due to our spike-in rescaling strategy. In both cases, reduced

sensitivity might have been expected.

Cases where false positive rates should have been low generally were: low average fold change across

conditions and a strict minority of features in Muraro et al., Hashimshony et al., and Song et al. resulted

in high specificity for all methods (often at a cost of low sensitivity). In these data sets there is little
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change in scale available to drive compositional effects and large pools of relatively stable features should

make effective sample renormalization possible. In increasingly challenging cases like Grün et al. and

Hagai et al., which exhibited larger fold change across conditions and larger proportions of differential

features, most methods still performed well with respect to Type 1 error control.

Direct prediction of these outcomes from summary statistics was more successful for specificity than for

sensitivity but accuracy of point predictions was reduced relative to simulated data (R2 = 0.260 for

predicted vs. observed sensitivity, all methods; R2 = 0.643 for specificity). However, the same models

can be induced to yield predictive intervals and when utilized as bounds on plausible outcomes for a

given data set, these may still be highly useful. Consider the lower bound of the 90% predictive interval:

observed sensitivity was at least as high as that lower bound in 83% of cases (29 of 35) and observed

specificity was at least as high as that lower bound in over 91% of cases (32 of 35). This implies that this

and similar models, trained on features of the observed data alone, may be able to bound expectations

about the ”worst case” for a given data set.

Discussion

While the potential for compositional effects to drive differential abundance has repeatedly been described

in the literature, uncertainty remains about the scope of this problem. Previous studies have shown

that rates of false positive differential abundance calls can be high in certain settings [19, 20, 2]. Our

results indicate that the problem is at least partially a function of the amount of change in the system

under study and that differential abundance estimates from experiments characterizing extreme change

across observed conditions are likely to be distorted. Both simulated and published experimental data

contributed to this picture. Data sets with low fold change across conditions and a strict minority

of differentially abundant features had high specificities. Compositional effects and high rates of false

positive differential abundance calls were observed in simulated and real data where the scale of change

between conditions was roughly two-fold or greater, in line with similar evidence of from 16S data [39].

We found prediction of outcomes was possible in a limited sense. In simulated data, especially discrepant

outcomes were usually predictable by a few summary statistics derived from their relative abundances.

Low sensitivity was predictable from features which captured information about sequencing depth. Low

specificity was best predicted by estimates of the number of differentially abundant features and (im-

plicitly) their effect on the efficacy of renormalization. Though accuracy was not exceptionally high for

direct prediction of true and false positive rates in real data, the prediction of a lower bound on these
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same quantities was reasonably reliable, suggesting the possibility of identifying worst case scenarios for a

given data set based on observed counts alone. These estimates might, for example, motivate a researcher

to pursue more or less stringent false discovery control.

Our analysis of real data admits a shortcoming: in attempting to reconstruct absolute abundances in

real data sets, we generally utilized spike-ins as control quantities against which to scale total sample

abundances. The resulting reconstructions are undoubtedly noisy and simply a best approximation of

real change in the system. A further important investigation in the spirit of recent work by Lloréns-Rico

et al. [40] might assess the usefulness of partial reconstructions of abundance (e.g. by quantitative PCR

or spike-in renormalization) by quantifying the effect of this restored information on the accuracy of

downstream analyses.

Lastly, it should be noted that the concerns motivating this and similar studies may be moot for some

types of sequence count data. In particular, some single-cell platforms generate library sizes (i.e. total

per-sample observed abundances) which are already roughly proportional to absolute abundances. This

is in line a view that abundances in deeply sequenced UMI-barcoded single cells are likely to be a good

proxy for absolute abundances [12, 14]. The effect of compositionality may be a minor concern under

these circumstances.

Materials & Methods

We simulated general purpose molecular count data. These counts are interpretable as a variety of

biological quantities, for example, transcript abundance in a cell or bacterial strain abundance in a

microbial community. The simulated abundances undergo a sampling step intended to loosely replicate

the process of measurement itself and, crucially, the normalization of total abundance across samples,

giving a second set of count data. We refer to the first set of count data as ”absolute” counts and

the second, resampled set as relative or observed counts and explored the degree to which this loss of

information about changes in total abundance alters the results of a mock differential abundance analysis

by simulating a wide range of settings in our data, where key characteristics like complexity of composition

(e.g. gene number) and fold change across simulated conditions varied widely.

Simulation model

We designed a simulation framework to generate count data corresponding to two arbitrarily different

conditions, denoted by superscripts in the equations below. First, for p = 1, . . . , P features in the first
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condition, a set of log mean abundances was drawn as

θ(1)p ∼ N(m,S2)

where hyperparameters m and S tune the mean and standard deviation of baseline log abundances. A

correlation matrix was drawn as

Ω ∼ Inverse-Wishart(n,Q)

where scale matrix Q was supplied as either the identity matrix (for a minority of simulations) or a dense

correlation matrix with net positive elements. The matrix Ω is subsequently re-scaled to a correlation

matrix and used to draw correlated feature perturbations in a second condition as

θ(2)p ∼ MVN(θ(1)p ,Ω · a)

where the hyperparameter a exists in order to tune the overall scale of the correlated log perturbations.

Mean abundances on the scale of sequence counts for each condition are calculated as

γ(1)
p = exp(θ(1)p ), γ(2)

p = exp(θ(2)p )

Differentially abundant features in some desired proportion, c, are obtained as follows: features are

selected as differentially abundant with probability c. For those selected features only, the perturbed γ
(2)
p

serves as the mean abundance in the second condition; for all other features, the mean abundance in

both the first and second conditions is given by γ
(1)
p . Let these new vectors be µ

(1)
p , µ

(2)
p . These represent

mean the abundances of P features in two conditions, some of which differ across conditions, others of

which are identical. Replicates i = 1, . . . , 10 are then generated for each condition as follows. A fixed

dispersion parameter for absolute counts is defined as dabs = 1000 and those counts are drawn as

y
(1)
i,p ∼ NegBinom(µ(1)

p · δ, 1000)

where

δ ∼ max(0.1,N(1, g))

(Note that the dispersion parameter has been chosen such that the resulting counts are only barely
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overdispersed with respect to a Poisson.) The purpose of the truncated, per-sample multiplier δ is to

re-scale all abundances within a given sample by some factor of approximately 1 but by increasing the

scale of hyperparameter g, increasing replicate noise can be added within a condition. This process is

repeated for the second condition to give a set of absolute counts y
(2)
p .

A new average observed total abundance (or library size) is randomly drawn as

u ∼ Unif(5000, 2× 106)

Finally, observed abundances z are generated through a multinomial resampling procedure similar to

that of [10, 20, 23] which gives relative abundances as counts per million. Where i and k index different

samples prior to resampling, i′ indexes the sample i after resampling, and total counts for sample i prior

to resampling are given by ni =
∑

yi, we have

zi′ ∼ Mult(πi′ = yi/ni, ni′ = nk)

where superscripts have been suppressed as this procedure is identical across simulated ”conditions.”

The resulting P -length vector of counts for a given sample contains relative but not absolute abundance

information. These vectors are collapsed into a P × 20 count matrix containing 10 replicate samples for

each of two simulated conditions. In order to evaluate the discrepancy of differential abundance calling

on observed versus absolute counts, we apply differential abundance methods to count matrices Z and Y

respectively and score the differences.

Breadth of simulations

In order to generate simulations with a wide variety of characteristics, we swept in a grid over all our

hyperparameters. Feature number P was stepped through values 100, 1000, and 5000. A maximum

feature number of 5000 was chosen as txhese simulations were computationally intensive and major trends

had become apparent at that scale. The degree of feature correlation was encoded in five realizations

of scale matrices Q, encoding fully independent features at one extreme and 50% strongly positively

correlated features at the other extreme. Log mean abundance (m) and the log variance (S) were

independently incremented through low to high values. Likewise, the average log perturbation size (a)

was swept from low to high in five steps, as a proportion of log mean abundance.

Replicate noise g varied from low to high in three steps. And finally, the proportion of differentially

abundant features ranged across 20%, 30%, 50%, 70%, and 90%. Note that because many ”perturbations”
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were very small, detectable differential abundance was generally only a fraction of the parameterized

amount and most data sets contain a minority of differentially abundant features. Overall this 5625

simulated data sets were generated with almost continuous variation characteristics of interest.

We suggest that ranges of these parameter settings approximately represent different data modalities.

We term the Microbial setting that with low to moderate feature number (P ≤ 1000) and largest average

perturbation, in accordance with a belief that bacterial communities are often simple (in terms of sequence

variants with more than negligible abundance) and that they are highly variable even at short time scales

[41].

We designate the Bulk transcriptomic setting as that with the largest feature number (P = 5000) and

having a lower average perturbation, the rationale being that transcriptomes sampled in aggregate over

many cells are complex but largely stable compositions. Similarly, we define the intermediate Cell tran-

scriptomic setting, approximately representative of single-cell RNA-seq data, to comprise simulations

with moderate to large feature numbers (P ≥ 1000) and moderate perturbation sizes. These categories

are intended as rough outlines and we note that within these settings the realized data varies in terms

of 1) degree of feature correlation, 2) overall abundance, 3) (un)evenness of composition, and 4) within-

condition variation in totals.

Calling differential abundance

Three differential abundance calling methods were used in this study; each relies upon the use of a

reference quantity to renomalize sample total abundances. For ALDEx2 this reference quantity is a

trimmed version of per-sample mean log abundance. DESeq2 rescales samples using a sophisticated

Bayesian model. Implicit in DESeq2’s procedure is an assumption that a large set of stable features

exists against which the observed changes in other features can be adjusted. scran’s procedure follows a

similar rationale, but employs a local rescaling, within clusters of like samples.

For simplicity, we omit from consideration models which lack a rescaling. We also omit zero-inflation

models. Although these are popular in single-cell mRNA sequencing data, the debate continues about

whether these models are appropriate for these data [42, 43].

Finally, differential abundance calls made on observed counts must be evaluated against a reference in

order to calculate discrepancy. For this reference, we used calls made by a negative binomial generalized

linear model on absolute abundances as a pseudo-gold standard or ”oracle” in all cases. Features with

significantly different means according to the GLM were considered ”true” instances of differential abun-

dance. One caveat is that some of the discrepancy in calls between absolute and relative abundances will
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be due to differences in sensitivity between the models applied to the reference and ”observed” data sets -

i.e. between a stock NB GLM and DESeq2. In all settings, true positive, true negative, false positive, and

false negative calls were manually spot checked to verify disagreements between methods were generally

unambiguous.

Accuracy (in terms of sensitivity and specificity) was calculated between differential abundance calls made

on absolute abundances and observed abundances. Three methods were evaluated: ALDEx2, DESeq2,

and scran. ALDEx2 was called using the aldex() from the associated R package [23] using the interquartile

logratio reference. DESeq2 was called using the Seurat wrapper (FindMarkers(test.use = ...)) [24, 44].

scran was called using the method described in the vignette associated with its Bioconductor package [25].

Unadjusted p-values were collected from all methods and multiple test correction applied via p.adjust in

R using Benjamini-Hochberg method.

Predictive modeling

In total, we trained 6 random forest models over 57 summary features, for each combination differential

abundance calling method (ALDEx2, DESeq2, or scran) and accuracy measure (sensitivity or specificity).

All such predictive models were fit with the randomForest package in R [45]. A random forest is an en-

semble of decision trees and this tree-based approach was chosen because, while extensive, our simulations

were not exhaustive. We anticipated that learning sets of decision rules might generalize well to unseen

conditions, in particular feature numbers larger than those we explored in simulation. Feature importance

was measured as ”gain,” or the relative increase in predictive accuracy achieved by the inclusion in the

model of a given feature, as computed by the caret package in R [46].

Predictive models built from these summary features attempted to estimate sensitivity and specificity

values explicitly. Details on these models are given in the Methods. All models were trained on 80% of

the simulated data and their predictive accuracy was assessed on the reserved 20%.

Real data processing

Publicly available data was downloaded from sources provided in the published materials for the studies

cited. In general, relative abundances were converted to counts per million and sequences for external

spike-ins extracted from these counts. Simple per-sample scaling factors were calculated from mean

spike-in abundances and applied to the relative data to give ”nominal” abundances.

In the inhibited and control cells of Klein et al., the expression of housekeeping gene Gapdh was used to

normalize per-sample total abundance. In the 16S metagenomic data of Barlow et al. and Vieira-Silva et
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al., nominal abundances had already been estimated by the authors of those studies using quantitative

PCR-based methods. In the single-cell expression data of Yu et al., log2 observed total abundances

correlated well with log2 spike-in abundances and the observed data themselves were treated as true

abundances. Relative abundances were derived by normalizing per-sample library sizes and scaling to

give counts per million. Finally, in the coupled cell mass and expression measurements of Kimmerling et

al., the estimated cell mass was used as scaling factor for observed expression to give nominal abundances.

Nominal and relative abundances were then filtered to exclude features (genes or bacterial sequence

variants) present at an average abundance of less than a single count in either the nominal or relative

count tables. This both reduced the size of the largest data sets - making them more computationally

manageable - and reduced sparsity in the most extreme cases.
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Tables

Setting Method Median speci-
ficity

Percent of data
sets below 95%
specificity

Percent of data
sets below 50%
specificity

Microbial ALDEx2 0.89 58% 18%

Microbial DESeq2 0.86 78% 15%

Microbial scran 0.90 72% 10%

Cell transcriptomic ALDEx2 0.92 56% 5%

Cell transcriptomic DESeq2 0.87 76% 11%

Cell transcriptomic scran 0.92 67% 6%

Bulk transcriptomic ALDEx2 0.92 56% 2%

Bulk transcriptomic DESeq2 0.86 77% 1%

Bulk transcriptomic scran 0.91 66% 4%

Table 1: Low specificity is a common outcome in simulated data. A majority of simulated data sets have
false positive rates in excess of 5% and in the setting with lowest feature number and highest volatility
(the Microbial setting), a substantial proportion of data sets had false positive rates in excess of 50%.

Feature number Method Median speci-
ficity

Percent of data
sets below 95%
specificity

Percent of data
sets below 50%
specificity

100 ALDEx2 0.83 67% 27%

100 DESeq2 0.84 82% 16%

100 scran 0.89 75% 12%

1000 ALDEx2 0.91 60% 10%

1000 DESeq2 0.86 80% 13%

1000 scran 0.90 71% 8%

5000 ALDEx2 0.92 61% 3%

5000 DESeq2 0.88 72% 9%

5000 scran 0.92 64% 4%

Table 2: Specificity in simulated data. Per-method results are grouped and sorted by increasing feature
number.
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Method Sensitivity prediction R2 Specificity prediction R2

ALDEx2 0.817 0.856

DESeq2 0.826 0.941

scran 0.809 0.907

Table 3: Performance of random forest predictive models of sensitivity and specificity on held out data
sets.
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Source Description Number
sequence
variants

Number samples
(per-condition)

Percent
zeros

Approx.
fold
change

Approx.
percent
differential
features

Vieira-Silva
et al. (2019)

16S metagenomics from
human gut samples of
control and Crohn’s dis-
ease patients

263 14, 54 72% 1.8 7%

Muraro et
al. (2016)

single cell RNA-seq of
pancreatic islet cells

13,764 100, 100 64% 1.1 13%

Hagai et al.
(2018)

bulk RNA sequencing
of both unstimulated
and mock-viral infected
mouse fibroblasts

13,848 10, 29 34% 1.5 19%

Hashimshony
et al. (2016)

single cell RNA-
sequencing of quiescent
and cycling mouse fi-
broblasts

12,075 31, 38 22% 1.2 23%

Grün et al.
(2014)

mouse embryonic stem
cells cultured in serum
and a two-inhibitor solu-
tion

11,572 76, 56 47% 1.3 40%

Kimmerling
et al. (2018)

cycling, stimulated
CD8+ T cells

9,930 79, 79 35% 2.0 74%

Song et al.
(2021)

nCounter array of hu-
man primary lung cancer
vs. brain metastases

773 13, 15 0% 1.0 39%

Barlow et
al. (2020)

16S metagenomics from
ketogenic diet and con-
trol mice

103 17, 18 41% 3.4 43%

Monaco et
al. (2019)

immune cell profiling in
human humans via bulk
RNA-seq

20,576 4, 8 15% 3.4 45%

Yu et al.
(2014)

single cell expression
profiling of rat brain and
liver tissue

14,085 32, 32 14% 2.0 85%

Klein et al.
(2015)

single cell RNA-
sequencing of normally
developing and leukemia
inhibitory factor-treated
mouse ESCs

23,316 100, 100 67% 1.4 62%

Owens et al.
(2016)

single cell sequencing of
zebrafish embryos; early
vs. late time course sam-
ples drawn

35,794 24, 35 17% 3.7 89%

Table 4: Real 16S metabarcoding, bulk RNA-seq, and single cell RNA-seq data sets corresponding to the
abundances shown in Figures 3 and 4. The percent differential features are those significantly differential
to a negative binomial GLM in the nominal abundances.
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Data set Method Sensitivity Specificity

Vieira-Silva et al. ALDEx2 0.053 0.000

Vieira-Silva et al. DESeq2 0.263 0.041

Vieira-Silva et al. scran 0.105 0.074

Muraro et al. ALDEx2 0.370 0.021

Muraro et al. DESeq2 0.325 0.009

Muraro et al. scran 0.696 0.097

Hagai et al. ALDEx2 0.105 0.024

Hagai et al. DESeq2 0.475 0.032

Hagai et al. scran 0.578 0.137

Hashimshony et al. ALDEx2 0.000 0.000

Hashimshony et al. DESeq2 0.058 0.007

Hashimshony et al. scran 0.063 0.004

Grün et al. ALDEx2 0.182 0.050

Grün et al. DESeq2 0.420 0.040

Grün et al. scran 0.519 0.184

Kimmerling et al. ALDEx2 0.003 0.000

Kimmerling et al. DESeq2 0.002 0.002

Kimmerling et al. scran 0.082 0.006

Song et al. ALDEx2 0.577 0.141

Song et al. DESeq2 0.626 0.212

Song et al. scran 0.630 0.049

Barlow et al. ALDEx2 0.409 0.288

Barlow et al. DESeq2 0.500 0.153

Barlow et al. scran 0.545 0.305

Monaco et al. ALDEx2 0.056 0.011

Monaco et al. DESeq2 0.379 0.165

Yu et al. ALDEx2 0.775 0.389

Yu et al. DESeq2 0.931 0.117

Yu et al. scran 0.875 0.378

Klein et al. ALDEx2 0.237 0.377

Klein et al. DESeq2 0.842 0.311

Klein et al. scran 0.978 0.763

Owens et al. ALDEx2 0.708 0.801

Owens et al. DESeq2 0.814 0.919

Owens et al. scran 0.801 0.853

Table 5: Observed sensitivities and specificities for all methods in real data sets.
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Figures

Figure 1: Sensitivity and specificity for three differential abundance calling methods in three experimen-
tal settings. Data sets are labeled by proportion of features with at least a 50% increase or decrease in
abundance between conditions. Results shown are for all methods in the a) Microbial, b) Bulk transcrip-
tomic, and c) Cell transcriptomic settings.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.12.06.471397doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471397
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Sensitivity and specificity for three differential abundance calling methods in three composi-
tional complexity settings. Data sets are labeled by absolute mean fold change across conditions. Results
shown are for all methods in the a) Microbial, b) Bulk transcriptomic, and c) Cell transcriptomic set-
tings.
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Figure 3: Visual summaries of nominal abundances (left panels) and relative abundances (right panels)
for a) Vieira-Silva et al. b) Muraro et al. c) Hagai et al. d) Hashimshony et al. e) Grün et al. f)
Kimmerling et al. Features (genes or bacterial sequence variants) with at least 1% relative abundance
across all samples are colored; all other features are gray.
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Figure 4: Visual summaries of nominal abundances (left panels) and relative abundances (right panels)
for g) Song et al. h) Barlow et al. i) Monaco et al. j) Yu et al. k) Klein et al. m) Owens et al. Features
(genes or bacterial sequence variants) with at least 1% relative abundance across all samples are colored;
all other features are gray.
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Figure 5: Results summaries for a) Vieira-Silva et al. b) Muraro et al. c) Hagai et al. d) Hashimshony
et al. e) Grün et al. f) Kimmerling et al.
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Figure 6: Results summaries for g) Song et al. h) Barlow et al. i) Monaco et al. j) Yu et al. k) Klein
et al. m) Owens et al.
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Figure 7: Discrepant calls in nominal and relative abundances. a)A typical false negative result in data
derived from the experiment of Kimmerling et al. This feature is significantly differentially abundant in
the nominal abundances but not in relative abundances or relative abundances rescaled by DESeq2’s size
factor. b) A typical false positive result in data from Klein et al.
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