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Abstract

Glioblastoma is the most malignant primary brain tumor with significant heterogeneity
and a limited number of effective therapeutic options. Many investigational targeted
therapies have failed in clinical trials, but it remains unclear if this results from
insensitivity to therapy or poor drug delivery across the blood-brain barrier. Using
well-established EGFR-amplified patient-derived xenograft (PDX) cell lines, we
investigated this question using an EGFR-directed therapy. With only bioluminescence
imaging, we used a mathematical model to quantify the heterogeneous treatment
response across the three PDX lines (GBM6, GBM12, GBM39). Our model estimated
the primary cause of intracranial treatment response for each of the lines, and these
findings were validated with parallel experimental efforts. This mathematical modeling
approach can be used as a useful complementary tool that can be widely applied to
many more PDX lines. This has the potential to further inform experimental efforts and
reduce the cost and time necessary to make experimental conclusions.

Author summary

Glioblastoma is a deadly brain cancer that is difficult to treat. New therapies often fail
to surpass the current standard of care during clinical trials. This can be attributed to
both the vast heterogeneity of the disease and the blood-brain barrier, which may or
may not be disrupted in various regions of tumors. Thus, while some cancer cells may
develop insensitivity in the presence of a drug due to heterogeneity, other tumor areas
are simply not exposed to the drug. Being able to understand to what extent each of
these is driving clinical trial results in individuals may be key to advancing novel
therapies. To address this challenge, we used mathematical modeling to study the
differences between three patient-derived tumors in mice. With our unique approach,
we identified the reason for treatment failure in each patient tumor. These results were
validated through rigorous and time-consuming experiments, but our mathematical
modeling approach allows for a cheaper, quicker, and widely applicable way to come to
similar conclusions.
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Introduction 1

Glioblastoma (GBM) is the most common primary brain malignancy and is aggressive, 2

heterogeneous, and diffusely-invasive. Despite maximal surgical resection, radiation 3

therapy, and chemotherapy, patients with GBM have a two-year survival of 4

approximately 25%, and five-year survival under 10% [1–3]. In efforts to further 5

improve overall survival of patients with GBM, many targeted therapies and other 6

chemotherapeutic drugs have been developed and appear promising in preclinical 7

trials [4]. Yet, many of these drugs fail at the clinical level. To this day, none have 8

surpassed the standard of care established over a decade ago, leaving the median overall 9

survival at a dismal 14.6 months [2]. 10

Drug delivery to the brain is an inherent challenge posed by the blood-brain barrier 11

(BBB), which largely restricts hydrophilic molecules and large macromolecules in the 12

bloodstream from crossing into the brain [5]. While this is a critical aspect of protecting 13

this vital organ against various infections, it also prevents a vast majority of oral or 14

intravenous drugs from being delivered to brain tumors. This inherent limitation in 15

drug delivery is always a consideration when investigating the cause of targeted 16

therapies that failed to show a clinical benefit. Exacerbating this challenge, GBM is 17

notorious for its inter- and intra-tumoral heterogeneity. Beyond questions of drug 18

delivery, researchers must also consider the presence of drug-resistant tumor cells, which 19

varies on a per patient basis. This further limits the interpretation of clinical trials, 20

which traditionally focus on the average outcomes of populations. If researchers could 21

effectively differentiate the cause of targeted drug therapy failure in clinical trials on a 22

per patient basis, it would undoubtedly result in more approved targeted drug options 23

available for patients. 24

However, as it is not easy to determine where drug was actually delivered in a human 25

brain, the gold standard for investigating drug failure is via in vivo experimentation 26

with cell lines and animal models. To form definitive conclusions, numerous repeats are 27

required, with tumors grown outside of and within the brain, and the resulting tissue 28

undergoing DNA, RNA, and protein sequence analyses. Recently, Marin et al. did just 29

this for depatuxizumab mafodotin (Depatux-M, ABT-414), an EGFR-directed antibody 30

drug conjugate (ADC) [6]. In brief, they performed intracranial experiments for seven 31

different cell lines, and through numerous experiments with each line, they determined 32

that only two cell lines were responsive to the therapy. Of the remaining five cell lines, 33

two acquired resistance to the drug and three were not responsive to the drug due to a 34

relatively intact BBB. This work was the first of its kind to go so deep and to fully 35

highlight the challenges facing the development of targeted drugs. 36

Recently, in Massey et al., we detailed our approach of how a mathematical model 37

could utilize only a subset of the data collected in Marin et al. to identify the driving 38

factor of drug failure: limited drug delivery or the presence of a population insensitive 39

to treatment [6, 7]. This is significant because it enables researchers to quickly assess 40

cell lines and determine which deserve deeper experimentation. By reducing time and 41

costs, we hope that this could focus drug development research and increase the speed 42

of acquiring clinically meaningful answers about drug effectiveness. 43

In this paper, we demonstrate that our model, using relatively minimal experimental 44

data, arrives at similar conclusions to the highly sophisticated experiments conducted in 45

Marin et al. for a subset of the cell lines [6]. First, we describe the mathematical model 46

as presented in Massey et al. [7]. Then, we provide a brief description of the cell lines 47

and experiments that were used. We briefly discuss the methodology for 48

parameterization and present our findings for each of the cell lines. We then conclude 49

with a few thoughts regarding the implications of our model and its hopeful future use. 50
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Methods 51

Preclinical Experiment: Data Collection 52

Three cell lines were selected from The Mayo Clinic Brain Tumor Patient-Derived 53

Xenograft (PDX) National Resource [8] for their known differential response to 54

Depatux-M (see S1 Table for further details). These cell lines were transduced with 55

firefly luciferase (F-luc) to allow for bioluminesence imaging (BLI). As the resulting BLI 56

flux is linearly proportional to the total number of luminescing cells, we can 57

non-invasively monitor tumor progression in vivo over time [9]. In brief, patient-derived 58

GBM cells were implanted heterotopically into ten athymic nude mice per cell line. 59

After the tumors were established, PDXs were assigned to therapy groups, including a 60

sham control and Depatux-M. Therapy was initiated a set number of days post injection 61

(7d, 14d, or 21d) and subsequently administered on 7 day intervals. To explore response 62

under the effect of the BBB, a similar experiment followed PDXs with tumors 63

implanted intracranially. BLI was acquired 1-3 times weekly, with less frequent imaging 64

after 4 weeks post-initiation. All animal studies were approved by the Mayo 65

Institutional Animal Care and Use Committee. Per IACUC guidelines, upon reaching a 66

moribund state, PDX mice were euthanized and data collection ceased. The collected 67

bioluminescence data, as collected in Marin et al., is shown in Fig 1 [6]. 68

Fig 1. Experimental data for PDXs treated with the ADC. BLI flux data was
recorded in photons/sec. Shaded area indicates time prior to treatment initiation. Five
subjects were utilized in each experiment, as denoted a-f: (a) GBM6, flank; (b) GBM6,
intracranial; (c) GBM12, flank; (d) GBM12, intracranial; (e) GBM39, flank; (f)
GBM39, intracranial.

As expected, tumors treated with a sham control grew exponentially. Heterogeneous 69

responses to treatment were noted across the selected cell lines, paired with additional 70

variability amongst mice of the same cell line. In GBM6, tumor size decreased in the 71

flank environment, but appeared to maintain size intracranially, despite treatment. In 72

GBM12, flank tumors had a modest response to the therapy, shortly followed by 73

regrowth. Nevertheless, intracranial GBM12 tumors did not respond to therapy. On the 74

other hand, GBM39 tumors responded very well to treatment in both the flank and 75

intracranially. 76

This varying success of Depatux-M in vivo can likely be attributed to two major 77

factors, both of which were captured with the preclinical experimental design. The flank 78

data captured tumor sensitivity to drug, and the intracranial data incorporated the 79

additional aspect of the BBB. Particularly, we take a two-pronged approach that uses 80

this experimental data to investigate the relative contributions that ADC insensitivity 81

and BBB permeability have on drug failure, leading to persistent tumor growth. 82

Mathematical Model: Treatment Exposure and Sensitivity 83

In this paper, we utilize the Treatment Exposure and Sensitivity model, first presented 84

in Massey et al. [7]. It was designed to differentiate the relative contributions of cell 85

sensitivity and drug delivery to the overall tumor response to therapy. We used the 86

previously described preclinical experimental data to parameterize this model. 87

Equations and Parameters 88

The model is a system of three ordinary differential equations (1) capturing the 89

dynamics of the drug (A) and two underlying tumor populations: one subpopulation 90
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that is highly sensitive to the treatment (H) and another that is less sensitive (L). The 91

model, as listed below, 92

dH

dt
= ρH︸︷︷︸

proliferation

− γµHAH︸ ︷︷ ︸
drug-induced apoptosis

(1a)

dL

dt
= ρL︸︷︷︸

proliferation

− γµLAL︸ ︷︷ ︸
drug-induced apoptosis

(1b)

dA

dt
=

N∑
n=1

Adose(n)δ (t− 7n)︸ ︷︷ ︸
drug pulse given at time t

− λA︸︷︷︸
drug decay

(1c)

has the analytical solution 93

C(t) = C0e
ρt
(
qe−γµH

∫
A(t)dt + (1− q)e−γµL

∫
A(t)dt

)
,

where C(t) = H(t) + L(t), and 94∫
A(t)dt =

N∑
n=1

2nAdose(n)

(
e7nλ − eλt

)
θ(t− 7n)

λ
.

Parameters for the model are summarized in Table 1. 95

Table 1. Model Parameter Definitions and Values. Adapted from Massey et
al. [7]. *Note: ADC dose was given according to animal weights, but variation was
unremarkable so we modeled the dose as a constant.

Symbol Definition Value Range Units
ρ cellular proliferation rate 0.1 to 0.5 day−1

γ proportion of tumor exposed 0 to 1 unitless
µH ADC-mediated highly-sensitive cell kill rate 1 to 10 mg−1 day−1

µL ADC-mediated less-sensitive cell kill rate zµH mg−1 day−1

z drug sensitivity factor between µH & µL 0 to 1 unitless
C0 initial number of implanted tumor cells model fit cells
q less-sensitive proportion of implanted cells 0 to 1 unitless
λ rate of ADC decay ln(2)/7 day−1

Adose ADC given during a single pulsed dose 0.1* mg

Parameter Estimation 96

Distinct from Massey et al., a Bayesian approach was employed for fitting parameters in 97

an attempt to capture the generic behavior of the cell line while acknowledging the 98

varying behavior in individual mice [7]. Similar to Massey et al. though, parameters 99

were calibrated in a sequential process enabled by the experimental design [7]. 100

Estimating proliferation rate (ρ) 101

The calibration of the proliferation rate ρ was done in two parts for both the flank and 102

intracranial settings. First, as the sham control experiments have no therapeutic effect, 103

the model can be evaluated without treatment, thereby simplifying to an exponential 104

growth model. Using the Matlab ® (MATLAB Release 2018b, The MathWorks, Inc., 105
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Natick, Massachusetts, United States) lsqcurvefit function, the logged-data can be 106

used to fit the initial number of viable tumor cells and the proliferation rate ρ. Since 107

proliferation rate is both intrinsic to the PDX line and specific to the microenvironment, 108

the subject-specific fits obtained in fitting the sham control data was used to develop an 109

informative Gaussian prior. This was then used to estimate the proliferation rate for 110

treatment in the same microenvironment. 111

Estimating sensitivity rates (µH , µL), the insensitive tumor proportion (q), 112

and proportion of drug delivered (γ) 113

The calibration of the sensitive and insensitive proportion q and respective rates µH , µL 114

was specific to the flank or intracranial settings. Since the flank does not have the 115

limitation of the BBB, we can assume that the entirety of the tumor is exposed to the 116

therapy and that γ = 1. The remaining parameters q, µH , and µL were sampled from 117

uninformative priors spanning the ranges in Table 1. The selected parameter set was 118

subject-specific and minimized the sum-of-squared-error for that subject in the flank. 119

With five subjects in the flank, we formulated a Gaussian prior for the µH sensitivity 120

using the selected parameter sets. Using this prior, we proceed with a similar approach 121

to select remaining parameter sets in the intracranial setting. 122

Results 123

Applying this fitting algorithm to each of the three PDX lines, variations in the model 124

parameters captured the wide range of treatment response dynamics in the data, both 125

across and within experiments. The resulting fits are displayed in Fig 2, where each 126

color represents a different experimental subject. Values for fitted model parameters are 127

tabulated in S2 Table - S7 Table. Of particular interest, parameter values for drug 128

sensitivity and BBB penetrance are plotted in Fig 3, where GBM6 is represented by red 129

squares, GBM12 is represented by green triangles, and GBM39 is represented by the 130

blue circles. 131

Fig 2. Treatment Exposure and Sensitivity model fits to experimental data.
Recall, BLI flux data was recorded in photons/sec and treatment was initiated after the
shaded area. Five subjects were randomized to each condition, shown here with their
respective fits. The fitting process was repeated for sets of data, denoted A-F: (a)
GBM6, flank; (b) GBM6, intracranial; (c) GBM12, flank; (d) GBM12, intracranial; (e)
GBM39, flank; (f) GBM39, intracranial.

Fig 3. Parameter values resulting from the fitted experimental data. Marker
size corresponds to the magnitude of q, the estimated proportion of less-sensitive cells
initially implanted. (a) Parameter estimates for the drug sensitivity of L and H (µL and
µH , respectively) in the flank setting. The dotted line represents the line of identity,
where µL = µH ; (b) Parameter estimates for the drug sensitivity of L (µL) is plotted
against the proportion of tumor exposed (γ) in the intracranial setting.

Highly-sensitive rate (µH) consistent across all PDX lines 132

The highly-sensitive cell kill rate (µH) was consistent (3.1–8.2 mg−1day−1, excluding 133

one GBM39 subject that failed to respond) for all flank estimates in PDX lines, as 134

shown in Fig 3A. This suggests that the highly-sensitive population H within each PDX 135
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line are fairly similar. When applying the Gaussian distribution for the intracranial 136

experiments, the parameter estimations remained in this range. Both GBM6 and 137

GBM12 were estimated to have similar µH values (5.5 and 5.8 mg−1day−1, 138

respectively), and the highly-sensitive population H of GBM39 was estimated to be 139

slightly less sensitive than the other PDX lines (average of 4.2 mg−1day−1). 140

Less-sensitive kill rate (µL) varies by PDX line 141

In contrast, estimates of the less-sensitive cell kill rate (µL) captured the differences 142

between PDX lines and was consistent across subjects. In the flank experiments, the 143

average rates for GBM6, GBM12, and GBM39 were 2.2, 1.7, and 0.6 mg−1day−1, 144

respectively (Fig 3A). This suggests that, of the PDX lines investigated, the 145

less-sensitive population of GBM6 was the most sensitive and GBM 39 the least 146

sensitive in the flank. Intracranially, this trend was much more obscure. On average, 147

the estimated intracranial µL values for GBM6, GBM12, and GBM39 were 5.1 148

(excluding three GBM6 subjects that failed to respond), 4.7, and 2.1 mg−1day−1
149

(Fig 3B). This suggests that the less-sensitive population L of GBM39 appears to be 150

less sensitive than the GBM6 and GBM12 intracranially. 151

Proportion of tumor exposed to drug (γ) varies by PDX line 152

Estimates of the proportion of tumor exposed to the drug (γ) also captured the 153

variability between PDX lines. Recall, this parameter was set to 100% for the flank 154

experiments. Intracranially, the model estimated that, on average, 20% of drug was 155

successfully delivered for GBM6, 48% for GBM12, and 100% for GBM39 (Fig 3B). 156

While GBM6 appeared to be the most sensitive of the PDX lines, the poor drug delivery 157

limited the response intracranially. Similarly, although GBM39 was estimated to be the 158

least sensitive of the PDX lines, the estimated high drug delivery resulted in a favorable 159

response to intracranial therapy. This suggests that drug delivery plays a major role in 160

treatment response. 161

Discussion 162

Despite numerous clinical trials investigating the use of novel and repurposed therapies 163

for GBM, the standard of care has not changed since 2005. The influence of the BBB is 164

a key area of study, as it poses a significant confounding factor by limiting drug delivery. 165

As a result, it remains unclear if cells are inherently resistant to these therapies or if it 166

is simply not reaching its target. By identifying the root cause of these failed clinical 167

trials, we can better inform researchers and clinicians in evaluating the benefits of 168

particular drugs. 169

This work builds upon our effort in Massey et al., where the model was first 170

presented, by demonstrating the utility of the model through applying the parameter 171

estimation to serial BLI data from three PDX lines [7]. Broadly, we found the model 172

was able to fit data from multiple replicates of multiple cell lines. Through the key 173

parameter fittings of µL and γ, the model provides insights into the different underlying 174

mechanisms driving the tumor growth behavior after therapy in the intracranial setting. 175

For GBM6, the model attributed the intracranial treatment failure to poor drug delivery, 176

presumably due to an intact BBB. While GBM12 was also fairly sensitive to the drug, 177

the model identified poor delivery as the major limitation, again presumably as a result 178

of the BBB. Unlike the other PDX lines, GBM39 responded well to treatment. The 179

model primarily attributed this to high drug delivery, suggestive of a permeable BBB. 180
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By using only serial BLI data, the model was able to make similar inferences about 181

the three PDX cell lines as the more rigorous results found in Marin et al. [6]. For 182

example, the model identified drug delivery as a key contributor to the outcomes of 183

GBM6 and GBM39. In fixed brain sections, elevated levels of fibrinogen are indicative 184

of BBB disruption and while GBM6 demonstrated no detectable fibrinogen 185

accumulation, GBM39 tumors had significant fibrinogen buildup near the region of the 186

tumor. Further, GBM6 tumors demonstrated minimal accumulation of drug while 187

GBM39 tumors exhibited drug accumulation near the region of the tumor [6]. 188

The agreement, though not perfect, between these two approaches is very 189

encouraging. The BLI experiments used in this paper were conducted in parallel to the 190

experiments for Marin et al. [6]. While it was decided to publish Marin et al. first, the 191

results presented here were identified first [6]. We believe this demonstrates the 192

promising complementary utility our model brings to investigating drug failures. BLI 193

experiments are relatively quick and cheap compared to the many rigorous experiments 194

performed in Marin et al. [6]. Our model can be easily applied to additional PDX lines, 195

and, in future investigations, could be used to identify which lines warrant more 196

detailed experiments. For example, it may identify which lines are anticipated to have 197

the most similar or different underlying response mechanisms. We believe this coupled, 198

complementary modeling and experimental approach could lead to a more efficient 199

pipeline for understanding drug responses. 200

Conclusion 201

This work has demonstrated how the use of a mathematical model with relatively 202

minimal experimental data can be used to predict the primary factor that contributes 203

to intracranial drug failure. While it should not be expected that this model will replace 204

more complicated experimental methodologies for deep biological understanding of drug 205

failure, as done in Marin et al., we believe the model can serve in a complementary 206

fashion, streamlining initial cell line selection for more rigorous experiments [6]. In this 207

way, the model could reduce overall experimental costs and hopefully also decrease time 208

to meaningful answers for patients. 209

Supporting information 210

S1 Table. PDX cell lines. Additional details about the primary tumors that the 3 211

PDXs were derived from. 212

PDX Line Sex EGFR status D/rho
GBM6 M Amp, vIII 4.7
GBM12 M Amp, G719A 1.7
GBM39 M Amp, vIII 0.9

213

S2 Table. GBM6 Flank Fit Values. Parameter fits obtained from model fitting. 214

Accuracy was measured by the sum of squared error between the logged data and the 215

logged model simulation (termed ssLe). 216
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Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.2806 0.2715 0.2715 0.2806 0.2806
µH 5.1538 5.1282 8.2051 4.8718 3.3333
µL 1.6276 2.1595 2.5912 2.0515 2.4560
γ 1 1 1 1 1
q -5.3684 -4.1053 -2 -4.5263 -2
C0 1.19 ∗ 107 7.59 ∗ 106 3.78 ∗ 106 5.43 ∗ 106 1.26 ∗ 106
ssLe 10.6708 4.5722 3.2533 7.6001 15.8735

217

S3 Table. GBM6 Intracranial Fit Values. Parameter fits obtained from model 218

fitting. Accuracy was measured by the sum of squared error between the logged data 219

and the logged model simulation (termed ssLe). 220

Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.1652 0.1652 0.1913 0.1652 0.1652
µH 5.5390 5.5390 5.5390 5.5390 5.5390
µL 4.6644 5.5390 0 0 0
γ 0.2564 0.2308 0 0.3333 0.1795
q -2 -10 -10 -2 -2
C0 2.26 ∗ 106 2.69 ∗ 106 1.24 ∗ 106 9.97 ∗ 106 2.75 ∗ 106
ssLe 0.5248 1.2012 0.7040 6.0080 3.1166

221

S4 Table. GBM12 Flank Fit Values. Parameter fits obtained from model fitting. 222

Accuracy was measured by the sum of squared error between the logged data and the 223

logged model simulation (termed ssLe). 224

Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.3339 0.3339 0.3339 0.3339 0.3339
µH 5.3846 6.9231 6.4103 6.9231 4.3590
µL 1.7005 1.8222 1.6872 1.8222 1.6059
γ 1 1 1 1 1
q -2 -2 -3.2632 -4.1053 -2
C0 4.74 ∗ 106 4.76 ∗ 106 2.87 ∗ 107 3.01 ∗ 106 3.57 ∗ 106
ssLe 10.8783 6.2766 3.6334 14.9513 4.0026

225

S5 Table. GBM12 Intracranial Fit Values. Parameter fits obtained from model 226

fitting. Accuracy was measured by the sum of squared error between the logged data 227

and the logged model simulation (termed ssLe). 228

Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.4798 0.4798 0.4372 0.4372 0.4798
µH 5.8480 5.8480 5.8480 5.8480 5.8480
µL 5.8480 5.2322 4.0012 4.6170 3.6936
γ 0.5385 0.5897 0.3333 0.4359 0.5128
q -10 -2 -2 -2 -2
C0 4.07 ∗ 105 1.56 ∗ 105 1.25 ∗ 105 2.37 ∗ 105 1.44 ∗ 105
ssLe 2.8516 2.0822 4.4786 1.3422 0.5797

229

S6 Table. GBM39 Flank Fit Values. Parameter fits obtained from model fitting. 230

Accuracy was measured by the sum of squared error between the logged data and the 231

logged model simulation (termed ssLe). 232
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Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.0975 0.0975 0.0975 0.0975 0.09075
µH 3.0769 4.1026 3.8462 5.8974 0.0000
µL 0.6477 0.6478 0.6073 0.6210 0.0000
γ 1 1 1 1 1
q -4.9474 -4.9474 -5.3684 -6.2105 -10
C0 1.05 ∗ 109 1.48 ∗ 109 2.21 ∗ 109 7.10 ∗ 109 1.25 ∗ 109
ssLe 6.1545 5.8926 6.1951 5.8559 6.9761

233

S7 Table. GBM39 Intracranial Fit Values. Parameter fits obtained from model 234

fitting. Accuracy was measured by the sum of squared error between the logged data 235

and the logged model simulation (termed ssLe). 236

Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ρ 0.2394 0.2394 0.2394 0.2394 0.2394
µH 4.3538 4.0636 4.0636 4.3538 4.0636
µL 1.6039 1.7112 1.4970 1.6039 4.0636
γ 1 1 1 1 1
q -2.4211 -2.4211 -2.8421 -2.8421 -10
C0 2.34 ∗ 106 1.98 ∗ 106 2.25 ∗ 106 2.40 ∗ 106 3.54 ∗ 106
ssLe 46.0727 23.4508 45.3879 35.2899 29.0847

237
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