Confirmatory Results
The accuracy of absolute differential abundance analysis from relative count data
View ORCID ProfileKimberly E. Roche, Sayan Mukherjee
doi: https://doi.org/10.1101/2021.12.06.471397
Kimberly E. Roche
1Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, United States
Sayan Mukherjee
1Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, United States
2Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, Durham, NC 27708, United States; Institute for Computer Science, Universität Leipzig and the Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, 04103, Germany
3Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States

Article usage
Posted May 11, 2022.
The accuracy of absolute differential abundance analysis from relative count data
Kimberly E. Roche, Sayan Mukherjee
bioRxiv 2021.12.06.471397; doi: https://doi.org/10.1101/2021.12.06.471397
Subject Area
Subject Areas
- Biochemistry (7534)
- Bioengineering (5488)
- Bioinformatics (20709)
- Biophysics (10267)
- Cancer Biology (7942)
- Cell Biology (11597)
- Clinical Trials (138)
- Developmental Biology (6576)
- Ecology (10151)
- Epidemiology (2065)
- Evolutionary Biology (13565)
- Genetics (9504)
- Genomics (12801)
- Immunology (7891)
- Microbiology (19472)
- Molecular Biology (7624)
- Neuroscience (41939)
- Paleontology (307)
- Pathology (1253)
- Pharmacology and Toxicology (2182)
- Physiology (3254)
- Plant Biology (7017)
- Synthetic Biology (1944)
- Systems Biology (5412)
- Zoology (1109)