Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Meet me in the middle: median temperatures impact cyanobacteria and photoautotrophy in eruptive Yellowstone hot springs

View ORCID ProfileTrinity L. Hamilton, Jeff Havig
doi: https://doi.org/10.1101/2021.12.06.471526
Trinity L. Hamilton
1Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
2The Biotechnology Institute, University of Minnesota, St. Paul, MN 55108
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Trinity L. Hamilton
  • For correspondence: trinityh@umn.edu
Jeff Havig
1Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
3Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Geographic isolation can be a main driver of microbial evolution in hot springs while temperature plays a role on local scales. For example, cyanobacteria, particularly high temperature Synechococcus spp., have undergone ecological diversification along temperature gradients in hot spring outflow channels. While water flow, and thus temperature, is largely stable in many hot springs, flow can vary in geysing/eruptive hot springs resulting in large temperature fluctuations (sometimes more than 40°C). However, the role of large temperature fluctuations in driving diversification of cyanobacteria in eruptive hot springs has not been explored. Here, we examined phototroph community composition and potential photoautotrophic activity in two alkaline eruptive hot springs with similar geochemistry in the Lower Geyser Basin in Yellowstone National Park, WY. We observed distinct cyanobacterial amplicon sequencing variants (ASVs) consistent with allopatry and levels of light-dependent inorganic carbon uptake rates similar to other hot springs, despite large temperature fluctuations. Our data suggests median temperatures may drive phototroph fitness in eruptive hot springs while future studies are necessary to determine the evolutionary consequences of thriving under continuously fluctuating temperatures. We propose that large temperature swings in eruptive hot springs offer unique environments to examine the role of allopatry vs. physical and chemical characteristics of ecosystems in driving cyanobacteria evolution and add to the debate regarding the ecology of thermal adaptation and the potential for narrowing niche breadth with increasing temperature.

Importance Hot spring cyanobacteria have long been model systems for examining ecological diversification as well as characterizing microbial adaptation and evolution to extreme environments. These studies have reported cyanobacterial diversification in hot spring outflow channels that can be defined by distinct temperature ranges. Our study builds on these previous studies by examining cyanobacteria in geysing hot springs. Geysing hot springs result in outflow channel that experience regular and large temperature fluctuations. While community composition is similar between geysing and nongeysing hot spring outflow channels, our data suggests median, rather than high temperature, drive the fitness of cyanobacteria in geysing hot springs. We propose that large temperature swings may result in patterns of ecological diversification that are distinct from more stable outflows.

Footnotes

  • Author X: Havig J (jhavig{at}umn.edu)

  • COMPETING FINANCIAL INTERESTS The authors declare no competing financial interests.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted December 07, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Meet me in the middle: median temperatures impact cyanobacteria and photoautotrophy in eruptive Yellowstone hot springs
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Meet me in the middle: median temperatures impact cyanobacteria and photoautotrophy in eruptive Yellowstone hot springs
Trinity L. Hamilton, Jeff Havig
bioRxiv 2021.12.06.471526; doi: https://doi.org/10.1101/2021.12.06.471526
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Meet me in the middle: median temperatures impact cyanobacteria and photoautotrophy in eruptive Yellowstone hot springs
Trinity L. Hamilton, Jeff Havig
bioRxiv 2021.12.06.471526; doi: https://doi.org/10.1101/2021.12.06.471526

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4246)
  • Biochemistry (9175)
  • Bioengineering (6806)
  • Bioinformatics (24066)
  • Biophysics (12160)
  • Cancer Biology (9566)
  • Cell Biology (13828)
  • Clinical Trials (138)
  • Developmental Biology (7660)
  • Ecology (11739)
  • Epidemiology (2066)
  • Evolutionary Biology (15547)
  • Genetics (10672)
  • Genomics (14364)
  • Immunology (9515)
  • Microbiology (22914)
  • Molecular Biology (9135)
  • Neuroscience (49163)
  • Paleontology (358)
  • Pathology (1487)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6207)
  • Zoology (1304)