1	The m ⁶ A reader YTHDF2 is a negative regulator for dendrite development and maintenance of
2	retinal ganglion cells
3	
4	Short title: YTHDF2 regulates dendrite development and maintenance of RGC
5	
6	Fugui Niu ^{1,2} , Peng Han ¹ , Jian Zhang ¹ , Yuanchu She ¹ , Lixin Yang ¹ , Jun Yu ¹ , Mengru Zhuang ¹ , Kezhen
7	Tang ³ , Yuwei Shi ¹ , Baisheng Yang ¹ , Chunqiao Liu ⁴ , Bo Peng ^{5,6} *, Sheng-Jian Ji ¹ *
8	
9	¹ School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and
10	Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen,
11	Guangdong 518055, China.
12	² SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen,
13	Guangdong 518055, China.
14	³ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong
15	518055, China
16	⁴ State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University,
17	Guangzhou 510060, China
18	⁵ Department of Neurosurgery, Huashan Hospital, and Institute for Translational Brain Research, State
19	Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University,
20	Shanghai 200032, China.
21	⁶ Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
22	*For correspondence: <u>peng@fudan.edu.cn</u> (B.P.), jisj@SUSTech.edu.cn (SJ.J.)
23	
24	
25	

26 Abstract

27	The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite
28	arborization is critical for normal visual functions in mammals. However, the underlying mechanisms
29	remain elusive. Here we find that the m ⁶ A reader YTHDF2 is highly expressed in the mouse RGCs.
30	Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching,
31	resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show
32	improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the
33	retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model.
34	We identify the m ⁶ A-modified YTHDF2 target transcripts which mediate these effects. This study
35	reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2
36	and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous
37	eyes.
38	
39	
40	
41	
42	Impact statement
43	The m ⁶ A reader YTHDF2 negatively regulates RGC dendrite branching through destabilizing its m ⁶ A-
44	modified target mRNAs encoding proteins controlling dendrite development and maintenance.
45	Ythdf2 cKO improves visual acuity and alleviates acute ocular hypertension-induced glaucoma in mice.
46	

47 Introduction

48 The mammalian retina is an ideal model system to study neuronal development and neural circuit formation. The retinal ganglion cells (RGCs) are the final and only output neurons in the 49 vertebrate retina and their dendrites collect the electrical information concerning the visual signal 50 51 from all other cells preceding them. One of the major focuses of research in the retina is to 52 understand how RGC dendrite arborization arises during development (Prigge and Kay 2018). Existing evidences supported that homotypic repulsion controls retinal dendrite patterning (Lefebvre 53 et al. 2015). However, in mice which had most RGCs genetically eliminated, the dendrite size and 54 55 shape of remaining RGCs appeared relatively normal (Lin et al. 2004). Thus, the fact that the dendrites of remaining RGC did not expand to neighboring areas by the remaining RGCs supports the 56 57 existence of the intrinsic limit for RGC dendrite patterning, which cooperates with the homotypic 58 repulsion to determine the dendrite size of RGCs (Lefebvre et al. 2015). However, such intrinsic limiting mechanisms remain elusive. 59 60 Glaucoma is one of the leading causes for blindness. The major risk factors for glaucoma include 61 increased intraocular tension. Studies have shown that glaucoma causes pathological changes in RGC 62 dendrites before axon degeneration and soma loss were detected in different model animals (Weber et al. 1998; Shou et al. 2003; Morgan et al. 2006). Thus, elucidation of mechanisms governing RGC 63 dendrite arbor maintenance bears clinical significance. 64 N^6 -methyladenosine (m⁶A) is the most widely distributed and extensively studied internal 65 66 modification in mRNA (Dominissini et al. 2012; Meyer et al. 2012; Nachtergaele and He 2018). m⁶A modification has been shown to regulate brain development and functions in the nervous system 67 68 (Livneh et al. 2020; Yu et al. 2021). By effectors, most of these studies have focused on its demethylases ("m⁶A erasers") and methyltransferases ("m⁶A writers"). Since the fate of m⁶A-69

- 70 modified transcripts are decoded by the m⁶A binding proteins ("m⁶A readers"), how the readers
- 71 mediate these functions and what are their neural target mRNAs remain to be elucidated. In addition,

more precisely controlled spatial-temporal ablation of the m⁶A readers instead of null knockout is
 required to elucidate their functions and mechanisms in nervous system.

74 In this study, we identified an m⁶A-dependent intrinsic limiting mechanism for RGC dendrite arborization and maintenance. Conditional knockout of the m⁶A reader YTHDF2 in the developing 75 76 mouse retina increases RGC dendrite branching and improves visual acuity. YTHDF2 also mediates 77 acute ocular hypertension (AOH)-induced RGC degeneration, the experiment model for glaucoma, 78 and Ythdf2 cKO in the retina alleviates AOH-induced RGC dendrite shrinking and neuronal loss. The 79 regulation of RGC dendrite development and maintenance by YTHDF2 is mediated by two distinct 80 groups of m⁶A-modified target mRNAs which encode proteins that promote dendrite arborization 81 during development and maintain dendrite tree during injury, respectively. Therefore, our study 82 reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance, which 83 sheds light on developing new treatment approaches for glaucomatous eyes.

84

85 Results

86 Knockdown of YTHDF2 leads to a robust increase of RGC dendrite branching

To examine whether m⁶A modification and its reader proteins play a role in the dendrite 87 88 development, we utilized the retina as the model system. We first checked their expression patterns 89 in the developing mouse retina. Immunostaining with a widely used m⁶A antibody demonstrated that RGCs had high m⁶A modification levels (*Figure 1—figure supplement 1A*). Consistent with the m⁶A 90 distribution, the m⁶A reader YTHDF2 is highly expressed in RGCs (*Figure 1A*; *Figure 1—figure* 91 92 supplement 1A). Conversely, the expression of YTHDF2 in other layers of the retina is much lower (*Figure 1A*; *Figure 1—figure supplement 1B*). Another two m⁶A readers YTHDF1 and YTHDF3 show 93 similar expression patterns (Figure 1-figure supplement 1C,D). The strong expression of YTHDFs and 94 95 high level of m⁶A modification in RGCs suggest that the m⁶A reader YTHDFs might play roles in RGC development. We dissected and dissociated the retinal cells and cultured in vitro. We generated lenti 96 97 viral shRNAs against YTHDFs, which showed similarly efficient knockdown (KD) of YTHDFs in RGC

98	cultures in vitro (<i>Figure 1B</i> ; <i>Figure 1—figure supplement 1E</i> , <i>F</i>). In these YTHDF-deficient RGC cultures,
99	the first and most obvious phenotype that we observed is the robust increase of dendrite branching
100	of cultured RGCs treated by shYthdf2 (Figure 1C,D; Figure 1—figure supplement 1G,H). In contrast,
101	the dendrite branching of RGCs with YTHDF1 KD using <i>shYthdf1</i> was not significantly different from
102	control shRNA (Figure 1—figure supplement 11), while YTHDF3 KD using shYthdf3 caused a slight
103	(statistically significant in several Sholl radii) decrease of RGC dendrite branching compared with
104	control shRNA (<i>Figure 1—figure supplement 1J</i>). These results suggest that the m ⁶ A reader YTHDF2
105	might play an important role in controlling dendrite branching of RGCs.
106	
107	Conditional knockout of Ythdf2 in the retina increases RGC dendrite branching in vivo without
108	disturbing sublaminar targeting
109	To further explore whether YTHDF2 physiologically regulates RGC dendrite branching in vivo, we
110	generated Ythdf2 conditional knockout (Ythdf2 cKO) mouse (Figure 2A). We used the Six3-cre mouse
111	line (Furuta et al. 2000), which has been widely used in the field to generate retina-specific
112	knockouts (Lefebvre et al. 2012; Riccomagno et al. 2014; Sapkota et al. 2014; Krishnaswamy et al.
113	2015). YTHDF2 expression is efficiently eliminated in the Ythdf2 cKO retina compared with their
114	littermate controls at E12.5 (Figure 2—figure supplement 1A) and E15.5 (Figure 2B). Retina
115	progenitors, amacrine cells, bipolar cells, photoreceptors, or horizontal cells were not affected in
116	<i>Ythdf2</i> cKO retina (<i>Figure 2—figure supplement 1B-L</i>), suggesting that YTHDF2 is not involved in the
117	generation or development of these cells. This is in line with the low YTHDF2 expression in these cells.
118	The RGC number or density was not affected in the Ythdf2 cKO retina (Figure 2C,D), demonstrating
119	that Ythdf2 knockout does not disturb RGC neurogenesis. We then cultured RGCs from the Ythdf2
120	cKO retina. The dendrite branching of Ythdf2 cKO RGCs was significantly increased compared with
121	littermate controls (Figure 2E, F). RGCs include over 40 subtypes (Sanes and Masland 2015; Baden et
122	al. 2016). We thus examined the RGC dendrite branching within different subtypes. One of the RGC
123	subgroups responds preferentially to movement in particular directions and is named the ON-OFF

124 directionally selective RGCs (ooDSGCs). Expression of CART (cocaine- and amphetamine-regulated 125 transcript), a neuropeptide, distinguishes ooDSGCs from other RGCs (Kay et al. 2011). The dendrite 126 branching of ooDSGCs marked by CART/Brn3a co-staining in Ythdf2 cKO retinal cultures also 127 increased compared with control (*Figure 2G,H*). These data further confirm that the m⁶A reader 128 YTHDF2 regulates dendrite branching of RGCs. 129 Next, we wanted to confirm this phenotype in vivo by checking specific RGC subtypes. 130 Intravitreal injection of an AAV reporter expressing ZsGreen visualized the dendrite morphology of 131 ooDSGCs marked by CART immunostaining (Figure 3A). ooDSGCs showed dramatically increased 132 dendrite branching in Ythdf2 cKO retina compared with control retina by Sholl analysis (Figure 3A, B). 133 The intrinsically photosensitive RGCs (ipRGCs) are unique and melanopsin-expressing cells, which exhibit an intrinsic sensitivity to light (Hattar et al. 2002). We analyzed the morphology of ipRGCs 134 135 visualized by wholemount immunostaining of melanopsin and found that the dendrite branching of 136 ipRGCs was significantly increased in the Ythdf2 cKO retina (Figure 3C,D; Figure 3—figure supplement 137 1A-E). A similar trend was observed in the SMI-32⁺ α RGCs (*Figure 3E,F*). These results strongly indicate that the m⁶A reader YTHDF2 negatively regulates RGC dendrite branching in vivo and *Ythdf2* 138 139 cKO promotes RGC dendrite arborization.

140 In the retina, RGCs target their dendrites in different sublaminae of the inner plexiform layer 141 (IPL). Since the IPL sublaminar targeting of RGC dendrites is critical for normal visual functions, we 142 wondered whether the increased dendrite branching caused by *Ythdf2* cKO was also accompanied by 143 altered sublaminar patterning of RGC dendrites. We used a Thy1-GFP reporter (line O) which labels a 144 few RGCs (Feng et al. 2000). As shown in Figure 3—figure supplement 1F,G, GFP intensity is generally 145 higher in IPL of the Ythdf2 cKO retina compared with their littermate controls, which further proves 146 the increased RGC dendrite branching and density. However, the sublaminar pattern of GFP signals 147 looks similar between cKO and littermate control (Figure 3—figure supplement 1F,G). Sublaminar 148 dendrite patterning of the ipRGC subtype visualized by immunostaining of melanopsin also 149 demonstrated the similar phenotype (Figure 3—figure supplement 1H,I). These data suggest that

150	YTHDF2 has a general control of RGC dendrite branching but has no striking effect on the sublaminar
151	targeting of RGC dendrite. These results are consistent with the previous findings that the RGC
152	dendrite targeting is determined genetically and several transcription factors controlling laminar
153	choice have been identified in RGCs and amacrine cells (Cherry et al. 2011; Kay et al. 2011; Lefebvre
154	et al. 2015; Liu et al. 2018).
155	
156	IPL of <i>Ythdf2</i> cKO retina is thicker and has more synapses
157	The increased dendrite branching of RGCs further prompted us to check whether Ythdf2 cKO changes
158	IPL development. Immunostaining of P6 retina vertical sections using a MAP2 antibody demonstrated
159	that IPL thickness significantly increased in Ythdf2 cKO retina (Figure 4A,B). As a control, the
160	thicknesses of other retinal layers showed no difference between the Ythdf2 cKO and control mice
161	(Figure 4—figure supplement 1A-D). Quantification of MAP2 IF intensity in IPL suggested that the IPL
162	of Ythdf2 cKO retina became denser with dendrites (Figure 4A,C). These results suggest that the
163	increased dendrite branching results in a thicker and denser IPL in the Ythdf2 cKO retina.
164	The inner plexiform layer (IPL) of retina is concentrated with synaptic connections, which
165	contain synapses among and between bipolar-amacrine-ganglion cells. The increased RGC dendrite
166	branching and denser IPL in the Ythdf2 cKO retina prompted us to wonder whether there are
167	changes in synaptic connections in IPL. We used co-staining of the presynaptic marker Bassoon and
168	the postsynaptic marker PSD-95 to count the colocalization puncta of Bassoon $^+$ /PSD-95 $^+$. We found
169	that the numbers of Bassoon ⁺ /PSD-95 ⁺ excitatory synapses in IPL of <i>Ythdf2</i> cKO retina are
170	significantly larger than that of control retina (<i>Figure 4D,E</i>). As a control, the numbers of the
171	excitatory ribbon synapses marked by the colocalization of $Bassoon^+/PSD-95^+$ in OPL (outer plexiform
172	layer) show no difference between Ythdf2 cKO and control retinas (Figure 4—figure supplement 1E,F).
173	All these data verify that the IPL of <i>Ythdf2</i> cKO retina is thicker and has more synapses.
174	
175	Visual acuity is improved for the <i>Ythdf2</i> cKO mice

7

176 The features of RGC dendrites, including their size, shape, arborization pattern and localization, 177 influence the amount and type of synaptic inputs that RGCs receive, which in turn determine how RGCs respond to specific visual stimuli such as the direction of motion (Liu and Sanes 2017). The 178 179 increased dendrite branching, the thicker and denser IPL, and the more synapses in the IPL inspired 180 us to further explore whether the visual responses of the Ythdf2 cKO mice were changed or not. 181 Ythdf2 cKO mice looked normal and had similar body weight and size compared with control mice for 182 either sex (male in Figure 5A,B; female in Figure 5C,D). The generally normal development of Ythdf2 183 cKO mice is consistent with the specific and limited expression of *Six3-cre* in retina (*Figure 5—figure* 184 supplement 1A), and only sparse spots in ventral forebrain (Figure 5—figure supplement 1B) (Furuta et al. 2000). We used an optomotor response (OMR)-based assay (Prusky et al. 2004; Umino et al. 185 186 2008; Shi et al. 2018) to monitor visual functions of Ythdf2 cKO mice (Figure 5E). Surprisingly, the 187 Ythdf2 cKO mice showed modestly improved visual acuity compared with the control mice, 188 measuring spatial frequency threshold as 0.45 \pm 0.0043 c/deg (cycle per degree) and 0.43 \pm 0.0085 189 c/deg, respectively (Figure 5F, male mice). Similar phenotype was observed in female mice (Figure 190 5G). These results suggest that the visual acuity is modestly improved in the Ythdf2 cKO mice. 191 This phenotype is most likely attributed to the increased RGC dendrite branching and thicker 192 and denser IPL with more synapses because all other parts and processes of retina are not affected 193 except RGC dendrite in the Ythdf2 cKO mediated by Six3-cre (Figure 2—figure supplement 1 and 194 Figure 4—figure supplement 1). The eyes and optic fibers also showed no difference between Ythdf2 195 cKO and control mice (Figure 5—figure supplement 1C-E). We further checked the targeting of optic 196 nerves to the brain by anterograde labeling with cholera toxin subunit B (CTB) and found no 197 difference of retinogeniculate or retinocollicular projections between Ythdf2 cKO and control mice (Figure 5—figure supplement 1F,G), suggesting the guidance and central targeting of RGC axons are 198 199 not affected in the *Ythdf2* cKO.

200

201 YTHDF2 target mRNA were identified with transcriptomic and proteomic analysis

202 Next, we continued to explore the underlying molecular mechanisms of the effects on dendrite 203 branching caused by Ythdf2 cKO in the retina. First, we wanted to know what transcripts YTHDF2 204 recognizes and binds. We carried out anti-YTHDF2 RNA immunoprecipitation (RIP) in the retina 205 followed by RNA sequencing of the elute (RIP-Seq). Two biological replicates of anti-YTHDF2 RIP-Seq 206 identified 1638 transcripts (Supplementary file 1). Functional annotation of YTHDF2 RIP targets 207 revealed significant enrichment in Cellular Component terms such as neuron part and neuron 208 projection, and Biological Process terms such as cellular component organization and neuron 209 projection development. We further zoomed in to check neural terms in Cellular Component (Figure 210 6A) and Biological Process (Figure 6B). We found that substantial numbers of YTHDF2 target transcripts are involved in cytoskeleton, dendrite and their organization and development (Figure 211 212 6A,B), which is consistent with the dendrite branching phenotype observed in the Ythdf2 cKO retina. The working model for YTHDF2 is that it binds and destabilizes its m⁶A-modified target 213 214 transcripts (Wang et al. 2014). Since the destabilization of mRNAs will eventually decrease their 215 protein levels, we carried out proteome analysis using mass spectrometry (MS) in acute shYthdf2-216 mediated knockdown of cultured RGCs, in order to identify directly affected targets. Three biological 217 replicates of YTHDF2 knockdown (KD) followed by MS (YTHDF2 KD/MS) identified 114 proteins which 218 were upregulated by YTHDF2 KD (Supplementary file 2). Functional annotation of these proteins 219 revealed significant enrichment in neuron development- and cytoskeleton-related terms (Figure 6C), 220 which is similar to anti-YTHDF2 RIP-Seq results.

By overlapping the two gene lists screened from anti-YTHDF2 RIP-Seq (*Supplementary file 1*) and YTHDF2 KD/MS_upregulation (*Supplementary file 2*), we identified a group of potential YTHDF2 target mRNAs in RGCs (*Supplementary file 3*), including *Kalrn, Strn* and *Ubr4*. m⁶A modification of these mRNAs were verified by anti m⁶A pull down (*Figure 6D*). *Kalrn* (*Kalirin*) gene generates three alternative splicing isoforms *Kalrn7, Kalrn9*, and *Kalrn12* encoding guanine-nucleotide exchange factors (GEFs) for Rho GTPases (Rho-GEF), which have been shown to regulate hippocampal and cortical dendritic branching (*Xie et al. 2010; Yan et al. 2015*), and are required for normal brain

228	functions (Penzes et al. 2001; Xie et al. 2007; Cahill et al. 2009; Russell et al. 2014; Lu et al. 2015;
229	Herring and Nicoll 2016). Strn (Striatin) was first identified in striatum, and functions as a B subunit
230	of the serine/threonine phosphatase PP2A and is also a core component of a multiprotein complex
231	called STRIPAK (striatin-interacting phosphatase and kinase complex) (Benoist et al. 2006; Li et al.
232	2018). Strn was reported to regulate dendritic arborization only in striatal neurons but not in cortical
233	neurons (Li et al. 2018). However, whether and how Kalrn and Strn work in the retina was still
234	unknown. Ubr4 (ubiquitin protein ligase E3 component N-recognin 4) is also known as p600 and has
235	been shown to play roles in neurogenesis, neuronal migration, neuronal signaling and survival
236	(Parsons et al. 2015). However, whether Ubr4 regulates dendrite development remains elusive.
237	
238	YTHDF2 controls the stability of its target mRNAs which encode proteins regulating RGC dendrite
239	branching
240	MS analysis after YTHDF2 KD has shown that the protein levels of these target mRNAs were
241	upregulated (Supplementary file 2). IF using antibodies against Strn and Ubr4 detected specific
242	signals in the IPL which were increased in Ythdf2 cKO retina compared with control retina (Figure 7—
243	figure supplement 1A). Enrichment of these proteins in IPL implies that these proteins might function
244	locally in RGC dendrites to regulate dendrite development.
245	We next wanted to know whether YTHDF2 controlled the protein levels of these m ⁶ A-modified
246	target mRNAs through regulation of translation or transcript stability. As shown in Figure 7—figure
247	supplement 1B-D, the mRNA levels of Kalrn7, Kalrn9, Kalrn12, Strn and Ubr4 were dramatically
248	increased after KD of YTHDF2 or METTL14, supporting that YTHDF2 might regulate stability of these
249	target mRNAs. We further evaluated potential changes in the stability of these target mRNAs in an
250	m ⁶ A-dependent manner. We further verified this by directly measuring the stability of these target
251	mRNAs. As shown in Figure 7A, all the target mRNAs showed significantly increased stability in the
252	Ythdf2 cKO retina compared with controls. These results suggest that YTHDF2 controlled the protein
253	levels of its m ⁶ A-modifed target mRNAs by decreasing their stability.

254 Next we explored the functions of these YTHDF2 target mRNAs in RGC dendrite development. 255 We first generated siRNAs against these transcripts (Figure 7—figure supplement 1E). We then 256 checked the effects on RGC dendrite branching after KD of these target mRNAs by siRNAs in cultured 257 RGCs. As shown in Figure 7B, knockdown of Kalrn7, Kalrn9, Kalrn12, Strn or Ubr4 led to significant 258 decreases of RGC dendrite branching. Interestingly, the *siCocktail* against all these target mRNAs 259 further significantly reduced the RGC dendrite branching compared with each individual siRNA 260 (Figure 7—figure supplement 1F), suggesting that these targets may work in different pathways to 261 regulate the RGC dendrite morphology. We further examined whether these target mRNAs mediate 262 YTHDF2-regulated RGC dendrite branching. As shown in Figure 2E-H, and Figure 3, cKO of Ythdf2 led to increased dendrite branching of RGCs both in vitro and in vivo. Transfection of siRNAs against 263 these target mRNAs rescued dendrite branching increases in cultured Ythdf2 cKO RGCs (Figure 7C). 264 265 We continued to generate and performed intravitreal injection of AAV viral *shKalrn12* and *shUbr4*, 266 which significantly rescued dendrite branching increases of CART⁺ ooDSGCs and SMI-32⁺ α RGCs in 267 Ythdf2 cKO retina in vivo (Figure 7D). 268 Taken together, we identified a group of YTHDF2 target mRNAs that encode proteins regulating 269 RGC dendrite branching, which mediate YTHDF2-controlled RGC dendrite branching. 270 Ythdf2 cKO retina is more resistant to acute ocular hypertension (AOH) 271 272 The glaucomatous eyes are symptomatized with progressive neurodegeneration and vision loss 273 (Agostinone and Di Polo 2015). High intraocular pressure is a major risk factor in glaucoma and has 274 been shown to cause pathological changes in RGC dendrites before axon degeneration or soma loss 275 is detected in different model animals (Weber et al. 1998; Shou et al. 2003; Morgan et al. 2006). Our 276 findings that Ythdf2 cKO in retina promotes RGC dendrite branching during development inspired us 277 to wonder whether YTHDF2 also regulates RGC dendrite maintenance in the acute glaucoma model 278 caused by acute ocular hypertension (AOH). We utilized the AOH model made with control and 279 Ythdf2 cKO mice to check whether Ythdf2 cKO in the retina could alter the pathology in the

glaucomatous eyes. RGC dendrite branching is significantly decreased after AOH operation compared
with non-AOH in either genotype (*Figure 8—figure supplement 1A,B*). Interestingly, the *Ythdf2* cKO
retina with AOH operation maintains significantly higher dendrite complexity compared with the
glaucomatous eyes of *Ythdf2^{fl/fl}* control mice (*Figure 8A,B*). In addition, there are significant RGC
neuron losses in both genotypes after AOH (*Figure 8C,D*). However, the reduction of RGC number in
the *Ythdf2* cKO retina is less than control retina (*Figure 8C,D*). These results support that *Ythdf2* cKO
protects retina from RGC dendrite degeneration and soma loss caused by AOH.

287 Next we wanted to know whether and how YTHDF2 target mRNAs mediate these effects in the 288 AOH models. We first checked the expression of YTHDF2 target mRNAs identified in the developing 289 retina (Supplementary file 3) in the adult Ythdf2 cKO and control retina. We found that two target 290 mRNAs *Hspa12a* and *Islr2* show upregulation in the adult *Ythdf2* cKO retina compared with control (Figure 8—figure supplement 1C). m⁶A modification of Hspa12a and IsIr2 mRNAs was further verified 291 292 by anti-m⁶A pulldown (*Figure 8—figure supplement 1D*). *Hspa12a* encodes heat shock protein A12A 293 which is an atypical member of the heat shock protein 70 family and has been shown to be 294 downregulated in diseases such as ischemic stroke, schizophrenia, and renal cell carcinoma (Pongrac 295 et al. 2004; Mao et al. 2018; Min et al. 2020). IsIr2 encodes immunoglobulin superfamily containing 296 leucine-rich repeat protein 2 and is poorly studied. Here, we found that Hspa12a and IsIr2 are 297 downregulated in the retina after AOH operation (Figure 8—figure supplement 1E), which is likely 298 caused by upregulation of YTHDF2 in the AOH-treated retina (Figure 8—figure supplement 1F-H). We 299 therefore hypothesized that AOH upregulates YTHDF2 which in turn downregulates its targets 300 Hspa12a and IsIr2, thus causing RGC dendrite degeneration and soma loss. If this is the case, 301 overexpression of *Hspa12a* and *IsIr2* might protect RGC dendrite from AOH-triggered degeneration. 302 We thus generated AAV harboring overexpression constructs of Hspa12a and IsIr2 which were 303 intravitreally injected to wild type retinas. After the AOH induction, the retinas overexpressing Hspa12a and IsIr2 maintain significantly more complex RGC dendrite arbor compared with control 304 305 AAV (Figure 8E,F).

306 These data verify that loss-of-function of YTHDF2 and gain-of-function of its targets *Hspa12a*

307 and *Islr2* have neuroprotective roles in the glaucomatous retina.

308

309 Discussion

Functions and mechanisms of mRNA m⁶A modification in the dendrite development were not known.

Here, we revealed a critical role of the m⁶A reader YTHDF2 in RGC dendrite development and

312 maintenance. YTHDF2 have two phases of function to control RGC dendrite development first and

then maintenance through regulating two sets of target mRNAs. In early postnatal stages, the target

314 mRNAs Kalrn7, Kalrn9, Kalrn12, Strn and Ubr4 mediate YTHDF2 functions to regulate RGC dendrite

development. In the adult mice, another set of target mRNAs *Hspa12a* and *Islr2* mediate YTHDF2

- 316 function to regulate RGC dendrite maintenance.
- 317

318 **Positive and negative regulators for dendrite development**

319 The general principle for dendrite arborization is that the dendrite arbor cannot be either too big or 320 too small in order to precisely sample a presynaptic target area during neural circuit formation 321 (Lefebvre et al. 2015). Numerous extrinsic and intrinsic mechanisms have been found to regulate 322 dendritic arbor patterning, which involves both positive and negative factors to achieve balanced 323 control of dendritic growth (Jan and Jan 2010; Dong et al. 2015; Ledda and Paratcha 2017). For the 324 secreted and diffusible cues, BDNF promotes dendrite branching and complexity (Cheung et al. 2007); 325 the non-canonical Wnt7b/PCP pathway is a positive regulator of dendrite growth and branching 326 (Rosso et al. 2005); the non-canonical Wnt receptor Ryk works as a negative regulator by limiting the 327 extent of dendritic branching (Lanoue et al. 2017). For the contact-mediated signals, the cadherins 328 Celsr2 and Celsr3 regulate dendrite growth in an opposite manner in cortical pyramidal and Purkinje 329 neurons, and hippocampal neurons, respectively (Shima et al. 2004; Shima et al. 2007). For the transcription factors, studies have shown that manipulation of Cux1 and Cux2 levels has distinct 330 331 effects on apical and basal arbors of cortical dendrites (Cubelos et al. 2015); interestingly, the

332 functions of Sp4 in dendrite development are dependent on the cellular context of its expression, e.g. 333 Sp4 promotes dendrite growth and branching in hippocampal dentate granule cells but limits 334 dendrite branching in cerebellar granule cells (Ramos et al. 2007; Zhou et al. 2007). Here we 335 identified another negative regulator YTHDF2 which works posttranscriptionally, and loss-of-function 336 of YTHDF2 increased dendrite complexity during development and protected RGC degeneration from 337 AOH. 338 Posttranscriptional regulation of dendrite development 339 340 It is well established that mRNAs can be transported and targeted to specific neuronal compartments 341 such as axons and dendrites. Local translation of these mRNAs enables exquisite and rapid control of local proteome in specific subcellular compartments (Ledda and Paratcha 2017). Local translation is 342 343 known to play roles in controlling dendrite arborization (Chihara et al. 2007), and is regulated by 344 specific RNA-binding proteins (Jan and Jan 2010). In Drosophila, the RNA binding proteins 345 Pumilio (Pum), Nanos (Nos), Glorund (Glo) and Smaug (Smg) regulate morphogenesis and branching 346 of specific classes of dendritic arborization (da) neurons through controlling translation of their 347 target mRNAs including nanos mRNA itself (Ye et al. 2004; Brechbiel and Gavis 2008). The mouse homologue of another RNA-binding protein Staufen, Stau1, regulates dendritic targeting of 348 349 ribonucleoprotein particles and dendrite branching (Vessey et al. 2008). Here we found that the m⁶A 350 reader and RNA-binding protein YTHDF2 controls stability of its target mRNAs and regulates dendrite 351 branching in RGCs. It would be interesting to see whether these target mRNAs are localized into dendrites and whether YTHDF2 works in dendrites to control their stability and translation. Actually, 352 353 Strn4 mRNA has been shown to be present in dendrites and locally translated (Lin et al. 2017). In 354 addition, how the proteins encoded by these target mRNAs regulate RGC dendrite branching during 355 development and maintenance remains to be explored and will be important future directions. 356

357 Neuroprotective genes in retinal injuries and degeneration

358	Transcriptome analys	es have revealed differentially	<pre>/ expressed genes after</pre>	retinal injuries such as

- AOH-induced glaucoma and optic nerve crush (ONC), and the up-regulated genes are of importance
- 360 for discovering new treatment approaches (Jakobs 2014; Tran et al. 2019). One of the previous
- 361 studies has identified *Mettl3*, encoding the m⁶A writer, as an up-regulated gene after ONC (Agudo et
- 362 *al. 2008)*. Here we found *Ythdf2*, encoding an m⁶A reader, was also up-regulated in the retina after
- 363 AOH. We further found that *Hspa12a* and *Islr2*, two targets of YTHDF2 in adult retina, were
- 364 downregulated in glaucomatous retinas. Overexpression of *Hspa12a* and *Islr2* protected retina from
- 365 AOH-caused RGC dendrite degeneration. Our findings in this study suggest that YTHDF2 and its
- 366 neuroprotective target mRNAs might be valuable in developing novel therapeutic approaches to
- treat neurodegeneration caused by glaucoma and other retinal injuries.
- 368

369 Materials and methods

370 Key resources table

Reagent type (species)or resource	Source or reference	Identifiers		
Antibodies				
Chicken polyclonal anti-GFP	Abcam	Cat#: ab13970, RRID: AB_300798		
Chicken polyclonal anti-MAP2	Abcam	Cat#: ab5392, RRID: AB_2138153		
Guinea pig polyclonal anti-RBPMS	PhosphoSolutions	Cat#: 1832-RBPMS, RRID: AB_2492226		
Goat polyclonal anti-VAChT	Millipore	Cat#: ABN100, RRID: AB_2630394		
Mouse monoclonal anti- β Actin	Abcam	Cat#: ab6276, RRID: AB_2223210		
Mouse monoclonal anti- β Actin	ABclonal	Cat#: AC004, RRID: AB_2737399		
Mouse monoclonal anti-AP2α	DSHB	Cat#: 3B5, RRID: AB_2313947		
Mouse monoclonal anti-Bassoon	Enzo Life Sciences	Cat#: ADI-VAM-PS003, RRID: AB_10618753		
Mouse monoclonal anti-Brn3a	Millipore	Cat#: MAB1585, RRID: AB_94166		
Mouse monoclonal anti-Calbindin-D- 28K	Sigma-Aldrich	Cat#: C9848, RRID: AB_476894		
Mouse monoclonal anti-PKCα	Santa Cruz Biotechnology	Cat#: sc-8393, RRID: AB_628142		
Mouse monoclonal anti-SMI-32	BioLegend	Cat#: 801701, RRID: AB_2564642		
Mouse monoclonal anti-Strn (Striatin)	BD Biosciences	Cat#: 610838, RRID: AB_398157		
Rabbit polyclonal anti-CART	Phoenix Pharmaceuticals	Cat#: H-003-62, RRID: AB_2313614		
Rabbit polyclonal anti m ⁶ A	Synaptic Systems	Cat# 202003, RRID: AB_2279214		
Rabbit polyclonal anti-Melanopsin	Thermo Fisher Scientific	Cat#: PA1-780, RRID: AB_2267547		
Rabbit polyclonal anti-PKCa	Cell Signaling	Cat#: CST-2056		

Mouse monoclonal anti-PSD-95	Abcam	Cat#: ab2723, RRID: AB_303248
Rabbit polyclonal anti-Recoverin	Millipore	Cat#: AB5585, RRID: AB_2253622
Rabbit polyclonal anti-YTHDF2	Proteintech	Cat#: 24744-1-AP, RRID: AB_2687435
Rabbit polyclonal anti-YTHDF1	Proteintech	Cat#: 17479-1-AP, RRID: AB_2217473
Rabbit polyclonal anti-YTHDF3	Abcam	Cat#: ab103328, RRID: AB_10710895
Rabbit polyclonal anti-Ubr4	Abcam	Cat#: ab86738, RRID: AB_1952666
Sheep polyclonal anti-Chx10	Exalpha	Cat#: X1179P
Alexa 488 donkey anti-chicken IgY	Jackson	Cat#: 703-545-155, RRID: AB_2340375
	Immunoresearch	
Alexa 488 donkey anti-g. pig IgG	Jackson	Cat#: 706-545-148, RRID: AB_2340472
	Immunoresearch	
Alexa 488 donkey anti-mouse IgG	Thermo Fisher Scientific	Cat#: A-21202, RRID: AB_141607
Alexa 488 donkey anti-rabbit IgG	Thermo Fisher Scientific	Cat#: A-21206, RRID: AB_141708
Alexa 555 donkey anti-goat IgG	Thermo Fisher Scientific	Cat#: A-21432, RRID: AB_2535853
Alexa 555 donkey anti-mouse IgG	Thermo Fisher Scientific	Cat#: A-31570, RRID: AB_2536180
Alexa 555 donkey anti-rabbit IgG	Thermo Fisher Scientific	Cat#: A-31572, RRID: AB_162543
Alexa 555 donkey anti-sheep IgG	Thermo Fisher Scientific	Cat# A-21436, RRID: AB_2535857
Alexa 555 goat anti-chicken IgY	Thermo Fisher Scientific	Cat#: A-21437, RRID: AB_2535858
Alexa 647 donkey anti-mouse IgG	Thermo Fisher Scientific	Cat#: A-31571, RRID: AB_162542
HRP donkey anti-mouse IgG	Abcam	Cat#: ab97030, RRID: AB_10680919
HRP donkey anti-rabbit IgG	Abcam	Cat#: ab16284, RRID: AB_955387
HRP VHH anti-mouse IgG	AlpaLife	Cat#: KTSM1321
HRP VHH anti-rabbit IgG	AlpaLife	Cat#: KTSM1322
Chemicals, Peptides, and		
Recombinant Proteins		
TRIzol Reagent	Life	Cat#: 15596018
PrimeScriptTM RT Master Mix	Takara	Cat#: RR036B
2× ChamQ [™] Universal SYBR qPCR	Vazyme	Cat#: Q711-02
Master Mix		
DMEM, high glucose	Gibco	Cat#: 11965-092
Dulbecco's Modified Eagle's	Sigma	Cat#: D2429
Medium, 10×, low glucose		
DMEM, high glucose	Hyclone	Cat#: SH30022.01
Fetal Bovine Serum (FBS)	Gibco	Cat#: 10270-106
Dulbecco's Phosphate-Buffered	Corning	Cat#: 21-031-CVR
Saline, 1× without calcium and		
magnesium (DPBS)		
poly-D-lysine, Cultrex	Trevigen	Cat#: 3439-100-01
Laminin (mouse), Culrex	Trevigen	Cat#: 3400-010-01
DMEM/F-12, GlutaMAX™	Gibco	Cat#: 10565-018
Neurobasal™ Medium, minus	Gibco	Cat#: 12348-017
phenol red		
Penicillin-Streptomycin	Life	Cat#: 15140-122
B27 serum-free supplement, 50×	Life	Cat#: 17504044
N-2 Supplement, 100×	Gibco	Cat#: 17502-048
Insulin	Sigma	Cat#: I6634
cpt-cAMP, 8-(4-Chlorophenylthio)	Sigma	Cat#: C3912
Adenosine 3':5'-CY		

N-acetyl-L-cysteine (NAC)	Sigma	Cat#: A8199
Forskolin	Sigma	Cat#: F6886
Recombinant Human/Murine/Rat BDNF	PeproTech	Cat#: 450-02
Recombinant Human NT-3	PeproTech	Cat#: 450-03
Recombinant Murine EGF	PeproTech	Cat#: 315-09
Recombinant Human FGF-basic	PeproTech	Cat#: 100-18B
Puromycin	Thermo Fisher Scientific	Cat#: A11138-03
Puromycin	Sigma	Cat#: P8833
Paraformaldehyde	Vetec	Cat#: V900894-100G
O.C.T. Compound and Cryomolds, Tissue-Tek	SAKURA	Cat#: 4583
ChemiBLOCKER	Millipore	Cat#: 2170
Triton x-100	Sigma	Cat#: V900502
CTB (Cholera Toxin Subunit B)	Invitrogen	Cat#: C34776
conjugated by Alexa Fluor™ 555	invitiogen	Catm. C34770
VECTASHIELD Antifade Mounting Medium with DAPI	Vector Laboratory	Cat#: H-1200
Mounting Medium, antifading (with DAPI)	Solarbio	Cat#: S2110
Normal Goat Serum	Novus	Cat#: NBP2-23475
Critical Commercial Assays		
Pierce™ BCA Protein Assay Kit	Thermo Fisher Scientific	Cat#: 23227
GeneSilencer [®] Transfection Reagent	Genlantis	Cat#: T500750
Magna MeRIP™ m ⁶ A Kit	Millipore	Cat#: 17-10499
EZ-Magna RIP™ RNA-Binding Protein	Millipore	Cat#: 17-701
EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit	Millipore	Cat#: 17-701
	Millipore	Cat#: 17-701
Immunoprecipitation Kit	Millipore ATCC	Cat#: 17-701 Cat#: CRL-11268, RRID: CVCL_1926
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T	·	
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models:	·	
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T	·	
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains	ATCC	Cat#: CRL-11268, RRID: CVCL_1926
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1-	ATCC (Yu et al. 2021)	Cat#: CRL-11268, RRID: CVCL_1926
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1-	ATCC (Yu et al. 2021) Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1-	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1- Gt(ROSA)26Sor ^{tm1(EYFP)Cos} /J	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1- Gt(ROSA)26Sor ^{tm1(EYFP)Cos} /J Oligonucleotides	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919 Cat#: JAX_006148
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1- Gt(ROSA)26Sor ^{tm1(EYFP)Cos} /J Oligonucleotides shRNA targeting sequence of negative control:	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory Jackson Laboratory	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919 Cat#: JAX_006148
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1- Gt(ROSA)26Sor ^{tm1(EYFP)Cos} /J Oligonucleotides shRNA targeting sequence of negative control: GCATCAAGGTGAACTTCAAGA shRNA targeting sequence of mouse	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory Jackson Laboratory This paper	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919 Cat#: JAX_006148 N/A
Immunoprecipitation Kit Experimental Models: Cell Lines HEK293T Experimental Models: Organisms/Strains Mouse: Ythdf2 ^{fl/fl} Mouse: Tg(Six3-cre)69Frty/GcoJ Mouse: B6.Cg-Tg(Thy1- EGFP)OJrs/GfngJ Mouse: B6.129X1- Gt(ROSA)26Sor ^{tm1(EYFP)Cos} /J Oligonucleotides shRNA targeting sequence of negative control: GCATCAAGGTGAACTTCAAGA shRNA targeting sequence of mouse <i>Ythdf2</i> : GGACGTTCCCAATAGCCAACT shRNA targeting sequence of mouse <i>Ythdf1</i> :	ATCC (Yu et al. 2021) Jackson Laboratory Jackson Laboratory Jackson Laboratory (Yu et al. 2018)	Cat#: CRL-11268, RRID: CVCL_1926 N/A Cat#: JAX_019755 Cat#: JAX_007919 Cat#: JAX_006148 N/A N/A

shRNA targeting sequence of mouse <i>Mettl14#7</i> : CCCAGCTTGTACTTTGCTTTA	This paper	N/A
shRNA targeting sequence of negative control (AAV): TTCTCCGAACGTGTCACGTAA	This paper	N/A
shRNA targeting sequence of mouse <i>Kalrn12</i> : TGATGAGCTGATGGAAGAA	This paper	N/A
shRNA targeting sequence of mouse Ubr4: AATGATGAGCAGTCATCTC	This paper	N/A
shRNA targeting sequence of mouse <i>Ythdf3</i> : GGATTTGGCAATGATACTTTG	This paper	N/A
siRNA targeting sequence of negative control: UUCUCCGAACGUGUCACGUTT	(Yu et al. 2018)	N/A
siRNA targeting sequence of mouse <i>Kalrn7</i> : AGUACAAUCCUGGCCAUGUTT	(Xie et al. 2007)	N/A
siRNA targeting sequence of mouse <i>Kalrn9</i> : ACUGGACUGGACUUCUAUUTT	(Yan et al. 2015)	N/A
siRNA targeting sequence of mouse <i>Kalrn12</i> : CGAUGAGCUGAUGGAAGAATT	(Yan et al. 2015)	N/A
siRNA targeting sequence of mouse <i>Strn</i> : GGUGAAGAUCGAGAUACAATT	(Breitman et al. 2008)	N/A
siRNA targeting sequence of mouse Ubr4: AAUGAUGAGCAGUCAUCUATT	(Shim et al. 2008)	N/A
qPCR primers of mouse <i>18s</i> Fwd: GCTTAATTTGACTCAACACGGGA Rev: AGCTATCAATCTGTCAATCCTGTC	(Wang et al. 2018)	N/A
qPCR primers of mouse <i>Gapdh</i> Fwd: TTGTCAGCAATGCATCCTGCACCACC Rev: CTGAGTGGCAGTGATGGCATGGAC	(Mains et al. 2011)	N/A
qPCR primers of mouse <i>Ythdf2</i> Fwd: GAGCAGAGACCAAAAGGTCAAG Rev: CTGTGGGCTCAAGTAAGGTTC	This paper	N/A
qPCR primers of mouse <i>Kalrn7</i> Fwd: GATACCATATCCATTGCCTCCAGGACC Rev: CCAGGCTGCGCGCTAAACGTAAG	(Mains et al. 2011)	N/A
qPCR primers of mouse <i>Kalrn9</i> Fwd: GCCCCTCGCCAAAGCCACAGC Rev: CCAGTGAGTCCCGTGGTGGGC	(Mains et al. 2011)	N/A

qPCR primers of mouse <i>Kalrn12</i> Fwd: CAGCAGCCACGTGCCTGCAGC Rev: TCTTGACATTGGGAATGGGCCGCAC	(Mains et al. 2011)	N/A
qPCR primers of mouse <i>Strn</i> Fwd: TGAAGCCTGGAATGTGGACC Rev: CTATTGGGCCTCTTCACCCC	This paper	N/A
qPCR primers of mouse <i>Ubr4</i> Fwd: TGAGTGAGGACAAGGGCAAC Rev: GGGTTGGATCGAACGAAGGT	This paper	N/A
qPCR Primer for mouse <i>Hspa12a</i> Fwd: GGGTTTGCACAGGCTAAGGA Rev: TCTGATGGACGGTCAGGTCT	This paper	N/A
qPCR Primer for mouse <i>lslr2</i> Fwd: GAAGCTCCCTTAGACTGTCACC Rev: CCCCATCGTGACTCCTGCTG	This paper	N/A
PCR Primer for mouse <i>Hspa12a</i> CDS Fwd: ATGGCGGACAAGGAAGCTGG Rev: GTAATTTAAGAAGTCGATCCCC	This paper	N/A
PCR Primer for mouse <i>Islr2</i> CDS Fwd: ATGGGGCCCTTTGGAGC Rev: GCCCGCTGTCTGCCTGTAG	This paper	N/A
Mouse genotyping primers for <i>Ythdf2</i> loxp site 1: GCTTGTAGTTATGTTGTGTACCAC and GCAGCTCTGACTATTCTAAAACCTCC	This paper	N/A
Mouse genotyping primers for <i>Ythdf2</i> loxp site 2: CTCATAACATCCATAGCCACAGG and CCAAGAGATAGCTTTCCTAATG	This paper	N/A
Mouse genotyping primers for <i>Six3-</i> <i>cre</i> : CCTTCCTCCCTCTCTATGTG and GAACGAACCTGGTCGAAATC	Chunqiao Liu's lab	N/A
Mouse genotyping primers for <i>Thy1-GFP</i> : CGGTGGTGCAGATGAACTT and ACAGACACACACCCAGGACA	The Jackson Laboratory website	N/A
Mouse genotyping primers for Rosa- YFP mutant site: AGGGCGAGGAGCTGTTCA and TGAAGTCGATGCCCTTCAG	The Jackson Laboratory website	N/A
Mouse genotyping primers for Rosa- YFP wildtype site: CTGGCTTCTGAGGACCG and CAGGACAACGCCCACACA	The Jackson Laboratory website	N/A
Recombinant DNA		
Plasmid: pLKO.1-TRC	Addgene	Addgene plasmid #10878, RRID: Addgene_10878
Software and Algorithms		
GraphPad Prism 7.0	GraphPad	https://www.graphpad.com, RRID: SCR_002798

STAR v2.5	(Dobin et al. 2013)	https://github.com/alexdobin/STAR/
HTSeq	(Anders et al. 2015)	https://pypi.org/project/HTSeq/
ImageJ (Fiji)	(Schindelin et al. 2012)	http://fiji.sc, RRID:SCR_002285
Matlab	Matlab	https://ww2.mathworks.cn

371

372 Animals and generation of the Ythdf2 cKO mice

- 373 *Ythdf2^{fl/fl}* mice were reported previously (Yu et al. 2021). Six3-cre (Furuta et al. 2000), Thy1-GFP
- 374 (Feng et al. 2000) and Rosa26-eYFP (Srinivas et al. 2001) mice were from Jackson Laboratory. For
- timed pregnancy, embryos were identified as E0.5 when a copulatory plug was observed. Genotyping
- 376 primers are as following: the first Ythdf2-loxP site, 5'-GCTTGTAGTTATGTTGTGTACCAC-3' and 5'-
- 377 GCAGCTCTGACTATTCTAAAACCTCC-3'; the second Ythdf2-loxP site, 5'-
- 378 CTCATAACATCCATAGCCACAGG-3' and 5'-CCAAGAGATAGCTTTCCTAATG-3'.
- 379 *Six3-cre* site, 5'-CCTTCCTCCTCTATGTG-3' and 5'-GAACGAACCTGGTCGAAATC-3'.
- 380 Rosa26-eYFP wild type site, 5'-CTGGCTTCTGAGGACCG-3' and 5'-CAGGACAACGCCCACAC-3'; the
- 381 mutant site, 5'-AGGGCGAGGAGCTGTTCA-3' and 5'-TGAAGTCGATGCCCTTCAG-3'. All experiments
- using mice were carried out following the animal protocols approved by the
- Laboratory Animal Welfare and Ethics Committee of Southern University of Science and Technology.

384

385 Retinal neuronal culture

- 386 Retinal neurons were dissociated from E14.5-15.5 mouse embryos by papain in DPBS (1× Dulbecco's
- 387 Phosphate-Buffered Saline, Corning) following the previously described methods (Kechad et al. 2012),
- 388 and neuronal suspension was plated on acid-washed glass coverslips pre-coated with poly-D-lysine
- 389 (Trevigen, 100 μg/ml) for 1 hr and laminin (Trevigen, 5 μg/ml) overnight at 37°C. Culture medium was
- 390 made up of half DMEM/F12 medium (Gibco) and half neurobasal medium (Gibco), supplemented
- 391 with B27 supplement (Life, 0.5×), penicillin-streptomycin (Life, 1×), N-2 supplement (Gibco, 0.5×), N-
- acetyl-L-cysteine (Sigma, NAC 0.6 mg/ml), cpt-cAMP (Sigma, 100 µM), forskolin (Sigma, 10 µM), and
- insulin (Sigma, 25 μg/ml). EGF (PeproTech, 50 ng/ml), BDNF (PeproTech, 50 ng/ml), NT-3 (PeproTech,
- 394 25 ng/ml), and FGF-basic (PeproTech, 10 ng/ml) were freshly added before using.

2	۵	5
3	2	J

395	
396	Knockdown using lentiviral shRNA, siRNA or AAV shRNA, and overexpression using AAV system
397	Lentiviral knockdown plasmids encoding shRNA (<i>shCtrl</i> : 5'-GCATCAAGGTGAACTTCAAGA-3'; <i>shYthdf</i> 2:
398	5'-GGACGTTCCCAATAGCCAACT-3'; shYthdf1: 5'- GGACATTGGTACTTGGGATAA-3'; shYthdf3: 5'-
399	GGATTTGGCAATGATACTTTG-3'; shMettl14#6: 5'-GCTGGACCTGGGATGATATTA-3'; shMettl14#7: 5'-
400	CCCAGCTTGTACTTTGCTTTA-3') were generated from pLKO.1-TRC and lentivirus preparation process
401	was described previously (Yu et al. 2018). All siRNA were chosen from previous studies and the
402	target sequences of siRNA are as following: siCtrl (RNAi negative control): 5'-
403	UUCUCCGAACGUGUCACGUTT-3' (Yu et al. 2018) ; siKalrn7: 5'- AGUACAAUCCUGGCCAUGUTT-3' (Xie
404	et al. 2007); siKalrn9: 5'-ACUGGACUGGACUUCUAUUTT-3' (Yan et al. 2015); siKalrn12: 5'-
405	CGAUGAGCUGAUGGAAGAATT-3' (Yan et al. 2015) ; siStrn: 5'-GGUGAAGAUCGAGAUACAATT-3'
406	(Breitman et al. 2008); siUbr4: 5'-AAUGAUGAGCAGUCAUCUATT-3' (Shim et al. 2008). AAV
407	knockdown plasmids encoding shRNA (<i>shCtrl</i> : 5'-TTCTCCGAACGTGTCACGTAA-3'; <i>shKalrn12</i> : 5'-
408	TGATGAGCTGATGGAAGAA-3'; shUbr4: 5'-AATGATGAGCAGTCATCTC-3') were generated using
409	pHBAAV-U6-MCS-CMV-EGFP and packaged in serotype-9 by Hanbio (1.5×10 ¹² genomic copies per ml).
410	AAV overexpression plasmids of Hspa12a (NM_175199.3; PCR primer for mouse Hspa12a: 5'-
411	ATGGCGGACAAGGAAGCTGG-3' and 5'-GTAATTTAAGAAGTCGATCCCC-3') and Islr2 (NM_001161541.1;
412	PCR Primer for mouse IsIr2: 5'-ATGGGGCCCTTTGGAGC-3' and 5'-GCCCGCTGTCTGCCTGTAG-3') were
413	generated from pHBAAV-CMV-MCS-3flag-T2A-ZsGreen and packaged serotype-9 by Hanbio (1.2 $ imes$ 10 12
414	genomic copies per ml).
415	GeneSilencer [®] Transfection Reagent (Genlantis) was used in siRNA transfection following the
416	manufacturer's protocols. Culture medium was changed after 1 day of lentiviral shRNA infection or
417	siRNA transfection. For lentiviral shRNA assay, puromycin (Thermo or Sigma, 1 μ g/ml) was added
418	after 2 days of infection. Immunofluorescence, RNA or protein preparation was performed after

- 419 shRNA or siRNA worked for 3 days. For AAV intravitreal injection, P0-P1 mouse pups were
- 420 anesthetized in ice and then eyes were pierced at the edge of corneal by $30G \times 1/2$ needle (BD,

421 305106) under stereomicroscope. Then 1 μ l AAV was intravitreally injected with 10 μ L Syringe 422 (Hamilton, 80330) following the pinhole. P15 or adult mice were anesthetized with 2.5% Avertin and 423 then eyes were pierced at the side of corneal and the outer segment of sclera by 30G × 1/2 needle 424 successively. 2 μ l AAV was intravitreally injected with 10 μ L Syringe following the pinhole on the 425 sclera. All subsequent experiments such as acute ocular hypertension operation and immunostaining 426 were carried out after at least 3 weeks (10 days for ZsGreen/CART labeling of ooDSGCs in *Ythdf2* cKO 427 and control mice in *Figure 3A*).

428

429 RT-qPCR

- 430 Total RNA was extracted from cells or tissues with TRIzol Reagent (Life) and then used for reverse
- 431 transcription by PrimeScript[™] RT Master Mix (TaKaRa). Synthesized cDNA was used for qPCR by 2×
- 432 ChamQ[™] Universal SYBR qPCR Master Mix (Vazyme) on StepOnePlus[™] Real-Time PCR System (ABI)
- 433 or BioRad CFX96 Touch Real-Time PCR system. Primers used for qPCR are as following: mouse *Gapdh*:
- 434 5'-TTGTCAGCAATGCATCCTGCACCACC-3' and 5'-CTGAGTGGCAGTGATGGCATGGAC-3' (Mains et al.
- 435 2011); mouse Kalrn7: 5'- GATACCATATCCATTGCCTCCAGGACC-3' and 5'-
- 436 CCAGGCTGCGCGCTAAACGTAAG-3' (Mains et al. 2011); mouse Kalrn9: 5'-
- 437 GCCCCTCGCCAAAGCCACAGC-3' and 5'-CCAGTGAGTCCCGTGGTGGGC-3' (Mains et al. 2011); mouse
- 438 Kalrn12: 5'- CAGCAGCCACGTGCCTGCAGC-3' and 5'-TCTTGACATTGGGAATGGGCCGCAC-3' (Mains et al.
- 439 **2011)**; mouse *Strn*: 5'-TGAAGCCTGGAATGTGGACC-3' and 5'-CTATTGGGCCTCTTCACCCC-3'; mouse
- 440 Ubr4: 5'- TGAGTGAGGACAAGGGCAAC-3' and 5'-GGGTTGGATCGAACGAAGGT-3'; mouse Ythdf2: 5'-
- 441 GAGCAGAGACCAAAAGGTCAAG-3'and 5'-CTGTGGGCTCAAGTAAGGTTC-3'; 18s: 5'-
- 442 GCTTAATTTGACTCAACACGGGA-3' and 5'-AGCTATCAATCTGTCAATCCTGTC-3' (Wang et al. 2018);
- 443 mouse *Hspa12a*: 5'-GGGTTTGCACAGGCTAAGGA-3' and 5'-TCTGATGGACGGTCAGGTCT-3'; mouse *Islr2*:
- 444 5'-GAAGCTCCCTTAGACTGTCACC-3' and 5'-CCCCATCGTGACTCCTGCTG-3'.

445

446 Immunofluorescence and immunostaining

447 For tissue sections, mouse embryonic eyes were fixed with 4% PFA (Sigma) in 0.1 M Phosphate Buffer (PB) for 30-45 min at room temperature (RT); eyes of mouse pups (< P10) were pre-fixed briefly and 448 449 then eyecups were dissected and fixed for 45 min-1 hr at RT; for P20-30 or adult mice, eyecups were dissected after myocardial perfusion with 0.9% NaCl, followed by fixation for 1 hr. After PBS (3×5 450 451 min) washing, tissues were dehydrated with 30% sucrose in 0.1 M PB overnight at 4°C, then 452 embedded with O.C.T. (SAKURA) and cryosectioned at 12 μ m (20 μ m for Thy1-GFP section analysis) 453 with Leica CM1950 Cryostat. Tissue sections were permeabilized and blocked with 10% 454 ChemiBLOCKER (Millipore) and 0.5% Triton x-100 (Sigma) in PBS (PBST) for 1 hr at RT and incubated 455 in PBST overnight at 4°C with following primary antibodies: chicken anti-GFP (1:1000, Abcam 456 ab13970), chicken anti-MAP2 (1:10000, Abcam ab5392), goat anti-VAChT (1:1000, Millipore ABN100), 457 guinea pig anti-RBPMS (1:1000, PhosphoSolutions 1832-RBPMS), mouse anti-AP2α (1:1000, DSHB 458 3B5), mouse anti-Bassoon (1:2500, Enzo Life Sciences ADI-VAM-PS003), mouse anti-Brn3a (1:300, 459 Millipore MAB1585), mouse anti-Calbindin-D-28K (1:200, Sigma C9848), mouse anti-PKC α (1:500, 460 Santa Cruz sc-8393), rabbit anti-Strn (Striatin) (1:500, BD Biosciences 610838), rabbit anti-CART 461 (1:2000, Phoenix Pharmaceuticals H-003-62), rabbit anti-m⁶A (1:200, Synaptic Systems 202003), 462 rabbit anti-melanopsin (1:1000, Thermo PA1-780), rabbit anti-PKCα (1:1000, Cell Signaling CST-2056), 463 rabbit anti-PSD95 (1:1000, Abcam ab18258), rabbit anti-Recoverin (1:1000, Millipore AB5585), rabbit 464 anti-YTHDF2 (1:1000, Proteintech 24744-1-AP), rabbit anti-YTHDF1 (1:1000, Proteintech 17479-1-AP), 465 rabbit anti-YTHDF3 (1:1000, Abcam ab103328), rabbit anti-Ubr4 (1:300, Abcam ab86738), sheep anti-466 Chx10 (1:1000, Exalpha X1179P). After three times of PBS washing, sections were incubated in PBST 467 for 1 hr at RT with secondary antibodies: Alexa 488 donkey anti-chicken (1:500, Jackson 703-545-155), 468 Alexa 488 donkey anti guinea pig (1:500, Jackson 706-545-148), Alexa 488 donkey anti-mouse (1:500, 469 Thermo A21202), Alexa 488 donkey anti-rabbit (1:500, Thermo A21206), Alexa 555 donkey anti-goat 470 (1:1000, Thermo A21432), Alexa 555 donkey anti-mouse (1:1000, Thermo A31570), Alexa 555 donkey anti-rabbit (1:1000, Thermo A31572), Alexa 555 donkey anti-sheep (1:1000, Thermo A21436), Alexa 471 472 555 goat anti-chicken (1:1000, Thermo A21437), or Alexa 647 donkey anti-mouse (1:200, Thermo

473 A31571) and then mounted with the VECTASHIELD Antifade Mounting Medium with DAPI (Vector474 Laboratory).

For cultured neurons, after twice of PBS washing, cells were fixed for 15 min with 4% PFA in 0.1 475 476 M PB at RT, then washed with PBS three times and blocked in PBST for 20 min at RT. Antibody 477 incubation conditions are the same as tissue sections. 478 For wholemount immunostaining of retina, eyes were dissected after myocardial perfusion with 479 0.9% NaCl. Then retinas were separated from sclera and fixed with 4% PFA in 0.1M PB for 1 hr at RT. Then retinas were blocked with 5% normal goat serum (Novus), 0.4% Triton x-100 in PBS overnight at 480 481 4°C. Primary antibodies such as chicken anti-GFP (1:1000, Abcam ab13970), mouse anti-Brn3a (1:300, 482 Millipore MAB1585), mouse anti-SMI-32 (1:200, BioLegend 801701), or rabbit anti-Melanopsin 483 (1:1000, Thermo PA1-780), rabbit anti-CART (1:2000, Phoenix Pharmaceuticals H-003-62) were 484 diluted in 5% normal goat serum, 0.4% Triton x-100 in PBS and incubated overnight at 4°C. Then 485 retinas were incubated with Alexa 488 donkey anti-chicken (1:500, Jackson 703-545-155), Alexa 488 486 donkey anti-mouse (1:500, Thermo A21202), Alexa 555 donkey anti-mouse (1:1000, Thermo A-31570) 487 and Alexa 555 donkey anti-rabbit (1:1000, Thermo A31572) second antibodies in 5% normal goat 488 serum (Novus), 0.4% Triton x-100 in PBS and finally mounted with the VECTASHIELD Antifade 489 Mounting Medium with DAPI.

490 All images were captured on Nikon A1R confocal microscope or Zeiss LSM 800 confocal 491 microscope with identical settings for each group in the same experiment. A region of interest (ROI), 492 length or thickness in immunofluorescence experiments were obtained with ImageJ. The number of 493 neurons in specific area was counted blindly and manually. To quantify RGC dendrite lamination in 494 IPL with Thy1-GFP, z-stack and maximum projection were performed during the analysis. GFP 495 intensity values across IPL depth were measured by ImageJ/Analyze/Plot Profile function (Liu et al. 496 **2018**). To quantify the numbers of Bassoon⁺/PSD-95⁺ excitatory synapses in IPL, the colocalization 497 puncta was measured by ImageJ/Analyze/Puncta Analyzer as described previously (Ippolito and 498 Eroglu 2010).

Λ	q	q
-	-	~

500 Sholl analysis

501	For confocal images of cultured RGCs, MAP2 signals in original format were analyzed with simple
502	neurite tracer and then quantified with Sholl analysis (5 μm per distance from soma center) which
503	was a widely used method in neurobiology to quantify the complexity of dendritic arbors using
504	ImageJ (Schindelin et al. 2012; Binley et al. 2014). Retina wholemount data were captured in z-stack
505	mode (0.5-1 μm per slide) with confocal microscopes. ZsGreen, eGFP and SMI-32 signals were
506	directly analyzed with simple neurite tracer and then z projection of all tracers was quantified with
507	Sholl analysis (10 μ m per distance from soma center), while melanopsin signals were maximum-
508	projected before tracing.
509	
510	Optomotor response assay.
511	Ythdf2 cKO and control mice aged about 6 weeks were dark-adapted overnight before experiment
512	and used in the optomotor response assay following the previously reported protocols (Douglas et al.
513	2005; Sergeeva et al. 2018). Using the Matlab program, 0.2 cycle/degree (15 sec per direction of
514	rotation) was first used for mice to adapt this experiment, and 0.3, 0.35, 0.4, 0.43, 0.45, 0.47, 0.5 and
515	0.55 c/deg (30 sec per direction of rotation) were used in the following recordings. Mouse behaviors
516	were analyzed in real time during the experiment and re-checked with video recordings. Finally, data
517	for each mouse were determined by the minimal spatial frequency between left and right optomotor
518	
510	response.
519	response.

520 CTB Labelling of Optic Nerve

To label RGC axon terminals in mouse brain, RGC axons were anterogradely labeled by CTB (Cholera
Toxin Subunit B) conjugated with Alexa Fluor[™] 555 (Invitrogen, C34776) through intravitreal injection
48 hr before sacrifice. After PFA perfusion, the brains were fixed with 4% PFA in 0.1 M PB overnight,
dehydrated with 15% sucrose and 30% sucrose in 0.1 M PB overnight at 4°C sequentially, embedded

with O.C.T. for coronal section, and cryosectioned at 12 μm with Leica CM1950 Cryostat. After PBS
washing, the sections were mounted with VECTASHIELD Antifade Mounting Medium with DAPI
(Vector Laboratory). The images were captured on Tissue Genostics with identical settings for each
group in the same experiment with the TissueFAXS 7.0 software.

529

530 RNA immunoprecipitation and sequencing (RIP-Seq)

For RNA Immunoprecipitation (RIP) experiment, we used the EZ-Magna RIP[™] RNA-Binding Protein 531 532 Immunoprecipitation Kit (Millipore) following the manual with minor modifications. Briefly, 1×10^{7} 533 retina neurons were subjected to each 100 µl lysis buffer. The amount of YTHDF2 antibody 534 (Proteintech, 24744-1-AP) and control IgG used for immunoprecipitation is 5 μ g, respectively. Incubation was done overnight at 4 °C. After quality control monitoring using Agilent 2100, 100 ng 535 536 RNA of input and elutes after RIP were used to generate the library using the TruSeq Stranded RNA 537 Sample Preparation Kit (Illumina) and sequenced on the Illumina HiSeg 3000 platform (Jingneng, 538 Shanghai, China). The filtered reads were mapped to the mouse reference genome (GRCm38) using 539 STAR v2.5 (Dobin et al. 2013) with default parameters. The resulting bam files were fed to HTSeq 540 tool (Anders et al. 2015) to count the number of RNA-seq reads, which was further normalized to 541 calculate FPKM. To determine which gene is enriched, we computed the FPKM from RIP elute to input and any fold change greater than 2 (p value less than 0.05) was considered enriched. All 542 543 enriched genes were used to do the Gene Ontology (GO) analyses. GO enrichment analysis was 544 implemented by the GOseq R package, in which gene length bias was corrected. GO terms with 545 corrected p value less than 0.05 were considered significantly enriched.

546

547 MS analysis

E15.5 retinal neurons were cultured and infected with lenti viral *shYthdf2* or *shCtrl*. After puromycin
(Sigma) selection, cells were washed with ice-cold PBS and then lysed with freshly prepared lysis
buffer composed of 8 M urea (Sigma), 0.1 M HEPES (pH 7.4, Invitrogen), and protease inhibitors

551 (Roche). The cell lysates were then ultrasonicated on ice and centrifuged at $10,000 \times g$ for 10 min at 552 4 °C to discard the cell debris. Protein concentration was measured using the BCA Protein Assay Kit 553 (Thermo Scientific). 100 µg of total protein for each group were reduced with 5 mM dithiothreitol 554 (Sigma) for 30 min at 56 °C and then alkylated with 11 mM iodoacetamide (Sigma) for 15 min at RT in 555 dark. After using 100 mM TEAB (Sigma) to dilute the urea concentration to less than 2 M in each 556 sample, trypsin (Promega) was then added to digest the proteins overnight at 37 °C. Peptides were 557 further desalted by Strata X C18 SPE column (Phenomenex) and labelled with TMT10plex Mass Tag 558 Labelling kit (Thermo Scientific) according to the manufacturer's instructions. Finally, the labeled 559 peptides were subjected to HPLC fractionation and LC-MS/MS analysis. Proteins with fold changes 560 greater than 1.3 and p values less than 0.05 were considered to be regulated by YTHDF2 KD with statistical significance. 561 562 563 Anti-m⁶A Immunoprecipitation Total retinal RNA was extracted from P0 WT mouse pups. Immunoprecipitation of m⁶A-modified 564 transcripts was carried out with Magna MeRIP[™] m⁶A Kit (Merck-Millipore, 17-10499) following the 565 manual. m⁶A antibody (Synaptic Systems, 202003) and corresponding control IgG were used in this 566 567 experiment. The RNA samples pulled down from the experiment were used for RT-qPCR. 568

569 Acute ocular hypertension (AOH) model

570 Mice were an esthetized with 5% chloral hydrate in normal saline (10 μ l/g) based on body weight and

571 the Compound Tropicamide Eye Drops were used to scatter pupil. The anterior chamber was

penetrated using the $32G \times 1/2''$ needles (TSK) and filled with the BBS Sterile Irrigating Solution

573 (Alcon) which was hung at a high position to provide proper pressure. Intraocular pressure was

574 measured with the Tonolab tonometer (icare) for every 10 min and maintained at 85-90 mmHg for 1

- 575 hr. Levofloxacin hydrochloride was used after the operation and mice were revived in a 37°C
- 576 environment. Retinas were analyzed for gene expression of YTHDF2 1 day after AOH, gene

expression of *Hspa12a* and *Islr2* 3 days after AOH, dendritic complexity and RGC number 3-7 days
after AOH.

579

580 Statistical analysis

581 All experiments were conducted at a minimum of three independent biological replicates (two

biological replicates for the RIP assay) or three mice/pups for each genotype/condition in the lab.

583 Data are mean ± SEM. Statistical analysis was preformed using GraphPad Prism 7.0. When comparing

the means of two groups, an unpaired or paired *t* test was performed on the basis of experimental

design. The settings for all box and whisker plots are: 25th-75th percentiles (boxes), minimum and

586 maximum (whiskers), and medians (horizontal lines). A p value less than 0.05 was considered as

587 statistically significant: **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001.

588

589 Acknowledgements

590 We thank Ke Wang and Kwok-Fai So (Jinan University) for help on the optomotor response assay. We 591 thank Mengqing Xiang and Suo Qiu (Zhongshan Ophthalmic Center, Sun Yat-sen University) for help on AAV experiments. We thank other members of Ji laboratory for technical support, helpful 592 593 discussions and comments on the manuscript. This work was supported by National Natural Science 594 Foundation of China (31871038 and 32170955 to S.-J.J.; 31922027 and 32170958 to B.P.), Shenzhen-595 Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2021SHIBS0002, 596 2019SHIBS0002), High-Level University Construction Fund for Department of Biology (internal grant 597 no. G02226301), Science and Technology Innovation Commission of Shenzhen Municipal 598 Government (ZDSYS20200811144002008), Program of Shanghai Subject Chief Scientist 599 (21XD1420400), and the Innovative Research Team of High-Level Local University in Shanghai (B.P.). 600

601 Author contributions

602	SJ.J., F.N. and B.P. formulated the idea and designed the experiments; F.N. performed and analyzed
603	most of the experiments; P.H., J.Z. and Y.S. carried out plasmid construction, AAV injection and
604	imaging; L.Y. performed the RIP-seq experiment; J.Y. performed the MS experiment; M.Z., Y.S., B.Y.
605	and C.L. provided technical help and helped with data analysis; F.N. and K.T. performed the AOH
606	experiments under the supervision of B.P.; the optomotor code was written by B.P.; SJ.J., F.N., L.Y.,
607	and J.Y. wrote the manuscript with inputs from other authors.
608	
609	Ethics
610	All experiments using mice were carried out following the animal protocols approved by the
611	Laboratory Animal Welfare and Ethics Committee of Southern University of Science and Technology
612	(approval numbers: SUSTC-JY2017004, SUSTC-JY2019081).
613	
614	Competing interests
615	The authors have declared that no competing interests exist.
616	
617	Data availability statement
618	The RIP-seq data have been deposited to the Gene Expression Omnibus (GEO) with accession
619	number GSE145390. The mass spectrometry proteomics data have been deposited to the
620	ProteomeXchange Consortium via the PRIDE partner repository with the dataset
621	identifier PXD017775.

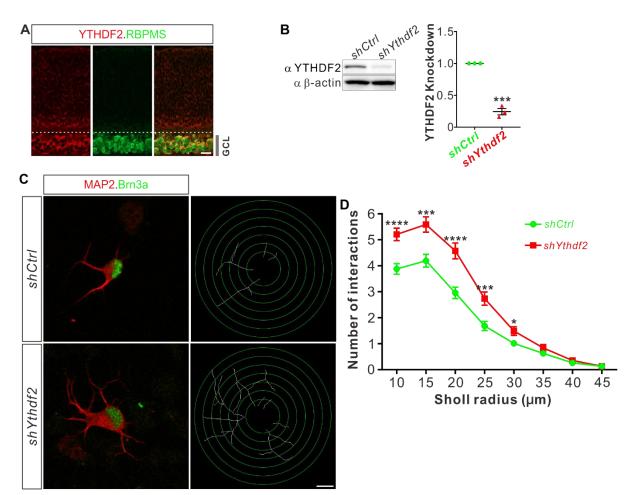
622

623 References

- Agostinone J, Di Polo A. 2015. Retinal ganglion cell dendrite pathology and synapse loss: Implications
 for glaucoma. *Prog Brain Res* 220:199-216. <u>DOI: https://doi.org/10.1016/bs.pbr.2015.04.012</u>,
 <u>PMID: 26497792</u>
- Agudo M, Perez-Marin MC, Lonngren U, Sobrado P, Conesa A, Canovas I, Salinas-Navarro M, Miralles Imperial J, Hallbook F, Vidal-Sanz M. 2008. Time course profiling of the retinal transcriptome after
- optic nerve transection and optic nerve crush. *Mol Vis* **14**:1050-1063. <u>PMID: 18552980</u>

630 631	Anders S, Pyl PT, Huber W. 2015. HTSeqa Python framework to work with high-throughput sequencing data. <i>Bioinformatics</i> 31 :166-169. <u>DOI: https://doi.org/10.1093/bioinformatics/btu638</u> , PMID: 25260700
632	
633	Baden T, Berens P, Franke K, Roman Roson M, Bethge M, Euler T. 2016. The functional diversity of
634	retinal ganglion cells in the mouse. <i>Nature</i> 529 :345-350. <u>DOI:</u>
635	https://doi.org/10.1038/nature16468, PMID: 26735013
636	Benoist M, Gaillard S, Castets F. 2006. The striatin family: a new signaling platform in dendritic spines.
637	J Physiol Paris 99:146-153. DOI: https://doi.org/10.1016/j.jphysparis.2005.12.006, PMID:
638	16460920
639	Binley KE, Ng WS, Tribble JR, Song B, Morgan JE. 2014. Sholl analysis: a quantitative comparison of
640	semi-automated methods. J Neurosci Methods 225:65-70. DOI:
641	<u>https://doi.org/10.1016/j.jneumeth.2014.01.017, PMID: 24485871</u>
642	Brechbiel JL, Gavis ER. 2008. Spatial regulation of nanos is required for its function in dendrite
643	morphogenesis. <i>Curr Biol</i> 18 :745-750. <u>DOI: https://doi.org/10.1016/j.cub.2008.04.033</u> , <u>PMID:</u>
644	<u>18472422</u>
645	Breitman M, Zilberberg A, Caspi M, Rosin-Arbesfeld R. 2008. The armadillo repeat domain of the APC
646	tumor suppressor protein interacts with Striatin family members. Biochim Biophys Acta
647	1783:1792-1802. DOI: https://doi.org/10.1016/j.bbamcr.2008.04.017, PMID: 18502210
648	Cahill ME, Xie Z, Day M, Photowala H, Barbolina MV, Miller CA, Weiss C, Radulovic J, Sweatt JD,
649	Disterhoft JF, Surmeier DJ, Penzes P. 2009. Kalirin regulates cortical spine morphogenesis and
650	disease-related behavioral phenotypes. Proc Natl Acad Sci U S A 106:13058-13063. DOI:
651	https://doi.org/10.1073/pnas.0904636106, PMID: 19625617
652	Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL. 2011. NeuroD factors regulate cell fate
653	and neurite stratification in the developing retina. J Neurosci 31 :7365-7379. DOI:
654	<u>https://doi.org/10.1523/jneurosci.2555-10.2011, PMID: 21593321</u>
655	Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY. 2007. Cdk5 is involved in BDNF-stimulated dendritic
656	growth in hippocampal neurons. <i>PLoS Biol</i> 5 :e63. <u>DOI:</u>
657	https://doi.org/10.1371/journal.pbio.0050063, PMID: 17341134
658	Chihara T, Luginbuhl D, Luo L. 2007. Cytoplasmic and mitochondrial protein translation in axonal and
659	dendritic terminal arborization. Nat Neurosci 10:828-837. DOI: https://doi.org/10.1038/nn1910,
660	PMID: 17529987
661	Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M. 2015. Cux1 and Cux2 selectively target basal and
662	apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 75:163-172. DOI:
663	<u>https://doi.org/10.1002/dneu.22215</u> , <u>PMID: 25059644</u>
664	Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013.
665	STAR: ultrafast universal RNA-seq aligner. <i>Bioinformatics</i> 29 :15-21. <u>DOI:</u>
666	https://doi.org/10.1093/bioinformatics/bts635, PMID: 23104886
667	Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
668	Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and
669	mouse m6A RNA methylomes revealed by m6A-seq. <i>Nature</i> 485 :201-206. <u>DOI:</u>
670	https://doi.org/10.1038/nature11112, PMID: 22575960
671	Dong X, Shen K, Bulow HE. 2015. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.
672	Annu Rev Physiol 77:271-300. DOI: https://doi.org/10.1146/annurev-physiol-021014-071746,
673	PMID: 25386991
674	Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT. 2005. Independent visual
675	threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality
676	optokinetic system. Vis Neurosci 22:677-684. DOI: https://doi.org/10.1017/s0952523805225166,
677	PMID: 16332278
678	Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW,
679	Sanes JR. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants
680	of GFP. Neuron 28:41-51. PMID: 11086982

681	Furuta Y, Lagutin O, Hogan BL, Oliver GC. 2000. Retina- and ventral forebrain-specific Cre
682	recombinase activity in transgenic mice. Genesis 26:130-132. PMID: 10686607
683	Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells:
684	architecture, projections, and intrinsic photosensitivity. Science 295:1065-1070. DOI:
685	https://doi.org/10.1126/science.1069609, PMID: 11834834
686	Herring BE, Nicoll RA. 2016. Kalirin and Trio proteins serve critical roles in excitatory synaptic
687	transmission and LTP. Proc Natl Acad Sci U S A 113:2264-2269. DOI:
688	<u>https://doi.org/10.1073/pnas.1600179113, PMID: 26858404</u>
689	Ippolito DM, Eroglu C. 2010. Quantifying synapses: an immunocytochemistry-based assay to quantify
690	synapse number. <i>J Vis Exp</i> . <u>DOI: https://doi.org/10.3791/2270</u> , <u>PMID: 21113117</u>
691	Jakobs TC. 2014. Differential gene expression in glaucoma. <i>Cold Spring Harb Perspect Med</i> 4 :a020636.
692	DOI: https://doi.org/10.1101/cshperspect.a020636, PMID: 24985133
693	Jan YN, Jan LY. 2010. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316-
694	328. <u>DOI: https://doi.org/10.1038/nrn2836</u> , <u>PMID: 20404840</u>
695	Kay JN, De la Huerta I, Kim IJ, Zhang Y, Yamagata M, Chu MW, Meister M, Sanes JR. 2011. Retinal
696	ganglion cells with distinct directional preferences differ in molecular identity, structure, and
697	central projections. J Neurosci 31 :7753-7762. <u>DOI: https://doi.org/10.1523/jneurosci.0907-</u>
698	<u>11.2011, PMID: 21613488</u>
699	Kay JN, Voinescu PE, Chu MW, Sanes JR. 2011. Neurod6 expression defines new retinal amacrine cell
700	subtypes and regulates their fate. Nat Neurosci 14:965-972. DOI: https://doi.org/10.1038/nn.2859,
701	PMID: 21743471
702	Kechad A, Jolicoeur C, Tufford A, Mattar P, Chow RWY, Harris WA, Cayouette M. 2012. Numb is
703	required for the production of terminal asymmetric cell divisions in the developing mouse retina. J
704	Neurosci 32:17197-17210. DOI: https://doi.org/10.1523/jneurosci.4127-12.2012, PMID: 23197712
705	Krishnaswamy A, Yamagata M, Duan X, Hong YK, Sanes JR. 2015. Sidekick 2 directs formation of a
706	retinal circuit that detects differential motion. Nature 524:466-470. DOI:
707	https://doi.org/10.1038/nature14682, PMID: 26287463
708	Lanoue V, Langford M, White A, Sempert K, Fogg L, Cooper HM. 2017. The Wnt receptor Ryk is a
709	negative regulator of mammalian dendrite morphogenesis. Sci Rep 7:5965. DOI:
710	https://doi.org/10.1038/s41598-017-06140-z, PMID: 28729735
711	Ledda F, Paratcha G. 2017. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci
712	74:4511-4537. DOI: https://doi.org/10.1007/s00018-017-2588-8, PMID: 28735442
713	Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. 2012. Protocadherins mediate dendritic
714	self-avoidance in the mammalian nervous system. <i>Nature</i> 488 :517-521. <u>DOI:</u>
715	https://doi.org/10.1038/nature11305, PMID: 22842903
716	Lefebvre JL, Sanes JR, Kay JN. 2015. Development of dendritic form and function. Annu Rev Cell Dev
717	Biol 31 :741-777. DOI: https://doi.org/10.1146/annurev-cellbio-100913-013020, PMID: 26422333
718	Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. 2018. Striatin-1 is a B subunit of protein
719	phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons.
720	J Biol Chem 293 :11179-11194. <u>DOI: https://doi.org/10.1074/jbc.RA117.001519</u> , <u>PMID: 29802198</u>
721	Lin B, Wang SW, Masland RH. 2004. Retinal ganglion cell type, size, and spacing can be specified
722	independent of homotypic dendritic contacts. <i>Neuron</i> 43 :475-485. <u>DOI:</u>
723	https://doi.org/10.1016/j.neuron.2004.08.002, PMID: 15312647
724	Lin L, Lo LH, Lyu Q, Lai KO. 2017. Determination of dendritic spine morphology by the striatin scaffold
725	protein STRN4 through interaction with the phosphatase PP2A. J Biol Chem 292 :9451-9464. <u>DOI:</u>
726	https://doi.org/10.1074/jbc.M116.772442, PMID: 28442576
727	Liu J, Reggiani JDS, Laboulaye MA, Pandey S, Chen B, Rubenstein JLR, Krishnaswamy A, Sanes JR. 2018.
728	Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat Neurosci 21:659-670. DOI:
729	https://doi.org/10.1038/s41593-018-0127-z, PMID: 29632360
730	Liu J, Sanes JR. 2017. Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell
724	
731	Type That Senses Color Contrast and Ventral Motion. J Neurosci 37:12247-12262. DOI:


733	Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. 2020. The m(6)A
734	epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci
735	21:36-51. DOI: https://doi.org/10.1038/s41583-019-0244-z, PMID: 31804615
736	Lu J, Luo C, Bali KK, Xie RG, Mains RE, Eipper BA, Kuner R. 2015. A role for Kalirin-7 in nociceptive
737	sensitization via activity-dependent modulation of spinal synapses. Nat Commun 6:6820. DOI:
738	https://doi.org/10.1038/ncomms7820, PMID: 25865668
739	Mains RE, Kiraly DD, Eipper-Mains JE, Ma XM, Eipper BA. 2011. Kalrn promoter usage and isoform
740	expression respond to chronic cocaine exposure. BMC neuroscience 12:20. DOI:
741	<u>https://doi.org/10.1186/1471-2202-12-20, PMID: 21329509</u>
742	Mao Y, Kong Q, Li R, Zhang X, Gui Y, Li Y, Li C, Zhao Y, Liu L, Ding Z. 2018. Heat shock protein A12A
743	encodes a novel prosurvival pathway during ischaemic stroke. Biochim Biophys Acta Mol Basis Dis
744	1864:1862-1872. DOI: https://doi.org/10.1016/j.bbadis.2018.03.006, PMID: 29530582
745	Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of
746	mRNA methylation reveals enrichment in 3' UTRs and near stop codons. <i>Cell</i> 149 :1635-1646. <u>DOI:</u>
747	https://doi.org/10.1016/j.cell.2012.05.003, PMID: 22608085
748	Min X, Zhang X, Li Y, Cao X, Cheng H, Li Y, Li C, Kong Q, Mao Q, Peng P, Ni Y, Li J, Duan Y, Liu L, Ding Z.
749	2020. HSPA12A unstabilizes CD147 to inhibit lactate export and migration in human renal cell
750	carcinoma. Theranostics 10 :8573-8590. DOI: https://doi.org/10.7150/thno.44321, PMID:
751	32754264
752	Morgan JE, Datta AV, Erichsen JT, Albon J, Boulton ME. 2006. Retinal ganglion cell remodelling in
753	experimental glaucoma. Adv Exp Med Biol 572:397-402. DOI: https://doi.org/10.1007/0-387-
754	<u>32442-9_56</u> , <u>PMID: 17249602</u>
755	Nachtergaele S, He C. 2018. Chemical Modifications in the Life of an mRNA Transcript. Annu Rev
756	Genet 52:349-372. DOI: https://doi.org/10.1146/annurev-genet-120417-031522, PMID: 30230927
757	Parsons K, Nakatani Y, Nguyen MD. 2015. p600/UBR4 in the central nervous system. <i>Cell Mol Life Sci</i>
758 759	72:1149-1160. DOI: https://doi.org/10.1007/s00018-014-1788-8, PMID: 25424645
760	Penzes P, Johnson RC, Sattler R, Zhang X, Huganir RL, Kambampati V, Mains RE, Eipper BA. 2001. The
760 761	neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. <i>Neuron</i> 29 :229-242. DOI: https://doi.org/10.1016/s0896-6273(01)00193-3, PMID:
762	11182094
763	Pongrac JL, Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K. 2004. Heat shock protein 12A shows
764	reduced expression in the prefrontal cortex of subjects with schizophrenia. <i>Biol Psychiatry</i> 56 :943-
765	950. <u>DOI: https://doi.org/10.1016/j.biopsych.2004.09.005</u> , <u>PMID: 15601604</u>
766	Prigge CL, Kay JN. 2018. Dendrite morphogenesis from birth to adulthood. <i>Curr Opin Neurobiol</i>
767	53 :139-145. DOI: https://doi.org/10.1016/j.conb.2018.07.007, PMID: 30092409
768	Prusky GT, Alam NM, Beekman S, Douglas RM. 2004. Rapid quantification of adult and developing
769	mouse spatial vision using a virtual optomotor system. <i>Invest Ophthalmol Vis Sci</i> 45 :4611-4616.
770	DOI: https://doi.org/10.1167/iovs.04-0541, PMID: 15557474
771	Ramos B, Gaudilliere B, Bonni A, Gill G. 2007. Transcription factor Sp4 regulates dendritic patterning
772	during cerebellar maturation. Proc Natl Acad Sci U S A 104:9882-9887. DOI:
773	https://doi.org/10.1073/pnas.0701946104, PMID: 17535924
774	Riccomagno MM, Sun LO, Brady CM, Alexandropoulos K, Seo S, Kurokawa M, Kolodkin AL. 2014. Cas
775	adaptor proteins organize the retinal ganglion cell layer downstream of integrin signaling. Neuron
776	81:779-786. DOI: https://doi.org/10.1016/j.neuron.2014.01.036, PMID: 24559672
777	Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. 2005. Wnt signaling through Dishevelled, Rac
778	and JNK regulates dendritic development. Nat Neurosci 8:34-42. DOI:
779	https://doi.org/10.1038/nn1374, PMID: 15608632
780	Russell TA, Blizinsky KD, Cobia DJ, Cahill ME, Xie Z, Sweet RA, Duan J, Gejman PV, Wang L, Csernansky
781	JG, Penzes P. 2014. A sequence variant in human KALRN impairs protein function and coincides
782	with reduced cortical thickness. Nat Commun 5:4858. DOI: https://doi.org/10.1038/ncomms5858,
783	PMID: 25224588

784	Sanes JR, Masland RH. 2015. The types of retinal ganglion cells: current status and implications for
785	neuronal classification. Annu Rev Neurosci 38 :221-246. <u>DOI: https://doi.org/10.1146/annurev-</u>
786	<u>neuro-071714-034120, PMID: 25897874</u>
787	Sapkota D, Chintala H, Wu F, Fliesler SJ, Hu Z, Mu X. 2014. Onecut1 and Onecut2 redundantly
788	regulate early retinal cell fates during development. Proc Natl Acad Sci U S A 111:E4086-4095. DOI:
789	https://doi.org/10.1073/pnas.1405354111, PMID: 25228773
790	Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
791	Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012.
792	Fiji: an open-source platform for biological-image analysis. <i>Nat Methods</i> 9 :676-682. <u>DOI:</u>
793	https://doi.org/10.1038/nmeth.2019, PMID: 22743772
794	Sergeeva EG, Espinosa-Garcia C, Atif F, Pardue MT, Stein DG. 2018. Neurosteroid allopregnanolone
795	reduces ipsilateral visual cortex potentiation following unilateral optic nerve injury. Exp Neurol
796	306 :138-148. <u>DOI: https://doi.org/10.1016/j.expneurol.2018.05.005</u> , <u>PMID: 29729249</u>
797	Shi C, Yuan X, Chang K, Cho KS, Xie XS, Chen DF, Luo G. 2018. Optimization of Optomotor Response-
798	based Visual Function Assessment in Mice. <i>Sci Rep</i> 8 :9708. <u>DOI: https://doi.org/10.1038/s41598-</u>
799	<u>018-27329-w, PMID: 29946119</u>
800	Shim SY, Wang J, Asada N, Neumayer G, Tran HC, Ishiguro K, Sanada K, Nakatani Y, Nguyen MD. 2008.
801	Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J Neurosci
802	28:3604-3614. DOI: https://doi.org/10.1523/jneurosci.5278-07.2008, PMID: 18385319
803	Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y, Hirano T, Uemura T. 2007.
804	Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat
805	Neurosci 10:963-969. DOI: https://doi.org/10.1038/nn1933, PMID: 17618280
806	Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T. 2004. Regulation of dendritic maintenance and
807	growth by a mammalian 7-pass transmembrane cadherin. <i>Dev Cell</i> 7 :205-216. <u>DOI:</u>
808	https://doi.org/10.1016/j.devcel.2004.07.007, PMID: 15296717
809	Shou T, Liu J, Wang W, Zhou Y, Zhao K. 2003. Differential dendritic shrinkage of alpha and beta retinal
810	ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 44:3005-3010. DOI:
811	https://doi.org/10.1167/iovs.02-0620, PMID: 12824245
812	Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F. 2001. Cre reporter
813	strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. <i>BMC Dev Biol</i> 1 :4.
814	PMID: 11299042
815	Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM,
816	Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. 2019. Single-Cell Profiles of Retinal
817	Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. <i>Neuron</i> . <u>DOI:</u>
818	https://doi.org/10.1016/j.neuron.2019.11.006, PMID: 31784286
819	Umino Y, Solessio E, Barlow RB. 2008. Speed, spatial, and temporal tuning of rod and cone vision in
820	mouse. <i>J Neurosci</i> 28:189-198. <u>DOI: https://doi.org/10.1523/jneurosci.3551-07.2008</u> , <u>PMID:</u>
821	18171936
822	Vessey JP, Macchi P, Stein JM, Mikl M, Hawker KN, Vogelsang P, Wieczorek K, Vendra G, Riefler J,
823	Tubing F, Aparicio SA, Abel T, Kiebler MA. 2008. A loss of function allele for murine Staufen1 leads
824 825	to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis. <i>Proc Natl</i>
825	Acad Sci U S A 105 :16374-16379. <u>DOI: https://doi.org/10.1073/pnas.0804583105</u> , <u>PMID:</u>
826 827	<u>18922781</u> Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. 2014.
828	N6-methyladenosine-dependent regulation of messenger RNA stability. <i>Nature</i> 505 :117-120. DOI:
828 829	https://doi.org/10.1038/nature12730, PMID: 24284625
830	Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G, Zhao
831	JC. 2018. N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-
832	renewal through histone modifications. <i>Nat Neurosci</i> 21 :195-206. <u>DOI:</u>
833	https://doi.org/10.1038/s41593-017-0057-1, PMID: 29335608
834	Weber AJ, Kaufman PL, Hubbard WC. 1998. Morphology of single ganglion cells in the glaucomatous
835	primate retina. Invest Ophthalmol Vis Sci 39 :2304-2320. PMID: 9804139

Xie Z, Cahill ME, Penzes P. 2010. Kalirin loss results in cortical morphological alterations. Mol Cell 836 Neurosci 43:81-89. DOI: https://doi.org/10.1016/j.mcn.2009.09.006, PMID: 19800004 837 Xie Z, Srivastava DP, Photowala H, Kai L, Cahill ME, Woolfrey KM, Shum CY, Surmeier DJ, Penzes P. 838 839 2007. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. 840 Neuron 56:640-656. DOI: https://doi.org/10.1016/j.neuron.2007.10.005, PMID: 18031682 841 Yan Y, Eipper BA, Mains RE. 2015. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth 842 and Branching. Cereb Cortex 25:3487-3501. DOI: https://doi.org/10.1093/cercor/bhu182, PMID: 843 25146373 844 Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN. 2004. Nanos and Pumilio are essential for dendrite 845 morphogenesis in Drosophila peripheral neurons. Curr Biol 14:314-321. DOI: 846 https://doi.org/10.1016/j.cub.2004.01.052, PMID: 14972682 847 Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ. 2018. Dynamic m6A modification regulates 848 local translation of mRNA in axons. Nucleic acids research 46:1412-1423. DOI: 849 https://doi.org/10.1093/nar/gkx1182, PMID: 29186567 850 Yu J, She Y, Ji SJ. 2021. m(6)A Modification in Mammalian Nervous System Development, Functions, 851 Disorders, and Injuries. Front Cell Dev Biol 9:679662. DOI: 852 https://doi.org/10.3389/fcell.2021.679662, PMID: 34113622 853 Yu J, She Y, Yang L, Zhuang M, Han P, Liu J, Lin X, Wang N, Chen M, Jiang C, Zhang Y, Yuan Y, Ji SJ. 854 2021. The m(6) A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons. Adv Sci 855 (Weinh) 8:e2101329. DOI: https://doi.org/10.1002/advs.202101329, PMID: 34643063 856 857 Zhou X, Qyang Y, Kelsoe JR, Masliah E, Geyer MA. 2007. Impaired postnatal development of 858 hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav 6:269-276. DOI: https://doi.org/10.1111/j.1601-183X.2006.00256.x, PMID: 16899055 859

860

862 Figures, figure legends, and supplementary files

863

864 Figure 1. Knockdown of YTHDF2 leads to a robust increase of RGC dendrite branching.

(A) Representative confocal images showing high expression of YTHDF2 in RGCs (marked by RBPMS)

866 in P0 retina. Note that all RGCS marked by the pan-RGC marker RBPMS express YTHDF2 while all

867 YTHDF2-expressing cells are RBPMS⁺ RGCs. GCL, ganglion cell layer. Scale bars: 20 μ m.

868 (B) Western blotting (WB) confirming efficient knockdown (KD) of YTHDF2 in cultured RGCs using

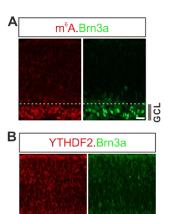
shYthdf2. Data of WB quantification are mean \pm SEM and are represented as dot plots: ***p =

870 0.00012 (*n* = 3 replicates); by unpaired Student's *t* test.

871 (C) Examination of RGC dendrite development after YTHDF2 KD. As shown, significantly increased

872 branching of dendrites marked by MAP2 immunofluorescence was observed in cultured RGCs

873 marked by Brn3a. Dendrite traces were drawn for the corresponding RGCs. Scale bar: 10 μm.


874 (**D**) Quantification of dendrite branching (**C**) using Sholl analysis. As shown, numbers of interactions

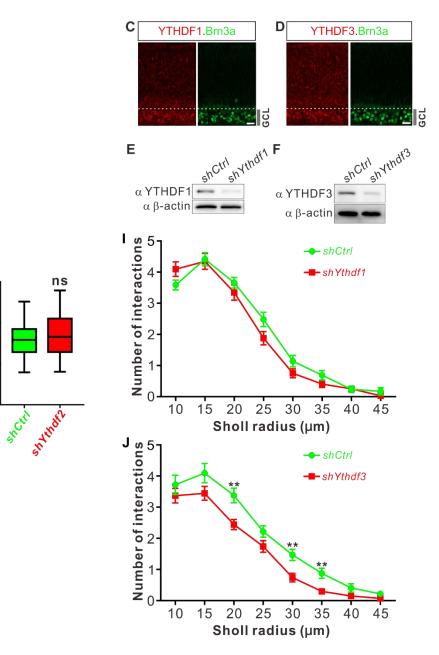
are significantly greater in *shYthdf2* groups (*n* = 68 RGCs) than *shCtrl* groups (*n* = 72 RGCs) in Sholl

radii between 10-30 μ m. Data are mean ± SEM. ****p = 4.32E-05 (10 μ m), ***p = 0.00038 (15 μ m),

877 ****p = 2.85E-05 (20 μm), ***p = 0.00084 (25 μm), *p = 0.020 (30 μm), by unpaired Student's t test.

ទ្រ

60-


40

20

0

Н

Length of maximum branch (µm)

879

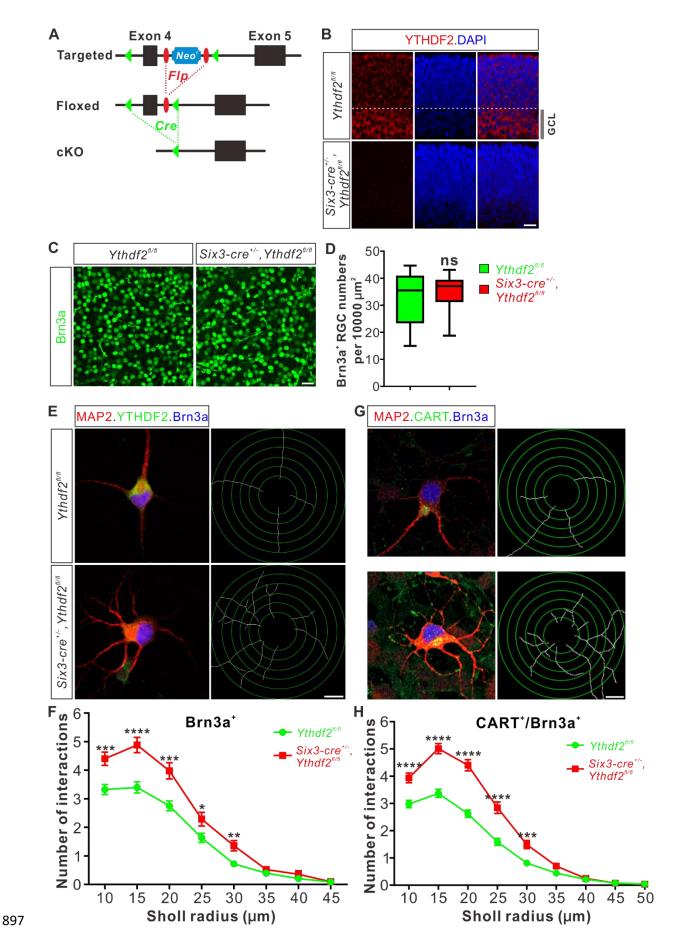
Figure 1—figure supplement 1. RGC have high level of m⁶A modification and strong expression of

881 YTHDFs.

Total dendrite length (µm)

300-

200


100

0

SHCER

SHIMAN

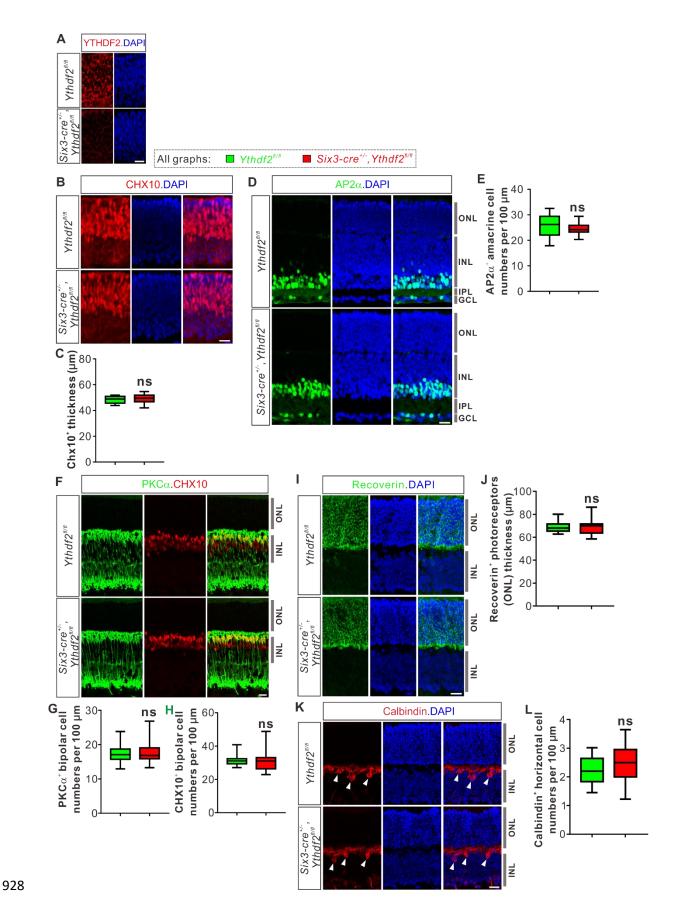
- (A-D) Representative confocal images showing high levels of m⁶A modification (A), and strong
- 883 expressions of YTHDF2 (**B**), YTHDF1 (**C**), and YTHDF3 (**D**) in RGCs (marked by Brn3a) in PO retina. Scale
- 884 bars: 20 μm.
- 885 (E, F) Western blotting (WB) confirming efficient knockdown (KD) of YTHDF1 and YTHDF3 in cultured
- 886 RGCs using *shYthdf1* and *shYthdf3*, respectively.
- (G, H) Quantification of total length (G) and length of maximum branch (H) of RGC dendrites after
- 888 YTHDF2 KD. Data are represented as box and whisker plots: *n* = 36 RGCs for *shCtrl*, *n* = 32 RGCs for
- shYthdf2; ***p = 0.00062 for **G**; p = 0.22 for **H**; ns, not significant; by unpaired Student's *t* test.
- 890 (I, J) Quantification of dendrite branching using Sholl analysis after YTHDF1 KD (I) and YTHDF3 KD (J).
- Data are mean ± SEM. In I, n = 29 RGCs for shCtrl, n = 32 RGCs for shYthdf1, all not significant; in J, n =
- 892 32 RGCs for *shCtrl*, *n* = 27 RGCs for *shYthdf3*, ***p* = 0.0028 (20 μm), ***p* = 0.0028 (30 μm), ***p* =
- 893 0.0052 (35 μ m); by unpaired Student's *t* test.
- 894
- 895
- 896

(A) Schematic drawings of the genetic deletion strategy for Ythdf2. Exon 4 which contains YTH

- 900 domain-coding sequence is deleted after Cre-mediated recombination.
- 901 (B) Depletion of YTHDF2 protein in retina of $Six3-cre^{+/-}$; Ythdf2^{fi/fi} cKO mice. Anti-YTHDF2
- 902 immunostaining of E15.5 retina vertical sections confirmed cKO of YTHDF2 protein, compared with
- 903 *Ythdf2*^{*fl/fl*} littermate controls. Scale bar: 20 μ m.
- 904 (C, D) RGC neurogenesis not affected in the Ythdf2 cKO retina. Wholemount immunostaining using a
- 905 Brn3a antibody was carried out in P20 retina (**C**). Numbers of Brn3a⁺ RGC per 10000 μ m² of retina
- 906 were quantified and showed no difference between the *Ythdf2* cKO and their littermate controls (**D**).
- 907 *n* = 12 confocal fields for each genotype. Data are represented as box and whisker plots: ns, not
- significant (p = 0.79); by unpaired Student's *t* test. Scale bar: 25 μ m.
- 909 (E) Examination of RGC dendrite development in Ythdf2 cKO RGCs. As shown, knockout of YTHDF2
- 910 was confirmed by YTHDF2 IF (green). Significantly increased branching of dendrites marked by MAP2
- 911 IF (red) was observed in cultured RGCs from the *Ythdf2* cKO retina compared with their littermate
- 912 controls. Dendrite traces were drawn for the corresponding RGCs. Scale bar: 10 μm.
- 913 (F) Quantification of RGC dendrite branching (E) using Sholl analysis. Data are mean ± SEM. Numbers
- of interactions are significantly greater in *Six3-cre*^{+/-}, *Ythdf2*^{fl/fl} groups (n = 68 RGCs) than *Ythdf2*^{fl/fl}

groups (*n* = 42 RGCs) in Sholl radii between 10-30 μm: ****p* = 0.00030 (10 μm), *****p* = 1.19E-05 (15

916 μ m), ***p = 0.00018 (20 μ m), *p = 0.021 (25 μ m), **p = 0.0022 (30 μ m), by unpaired Student's t test.


917 (G) Examination of CART⁺ RGC dendrite development in *Ythdf2* cKO RGCs. Cultured CART⁺ RGCs from

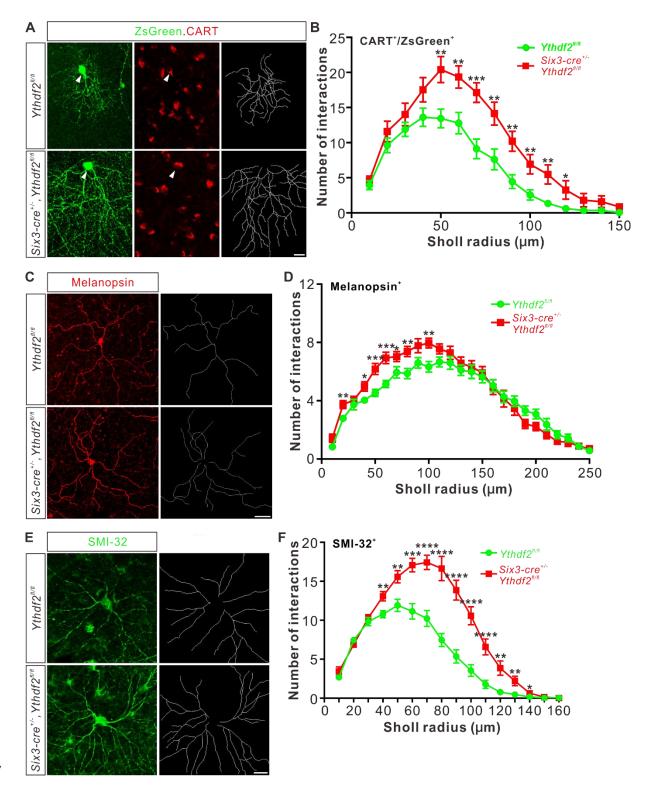
918 the *Ythdf2* cKO retina have significantly increased branching of dendrites marked by MAP2 IF (red)

- 919 compared with their littermate controls. Dendrite traces were drawn for the corresponding RGCs.
- 920 Scale bar: 10 μ m.
- 921 (H) Quantification of CART⁺ RGC dendrite branching (G) using Sholl analysis. Data are mean \pm SEM. 922 Numbers of interactions are significantly greater in *Six3-cre^{+/-}*, *Ythdf2^{fl/fl}* groups (*n* = 77 RGCs) than
- 923 *Ythdf2*^{*fl/fl*} groups (*n* = 90 RGCs) in Sholl radii between 10-30 μ m: *****p* = 3.17E-05 (10 μ m), *****p* =

- 924 6.50E-11 (15 μm), *****p* = 5.14E-12 (20 μm), *****p* = 5.00E-07 (25 μm), ****p* = 0.00020 (30 μm), by
- 925 unpaired Student's *t* test.

926

929 Figure 2—figure supplement 1. Ythdf2 cKO does not change numbers of retinal progenitors,


930 amacrine cells, bipolar cells, photoreceptors, or horizontal cells.

931 (A) YTHDF2 protein was efficiently knocked out in the retinas of Six3-Cre-mediated *Ythdf2* cKO mice932 at E12.5.

933	(B, C) Retinal progenitors not affected in Ythdf2 cKO retina. CHX10 IF was used to label retinal
934	progenitors at E15.5 (B). Thickness of CHX10 $^{+}$ retinal layer was quantified and showed no difference
935	between the Ythdf2 cKO retina ($n = 10$ sections) and their littermate controls ($n = 19$ sections) (C).
936	(D, E) Amacrine cells not affected in the Ythdf2 cKO retina. AP2 α IF was used to mark amacrine cells
937	in P6 retina (D). Numbers of AP2 $lpha^+$ amacrine cells per 100 μm of layer width in retina vertical
938	sections were quantified and showed no difference between the <i>Ythdf2</i> cKO (<i>n</i> = 26 sections) and
939	littermate controls (<i>n</i> = 26 sections) (E). ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner
940	plexiform layer.
941	(F-H) Bipolar cells not changed in the Ythdf2 cKO retina. PKC $lpha$ and CHX10 IF were used to label
942	different bipolar cells in P15 retina (F). Numbers of PKC $lpha^+$ and CHX10 $^+$ bipolar cells per 100 μm of
943	layer width in retina vertical sections were quantified and showed no difference between the Ythdf2
944	cKO ($n = 18$ sections for PKC α^+ in G , $n = 19$ sections for CHX10 ⁺ in H) and littermate controls ($n = 18$
945	sections for PKC α^+ in G , <i>n</i> = 19 sections for CHX10 ⁺ in H).
946	(I, J) Photoreceptors not changed in the Ythdf2 cKO retina. Recoverin IF was used to label
947	photoreceptors in P20 retina (I). Thickness of Recoverin $^{+}$ photoreceptor layer (e.g. ONL) in the retinal
948	vertical sections was quantified and showed no difference between the <i>Ythdf</i> 2 cKO (<i>n</i> = 34 confocal
949	fields) and littermate controls ($n = 30$ confocal fields) (J).
950	(K, L) Horizontal cells not affected in the Ythdf2 cKO retina. Calbindin IF was used to mark horizontal
951	cells in P20 retina (arrowheads in K). Numbers of Calbindin * horizontal cells per 100 μ m of layer
952	width in retina vertical sections were quantified and showed no difference between the Ythdf2 cKO
953	($n = 17$ sections) and littermate controls ($n = 17$ sections) (L).
954	All quantification data are represented as box and whisker plots: ns, not significant; $p = 0.41$ for C , $p =$

955 0.16 for **E**, *p* = 0.82 for **G**, *p* = 0.97 for **H**, *p* = 0.89 for **J**, *p* = 0.19 for **L**; by unpaired Student's *t* test.

956 Scale bars: 20 μm.

957

959 (A) Co-labeling of ooDSGCs by AAV-ZsGreen and CART IF in vivo. Intravitreal injection of AAV

960 expressing ZsGreen reporter was performed at P17 and retinas were collected at P27. The white

961 arrowheads indicate ooDSGCs co-labeled by ZsGreen and CART IF, which show dramatically increased

962 dendrite branching in Ythdf2 cKO compared with control. Dendrite traces were drawn for the

963 corresponding RGCs shown. Scale bar: 20 μm.

964 (B) Quantification of dendrite branching of ZsGreen⁺/CART⁺ ooDSGCs (A) using Sholl analysis. Data

965 are mean ± SEM. Numbers of interactions are significantly greater in Six3-cre^{+/-}, Ythdf2^{fl/fl} groups (n =

966 15 RGCs) than Ythdf2^{fl/fl} groups (n = 18 RGCs) in Sholl radii between 50-120 µm: **p = 0.0041 (50 µm),

967 ***p* = 0.0059 (60 μm), ****p* = 0.00036 (70 μm), ***p* = 0.0058 (80 μm), ***p* = 0.0018 (90 μm), ***p* =

968 0.0064 (100 μ m), ***p* = 0.0045 (110 μ m), **p* = 0.040 (120 μ m), by unpaired Student's *t* test.

969 (C) Dendrites of ipRGCs visualized by wholemount immunostaining of P20 retina using a melanopsin

970 antibody in vivo. Dendrite traces were drawn for the corresponding RGCs shown. Scale bar: 50 μm.

971 (**D**) Quantification of dendrite branching of melanopsin⁺ ipRGCs (**C**) using Sholl analysis. Data are

972 mean ± SEM. Numbers of interactions are significantly greater in Six3- $cre^{+/-}$, $Ythdf2^{fl/fl}$ groups (n = 18

973 RGCs) than *Ythdf2^{fl/fl}* groups (n = 21 RGCs) in Sholl radii between 20-100 µm: **p = 0.0083 (20 µm),

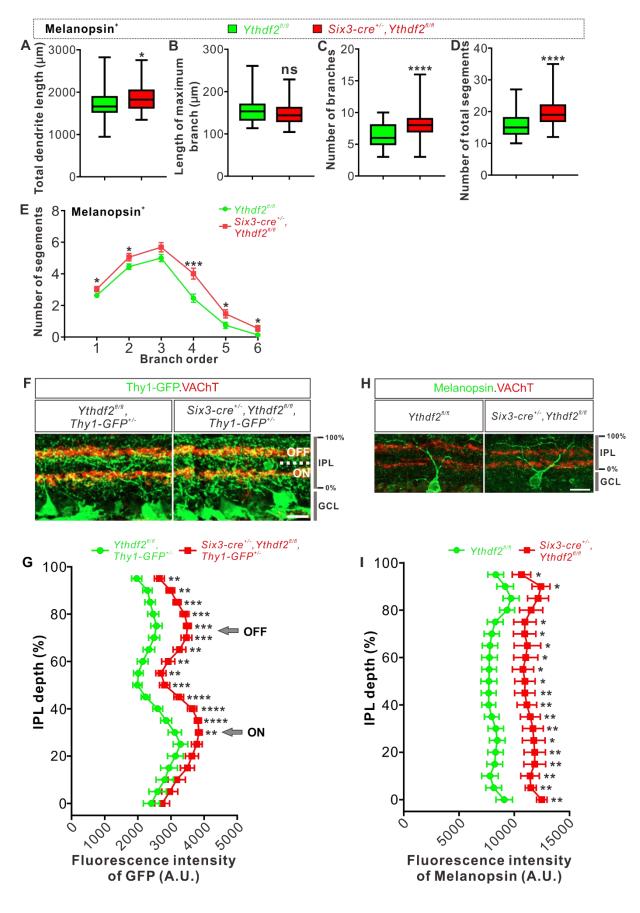
974 **p* = 0.018 (40 μm), ****p* = 0.00068 (50 μm), ****p* = 0.00027 (60 μm), **p* = 0.048 (70 μm), ***p* =

975 0.0048 (80 μm), ***p* = 0.0023 (100 μm), by unpaired Student's *t* test.

976 (E) Dendrites of α RGCs visualized by wholemount immunostaining of P20 retina using a SMI-32

977 antibody in vivo. Dendrite traces were drawn for the corresponding RGCs shown. Scale bar: 20 μm.

978 (F) Quantification of dendrite branching of SMI-32⁺ α RGCs (E) using Sholl analysis. Data are mean ±


979 SEM. Numbers of interactions are significantly greater in *Six3-cre*^{+/-}, *Ythdf2*^{fl/fl} groups (n = 14 RGCs)

980 than Ythdf2^{fl/fl} groups (n = 22 RGCs) in Sholl radii between 40-140 µm: **p = 0.0044 (40 µm), **p =

981 0.0035 (50 μm), ****p* = 0.00021 (60 μm), *****p* = 2.63E-05 (70 μm), *****p* = 2.38E-06 (80 μm),

982 *****p* = 1.68E-06 (90 μm), *****p* = 6.76E-06 (100 μm), *****p* = 5.72E-05 (110 μm), ***p* = 0.0011 (120

983 μ m), **p = 0.0032 (130 μ m), *p = 0.047 (140 μ m), by unpaired Student's t test.

986 Figure 3—figure supplement 1. General dendrite density in IPL is increased without affecting

987 sublaminar targeting.

988 (A-E) Quantification of total length (A), length of maximum branch (B), branch numbers (C), number

- 989 of total segments (**D**), and numbers of segments on each branch order (**E**) of melanopsin⁺ ipRGCs
- 990 dendrites visualized by wholemount immunostaining of P20 retina using a melanopsin antibody in
- 991 vivo (shown in *Figure 3C*). Data are represented as box and whisker plots in **A-D**: *n* = 58 RGCs for

992 *Ythdf2*^{*fl/fl}, n = 51* RGCs for *Six3-cre*^{+/-}, *Ythdf2*^{*fl/fl*}; **p* = 0.040 for **A**; *p* = 0.12 for **B**; *****p* = 1.39E-06 for **C**;</sup>

- 993 *p = 7.89E-08 for **D**; ns, not significant. Data are mean ± SEM in **E**: *p = 0.038 (branch order 1), *p =
- 994 0.039 (branch order 2), ****p* = 0.00045 (branch order 4), **p* = 0.026 (branch order 5), **p* = 0.029
- 995 (branch order 6). All by unpaired Student's *t* test.
- 996 (F) Cross-sections of the IPL showing dendritic sublaminar patterning of Thy1-GFP⁺ RGCs in P20
- 997 control and Ythdf2 cKO retina. ON and OFF refer to the ON-OFF bipartite divisions of the IPL marked
- 998 by VAChT. Scale bar: 20 μ m.
- 999 (G) Quantification and distribution of GFP intensities from Thy1-GFP⁺ RGC dendrites through the
- 1000 depth of IPL shown in (F). GFP IF intensities are increased for the 30-95% depth of IPL in the *Ythdf2*
- 1001 cKO retina compared with their littermate controls, but the general patterning is similar between the

1002 two genotypes. Data are mean \pm SEM (n = 13 sections for each genotype): **p = 0.0039 (95%), **p =

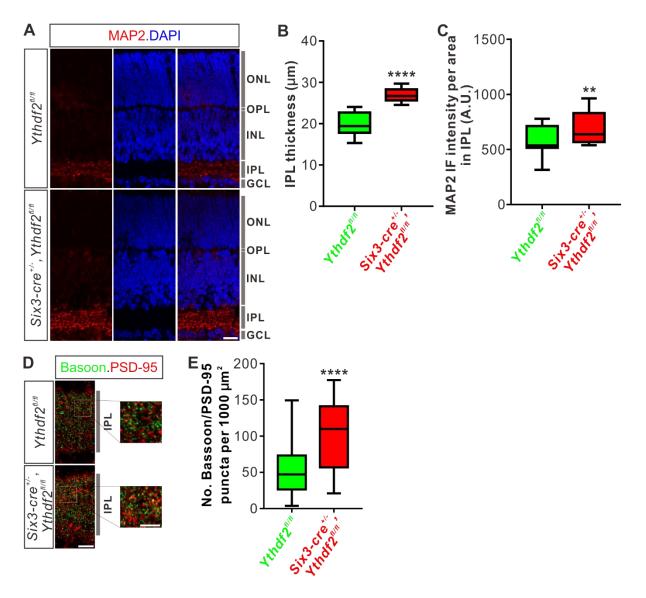
1003 0.0014 (90%), ****p* = 0.00049 (85%), ****p* = 0.00020 (80%), ****p* = 0.00018 (75%), ****p* = 0.00036

1004 (70%), **p = 0.0018 (65%), **p = 0.0067 (60%), **p = 0.0040 (55%), ***p = 0.00057 (50%), ****p = 0.00057

1005 3.48E-05 (45%), *****p* = 4.76E-05 (40%), *****p* = 6.85E-05 (35%), ***p* = 0.0034 (30%), by unpaired

- 1006 Student's *t* test. Arrows indicate peaks of VAChT signals.
- (H) Cross-sections of the IPL showing dendritic sublaminar patterning of melanopsin⁺ ipRGCs in P20
 control and *Ythdf2* cKO retina. Scale bar: 20 μm.
- 1009 (I) Quantification and distribution of melanopsin IF intensities from melanopsin⁺ ipRGC dendrites
- 1010 through the depth of IPL shown in (H). Melanopsin IF intensities are increased in the Ythdf2 cKO
- 1011 retina compared with their littermate controls, but the general patterning is similar between the two

1012 genotypes. Data are mean \pm SEM (n = 11 neurons for control, n = 8 neurons for Ythdf2 cKO): *p =


1013 0.049 (95%), **p* = 0.010 (90%), **p* = 0.039 (75%), **p* = 0.022 (70%), **p* = 0.019 (65%), **p* = 0.018

1014 (60%), *p = 0.016 (55%), *p = 0.013 (50%), **p = 0.0095 (45%), **p = 0.0044 (40%), **p = 0.0053

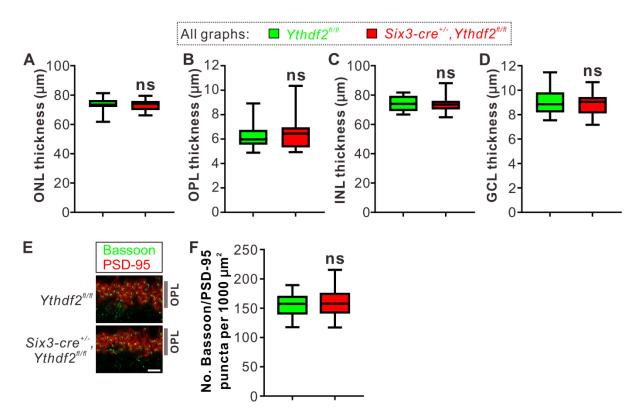
1015 (35%), ***p* = 0.0091 (30%), **p* = 0.014 (25%), ***p* = 0.0074 (20%), ***p* = 0.0071 (15%), ***p* = 0.0053

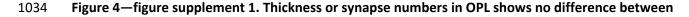
1016 (10%), **p = 0.0025 (5%), **p = 0.0029 (0%), by unpaired Student's *t* test.

1017

1018

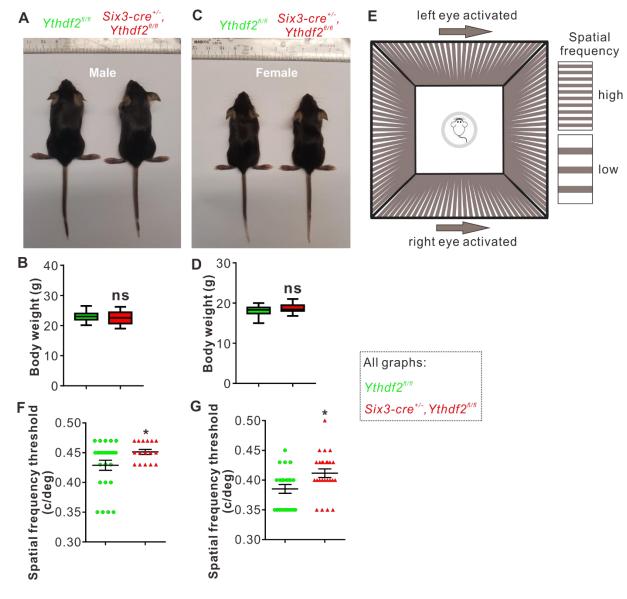
1019 Figure 4. IPL of the *Ythdf2* cKO retina is thicker and has more synapses.

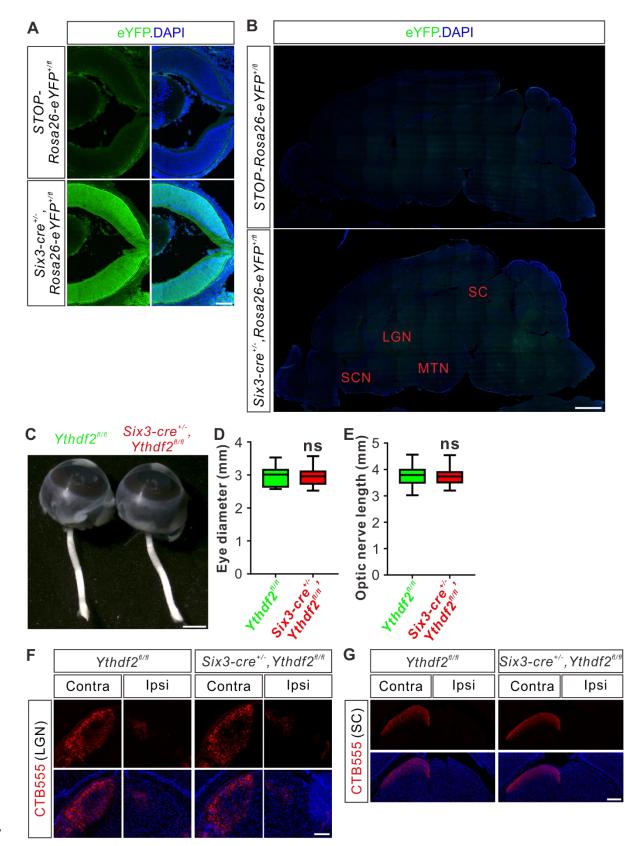

1020 (A) Cross-sections of P6 Six3-cre^{+/-}, Ythdf2^{fl/fl} retina showing increased IPL thickness by MAP2 staining


1021 compared with littermate control. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

1022 nuclear layer; IPL, inner plexiform layer; GCL, granule cell layer. Scale bar: 20 μm.

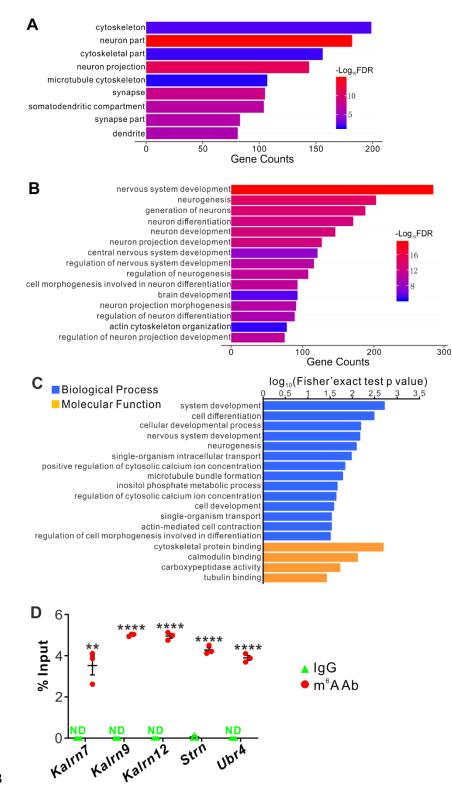
1023 (B, C) Quantification showing increased IPL thickness and MAP2 IF intensity per area in IPL of the 1024 Ythdf2 cKO retina (A). Quantification data are represented as box and whisker plots: ***p = 1.28E-071025 for **B** (n = 12 sections for each genotype), by unpaired Student's t test; **p = 0.0045 for **C** (n = 121026 sections for each genotype), by paired Student's t test. 1027 (D, E) Representative confocal images showing the excitatory synapses labeled by co-localization of 1028 Bassoon (presynaptic) and PSD-95 (postsynaptic) in the IPL of P30 retina (D). There are significantly 1029 more synapses in the Ythdf2 cKO IPL compared with control. Quantification data are represented as box and whisker plots (E): n = 47 confocal fields for Ythdf2^{fl/fl}, n = 23 confocal fields for Six3-cre^{+/-} 1030 1031 , *Ythdf* $2^{fl/fl}$; **p = 1.63E-05; by unpaired Student's *t* test. Scale bars: 10 µm (**D**) and 5 µm (inset in **D**).


1032


- 1035 the Ythdf2 cKO and control retinas.
- 1036 (A-D) Quantification of the thickness of different layers by MAP2/DAPI IF in P6 Ythdf2 cKO and
- 1037 control retinas as shown in *Figure 4A*. Data are represented as box and whisker plots: *n* = 14 sections

- 1038 for each genotype; p = 0.60 for ONL in **A**, p = 0.61 for OPL in **B**, p = 0.84 for INL in **C**, p = 0.62 for GCL
- 1039 in **D**; ns, not significant; by unpaired Student's *t* test.
- 1040 (E, F) Representative confocal images showing the excitatory ribbon synapses labeled by co-
- 1041 localization of Bassoon (presynaptic) and PSD-95 (postsynaptic) in the OPL of P30 retina (E), which
- shows no difference between *Ythdf2* cKO and control. Quantification data are represented as box
- and whisker plots (**F**): n = 39 confocal fields for $Ythdf2^{fl/fl}$, n = 36 confocal fields for Six3- $cre^{+/-}$, $Ythdf2^{fl/fl}$;
- 1044 p = 0.66; ns, not significant; by unpaired Student's *t* test. Scale bar: 5 μ m.
- 1045

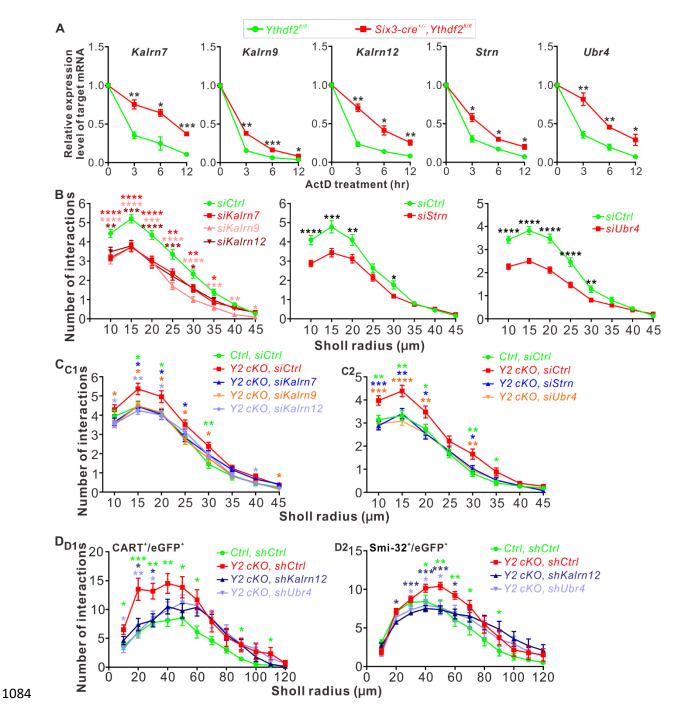
1047 Figure 5. Visual acuity is improved for the *Ythdf2* cKO mice.


- 1048 (A-D) Six3-Cre-mediated *Ythdf2* cKO showing normal animal development and body weight (male in
- 1049 **A**, female in **C**). Quantification data of body weight (**B**, **D**) are represented as box and whisker plots: *p*
- 1050 = 0.41 in **B** (male, *n* = 24 for control, *n* = 18 for cKO); *p* = 0.08 in **D** (female, *n* = 23 for control, *n* = 25
- 1051 for cKO); ns, not significant; by unpaired Student's *t* test.
- 1052 (E) The setup of optomotor response assay is illustrated by schematic drawing.
- 1053 (**F**, **G**) Optomotor response assay demonstrating improved visual acuity in the *Ythdf2* cKO mice.
- 1054 Quantification data are mean \pm SEM: *p = 0.048 in **F** (male, n = 24 control, n = 16 cKO); *p = 0.015 in
- 1055 **G** (female, n = 21 control, n = 25 cKO); by unpaired Student's *t* test.

1058 Figure 5—figure supplement 1. Guidance or central targeting of optic nerves is not affected in Six-

- 1060 (A) Cross-sections of E14.5 retina showing strong expression of Six3-Cre using an eYFP reporter. Scale
- 1061 bar: 100 μ m.
- 1062 (B) Sagittal sections of P10 brain showing negligible expression of Six3-Cre in the potential RGC target
- 1063 regions in the brain. SCN, suprachiasmatic nucleus; LGN, lateral geniculate nucleus; MTN, medial
- 1064 terminal nucleus; SC, superior colliculus. Scale bar: 1 mm.
- 1065 (C-E) Normal eye diameter and optic nerve length. Quantification data (D, E) are represented as box
- and whisker plots: p = 0.80 (n = 31 for each genotype in **D**); p = 0.99 (n = 31 for each genotype in **E**);
- 1067 ns, not significant; by unpaired Student's *t* test. Scale bar: 1 mm.
- 1068 (F, G) Representative images of coronal sections through the LGN (F) and SC (G) after unilateral
- 1069 injection of CTB-Alexa Fluor 555 at P37 in Ythdf2 cKO and control mice. Projections to the
- 1070 contralateral (Contra), ipsilateral (Ipsi) LGN and contralateral (Contra) SC are visible, which shows no
- 1071 difference between *Ythdf2* cKO and control mice. Scale bars: 100 μm (**F**) and 200 μm (**G**).

1073


1074 Figure 6. YTHDF2 target mRNAs were identified with transcriptomic and proteomic analysis.

1075 (A, B) Gene Ontology (GO) analysis of YTHDF2 target transcripts identified by anti-YTHDF2 RNA

1076 immunoprecipitation (RIP) in the retina followed by RNA sequencing (RIP-seq). Neural terms were

1077 picked out in Cellular Component (A) and Biological Process (B).

- 1078 (C) GO analysis of proteins which are upregulated after YTHDF2 KD by MS.
- 1079 (D) Verification of m⁶A modification of YTHDF2 target mRNAs by anti-m⁶A pulldown followed by RT-
- 1080 qPCR. ND, not detected. Data are mean ± SEM and are represented as dot plots (*n* = 3 replicates):
- 1081 ***p* = 0.0016 for *Kalrn7*; *****p* = 1.40E-08 for *Kalrn9*; *****p* = 1.46E-06 for *Kalrn12*; *****p* = 5.46E-06
- 1082 for *Strn*; ****p = 4.90E-06 for *Ubr4*; by unpaired Student's *t* test.
- 1083

1085 Figure 7. YTHDF2 target mRNAs mediate YTHDF2-controlled RGC dendrite branching.

1086 (A) YTHDF2 target mRNAs showing increased stability in the *Ythdf2* cKO retina. RGCs dissected from 1087 E14.5 *Ythdf2* cKO and control embryos were cultured, treated with actinomycin D (ActD) and 1088 collected at different timepoints. Data are mean \pm SEM (n = 3 replicates). For *Kalrn7*, **p = 0.0057 (3 1089 hr), *p = 0.014 (6 hr), ***p = 0.00039 (12 hr); for *Kalrn9*, **p = 0.0036 (3 hr), ***p = 0.00090 (6 hr), *p1090 =0.032 (12 hr); for *Kalrn12*, **p = 0.0012 (3 hr), *p = 0.010 (6 hr), **p = 0.0069 (12 hr); for *Strn*, *p =1091 0.014 (3 hr), *p = 0.012 (6 hr), *p = 0.016 (12 hr); for *Ubr4*, **p = 0.0077 (3 hr), **p = 0.0059 (6 hr), *p1092 =0.041 (12 hr); all by unpaired Student's *t* test.

- 1093 (B) KD of the target mRNAs causing decreased dendrite branching of cultured RGCs prepared from
- 1094 wild type (WT) E14.5 retina by Sholl analysis. Brn3a and MAP2 IF were used to mark RGCs and
- 1095 visualize dendrites. Data are mean ± SEM. For Kalrn7 (n = 59 for siCtrl, n = 56 for siKalrn7), ****p =
- 1096 2.33E-06 (10 μ m), *****p* = 5.85E-06 (15 μ m), *****p* = 8.67E-05 (20 μ m), ***p* = 0.0045 (25 μ m), ***p* = 0.
- 1097 0.0058 (30 μ m), *p = 0.010 (35 μ m); for Kalrn9 (n = 59 for siCtrl, n = 46 for siKalrn9), ****p = 3.69E-
- 1098 05 (10 μm), *****p* = 5.53E-05 (15 μm), ****p* = 0.00020 (20 μm), *****p* = 3.09E-06 (25 μm), *****p* =
- 1099 4.63E-06 (30 μm), ****p* = 0.00059 (35 μm), ***p* = 0.0010 (40 μm), **p* = 0.042 (45 μm); for *Kalrn12* (*n*
- 1100 = 59 for *siCtrl*, n = 39 for *siKalrn12*), **p = 0.0031 (10 µm), ***p = 0.00017 (15 µm), ****p = 6.56E-05
- 1101 (20 μ m), ***p* = 0.0017 (25 μ m), **p* = 0.017 (30 μ m); for Strn (*n* = 51 for siCtrl, *n* = 57 for siStrn), *****p*
- 1102 = 4.19E-05 (10 μm), ***p = 0.00067 (15 μm), **p = 0.0079 (20 μm), *p = 0.015 (30 μm); for Ubr4 (n =
- 1103 81 for *siCtrl*, *n* = 81 for *siUbr4*), *****p* = 1.26E-08 (10 μm), *****p* = 7.61E-10 (15 μm), *****p* = 2.35E-
- 1104 08 (20 μ m), ****p = 1.39E-05 (25 μ m), **p = 0.0061 (30 μ m); all by unpaired Student's t test.
- 1105 (C) Increased dendrite branching of cultured RGCs prepared from E14.5 Ythdf2 cKO retina was
- 1106 rescued by KD of target mRNAs using siRNAs. Data are mean ± SEM. *Ctrl*, *Ythdf2*^{fl/fl}; *Y2 cKO*, *Six3-cre*^{+/-}
- 1107 ,*Ythdf2^{fl/fl}*. In **C1**, "*Ctrl, siCtrl*" (*n* = 35 neurons) vs "*Y2 cKO, siCtrl*" (*n* = 52 neurons), **p* = 0.038 (15 μm),
- 1108 *p = 0.045 (20 μm), **p = 0.0036 (30 μm); "Y2 cKO, siKalrn7" (n = 55 neurons) vs "Y2 cKO, siCtrl", *p
- 1109 = 0.020 (15 μm), *p = 0.025 (20 μm), *p = 0.031 (25 μm); "Y2 cKO, siKalrn9" (n = 66 neurons) vs "Y2
- 1110 *cKO, siCtrl*", **p* = 0.020 (10 μm), **p* = 0.013 (15 μm), **p* = 0.031 (20 μm), **p* = 0.017 (25 μm), **p* =
- 1111 0.031 (30 μm), *p = 0.031 (45 μm); "Y2 cKO, siKalrn12" (n = 80 neurons) vs "Y2 cKO, siCtrl", *p =

1112	0.015 (10 μm), ** <i>p</i> = 0.0018 (15 μm), * <i>p</i> = 0.015 (20 μm), * <i>p</i> = 0.027 (40 μm). In C2 , " <i>Ctrl, siCtrl</i> " (<i>n</i> =
1113	50 neurons) vs " <i>Y2 cKO, siCtrl</i> " (<i>n</i> = 47 neurons), ** <i>p</i> = 0.0031 (10 μm), ** <i>p</i> = 0.0013 (15 μm), * <i>p</i> =
1114	0.029 (20 μm), ** <i>p</i> = 0.0015 (30 μm), * <i>p</i> = 0.014 (35 μm); " <i>Y2 cKO, siStrn</i> " (<i>n</i> = 45 neurons) vs " <i>Y2</i>
1115	<i>cKO, siCtrl</i> ", *** <i>p</i> = 0.00016 (10 μm), ** <i>p</i> = 0.0043 (15 μm), * <i>p</i> = 0.010 (20 μm), * <i>p</i> = 0.018 (30 μm);
1116	" <i>Y2 cKO, siUbr4</i> " (<i>n</i> = 57 neurons) vs " <i>Y2 cKO, siCtrl</i> ", *** <i>p</i> = 0.00084 (10 μm), **** <i>p</i> = 4.89E-05 (15
1117	μm), ** p = 0.0058 (20 μm), ** p = 0.0045 (30 μm). All by unpaired Student's t test.
1118	(D) Increased dendrite branching of RGC subtypes in Ythdf2 cKO retina was rescued by KD of target
1119	mRNAs through intravitreal injection of AAV siRNAs in vivo. Data are mean ± SEM. Ctrl, Ythdf2 ^{fl/fl} ; Y2
1120	<i>cKO</i> , <i>Six3-cre^{+/-},Ythdf2^{fl/fl}</i> . In D1 (CART ⁺ /eGFP ⁺ ooDSGCs), " <i>Ctrl, shCtrl</i> " (<i>n</i> = 10 neurons) vs "Y2 <i>cKO</i> ,
1121	<i>shCtrl</i> " (<i>n</i> = 6 neurons), * <i>p</i> = 0.010 (10 μm), *** <i>p</i> = 0.00049 (20 μm), ** <i>p</i> = 0.0021 (30 μm), ** <i>p</i> =
1122	0.0047 (40 μm), * <i>p</i> = 0.028 (50 μm), * <i>p</i> = 0.011 (60 μm), * <i>p</i> = 0.030 (90 μm), * <i>p</i> = 0.042 (110 μm);
1123	"Y2 cKO, shKalrn12" (n = 8 neurons) vs "Y2 cKO, shCtrl", $*p$ = 0.012 (20 µm), $*p$ = 0.014 (30 µm); "Y2
1124	<i>cKO, shUbr4</i> " (<i>n</i> = 6 neurons) vs " <i>Y2 cKO, shCtrl</i> ", * <i>p</i> = 0.011 (10 μm), ** <i>p</i> = 0.0084 (20 μm), * <i>p</i> =
1125	0.029 (30 μm). In D2 (SMI-32 ⁺ αRGCs), " <i>Ctrl, shCtrl</i> " (<i>n</i> = 14 neurons) vs "Y2 cKO, shCtrl" (<i>n</i> = 14
1126	neurons), *p = 0.032 (40 μm), **p = 0.0019 (50 μm), **p = 0.0014 (60 μm), *p = 0.015 (70 μm), *p =
1127	0.044 (90 μm); " <i>Y2 cKO, shKalrn12</i> " (<i>n</i> = 26 neurons) vs " <i>Y2 cKO, shCtrl</i> ", ** <i>p</i> = 0.0023 (20 μm), *** <i>p</i>
1128	= 0.00076 (30 μm), *** <i>p</i> = 0.00030 (40 μm), *** <i>p</i> = 0.00020 (50 μm), * <i>p</i> = 0.015 (60 μm); " <i>Y2 cKO</i> ,
1129	<i>shUbr4</i> " (<i>n</i> = 15 neurons) vs " <i>Y2 cKO, shCtrl</i> ", * <i>p</i> = 0.042 (30 μm), * <i>p</i> = 0.024 (40 μm), * <i>p</i> = 0.018 (50
1130	μ m). All by unpaired Student's <i>t</i> test.

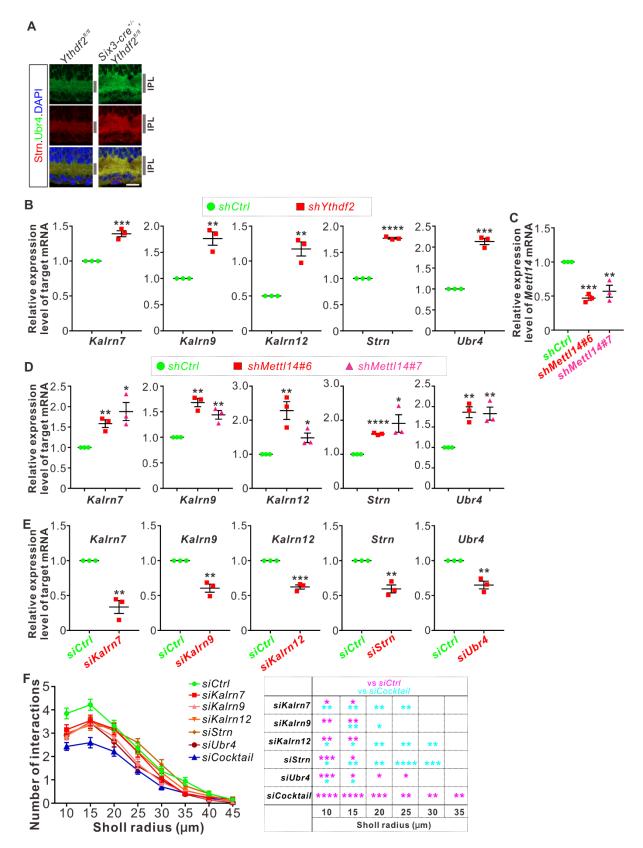


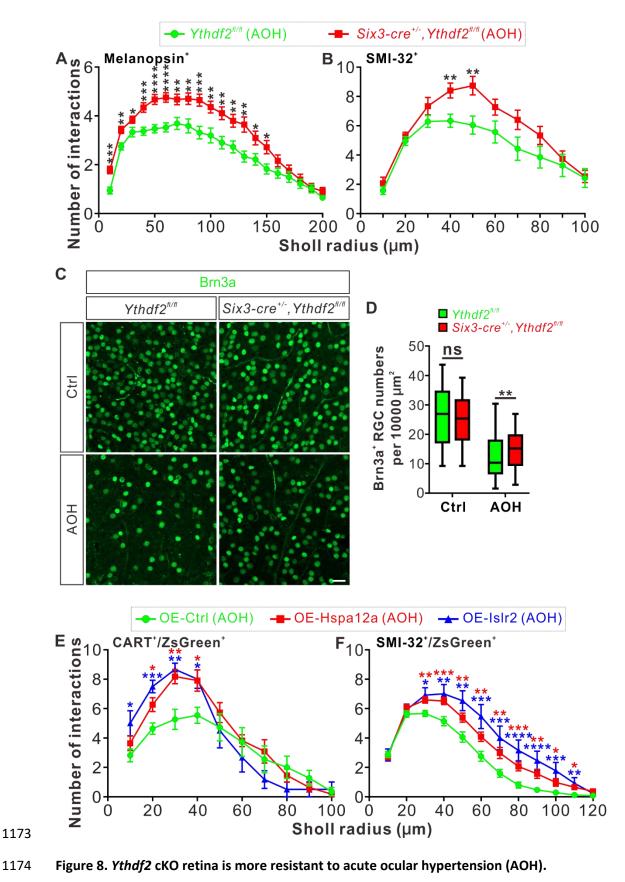
Figure 7—figure supplement 1. YTHDF2 target mRNAs were characterized and validated.

1135 (A) Upregulation of target mRNAs-encoding proteins Strn and Ubr4 in *Ythdf2* cKO retina in vivo.

1136 Enrichment and higher levels of these proteins were detected in the IPL of P6 Ythdf2 cKO retina

1137 compared with control by IF. Scale bar: 20 μ m.

- 1138 (B) Upregulation of target mRNA levels after YTHDF2 KD. RT-qPCR confirmed upregulation of the
- 1139 candidate target mRNAs after KD of YTHDF2 in cultured RGCs using *shYthdf2*. Data are mean ± SEM


and are represented as dot plots (n = 3 replicates): ***p = 0.00084 for Kalrn7; **p = 0.0039 for

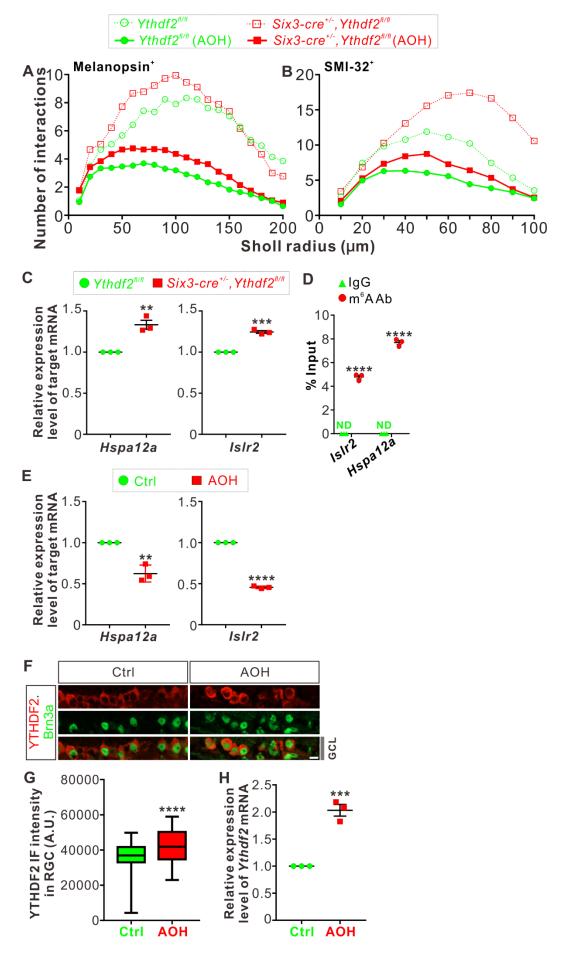
1141 *Kalrn9*; ***p* = 0.0026 for *Kalrn12*; *****p* = 1.11E-06 for *Strn*; ****p* = 0.00011 for *Ubr4*; by unpaired

- 1142 Student's *t* test.
- 1143 (C) Confirmation of METTL14 KD in cultured RGCs using *shMettl14* by RT-qPCR. Data are mean ± SEM
- and are represented as dot plots (n = 3 replicates): ***p = 0.00012 (shMettl14#6 vs shCtrl); **p =
- 1145 0.0079 (*shMettl14*#7 vs *shCtrl*); by unpaired Student's *t* test.
- 1146 (D) Upregulation of target mRNA levels after METTL14 KD. RT-qPCR confirmed upregulation of the
- 1147 candidate target mRNAs after KD of METTL14 in cultured RGCs using *shMettl14*. Data are mean ±
- SEM and are represented as dot plots (*n* = 3 replicates): for *Kalrn7*, ***p* = 0.0034 (*shMettl14#6* vs
- 1149 *shCtrl*), **p* = 0.016 (*shMettl14#7* vs *shCtrl*); for *Kalrn9*, ***p* = 0.0010 (*shMettl14#6* vs *shCtrl*), ***p* =
- 1150 0.0067 (*shMettl14#7* vs *shCtrl*); for *Kalrn12*, ***p* = 0.0079 (*shMettl14#6* vs *shCtrl*), **p* = 0.026
- 1151 (*shMettl14#7* vs *shCtrl*); for *Strn*, *****p* = 5.45E-06 (*shMettl14#6* vs *shCtrl*), **p* = 0.025 (*shMettl14#7*
- 1152 vs *shCtrl*); for *Ubr4*, ***p* = 0.0029 (*shMettl14#6* vs *shCtrl*), ***p* = 0.0066 (*shMettl14#7* vs *shCtrl*); by
- 1153 unpaired Student's *t* test.
- 1154 (E) Confirmation of KD by siRNAs against target mRNAs. Data are mean ± SEM and are represented as
- 1155 dot plots (*n* = 3 replicates): ***p* = 0.0020 for *Kalrn7*; ***p* = 0.0025 for *Kalrn9*; ****p* = 0.00020 for
- 1156 *Kalrn12*; ***p* = 0.0021 for *Strn*; ***p* = 0.0033 for *Ubr4*; by unpaired Student's *t* test.
- 1157 (F) KD of target mRNAs all together using a siRNA cocktail causing further decrease of dendrite
- 1158 branching of cultured RGCs compared with single siRNA against each target mRNA. Data are mean ±
- 1159 SEM: n = 32 RGCs for siCtrl, n = 33 RGCs for siKalrn7, n = 32 RGCs for siKalrn9, n = 35 RGCs for
- siKalrn12, n = 35 RGCs for siStrn, n = 36 RGCs for siUbr4, n = 36 RGCs for siCocktail. siKalrn7 vs siCtrl:

1161	*p = 0.031 (10 μm), *p = 0.046 (15 μm); siKalrn9 vs siCtrl: **p = 0.0011 (10 μm), **p = 0.0090 (15
1162	μm); <i>siKalrn12</i> vs <i>siCtrl</i> : ** <i>p</i> = 0.0061 (10 μm), ** <i>p</i> = 0.0086 (15 μm); <i>siStrn</i> vs <i>siCtrl</i> : *** <i>p</i> = 0.00056
1163	(10 μm), *p = 0.025 (15 μm); <i>siUbr4</i> vs <i>siCtrl</i> : **p = 0.0018 (10 μm), *p = 0.026 (15 μm), *p = 0.048
1164	(20 μm), *p = 0.011 (25 μm); siCocktail vs siCtrl: ****p = 3.44E-06 (10 μm), ****p = 4.07E-06 (15 μm),
1165	***p = 0.00077 (20 μm), **p = 0.0010 (25 μm), **p = 0.0049 (30 μm), **p = 0.0094 (35 μm). siKalrn7
1166	vs <i>siCocktail</i> : ** <i>p</i> = 0.0092 (10 μm), ** <i>p</i> = 0.0040 (15 μm), ** <i>p</i> = 0.0028 (20 μm), ** <i>p</i> = 0.0034 (25
1167	μm); <i>siKalrn9</i> vs <i>siCocktail</i> : **p = 0.0042 (15 μm), *p = 0.034 (20 μm); <i>siKalrn12</i> vs <i>siCocktail</i> : *p =
1168	0.029 (10 µm), *p = 0.019 (15 µm), **p = 0.0014 (20 µm), **p = 0.0091 (25 µm), **p = 0.0063 (30
1169	μm); <i>siStrn</i> vs <i>siCocktail</i> : * <i>p</i> = 0.043 (10 μm), ** <i>p</i> = 0.0051 (15 μm), ** <i>p</i> = 0.0045 (20 μm), **** <i>p</i> =
1170	3.79E-06 (25 μm), ***p = 0.00022 (30 μm); <i>siUbr4</i> vs <i>siCocktail</i> : *p = 0.049 (10 μm), *p = 0.011 (15

 μ m). All by unpaired Student's *t* test.

1176 AOH was performed using adult mice, and retinas were collected after AOH for wholemount


1177 immunostaining of melanopsin and SMI-32 to visualize the dendrite arbors of corresponding RGC subtype, respectively. Dendrite traces were drawn as previously shown and quantification of 1178 1179 dendrite branching was done using Sholl analysis. Data are mean ± SEM. Numbers of interactions are 1180 significantly greater in *Six3-cre*^{+/-}, *Ythdf2*^{fi/fi} retina than *Ythdf2*^{fi/fi} control retina in both RGC subtypes after AOH: for melanopsin⁺ ipRGCs in **A**, *Ythdf2*^{*fi/fi*}/AOH (n = 51 RGCs) vs cKO/AOH (n = 64 RGCs), ***p1181 1182 = 0.00015 (10 μm), **p = 0.0017 (20 μm), *p = 0.034 (30 μm), ***p = 0.00035 (40 μm), ****p = 1183 3.02E-05 (50 μm), ****p = 2.63E-05 (60 μm), **p = 0.0029 (70 μm), **p = 0.0028 (80 μm), ***p = 1184 0.00035 (90 μm), **p = 0.0032 (100 μm), **p = 0.0014 (110 μm), **p = 0.0043 (120 μm), **p = 0.0014 (130 μ m), *p = 0.023 (140 μ m), *p = 0.013 (150 μ m); for SMI-32⁺ α RGCs in **B**, Ythdf2^{fl/fl}/AOH 1185 1186 $(n = 21 \text{ neurons}) \text{ vs cKO/AOH} (n = 15 \text{ neurons}), **p = 0.0052 (40 \,\mu\text{m}), **p = 0.0057 (50 \,\mu\text{m}); all by$ unpaired Student's t test. 1187 1188 (C, D) Ythdf2 cKO retina showing less severe RGC loss after AOH. AOH was performed using adult mice and retinas were collected after AOH for wholemount immunostaining using a Brn3a antibody 1189 (C). Numbers of Brn3a⁺ RGCs per 10000 μ m² of retina were quantified for different genotypes and 1190 conditions (confocal fields for analysis: n = 117 for Ythdf2^{fl/fl}/Ctrl; n = 98 for Ythdf2^{fl/fl}/AOH; n = 1101191 1192 for cKO/Ctrl; n = 104 for cKO/AOH). Data are represented as box and whisker plots (**D**): ns, not significant (p = 0.16; Ythdf2^{fl/fl}/Ctrl vs cKO/Ctrl); **p = 0.0077 (Ythdf2^{fl/fl}/AOH vs cKO/AOH); by 1193 unpaired Student's *t* test. Scale bar: 25 μm. 1194 (E, F) Overexpression (OE) of YTHDF2 targets Hspa12a and IsIr2 protecting retina from RGC dendrite 1195 1196 degeneration. Wild type (WT) mice were intravitreally injected with AAV overexpressing *Hspa12a* or 1197 IsIr2 and then operated with AOH. Wholemount immunostaining of CART/ZsGreen and SMI-

1198 32/ZsGreen was carried out to visualize the dendrite arbors of corresponding RGC subtype,

- 1199 respectively. Dendrite traces were drawn as previously shown and quantification of dendrite
- 1200 branching was done using Sholl analysis. Data are mean ± SEM. Numbers of interactions are
- 1201 significantly greater in retina with OE of *Hspa12a* or *Islr2* than control retina in both RGC subtypes

after AOH. For CART⁺ ooDSGCs in **E**: OE-Ctrl/AOH (n = 11 RGCs) vs OE-Hspa12a/AOH (n = 11 RGCs), *p

- 1203 = 0.014 (20 μm), **p = 0.0025 (30 μm), *p = 0.018 (40 μm); OE-Ctrl/AOH vs OE-Islr2/AOH (n = 6
- 1204 RGCs), **p* = 0.024 (10 μm), ****p* = 0.00031 (20 μm), ***p* = 0.0038 (30 μm), **p* = 0.013 (40 μm). For
- 1205 SMI-32⁺ α RGCs in **F**: OE-Ctrl/AOH (*n* = 49 neurons) vs OE-Hspa12a/AOH (*n* = 46 neurons), ***p* =
- 1206 0.0023 (30 μm), ****p* = 0.00080 (40 μm), ***p* = 0.0059 (50 μm), ***p* = 0.0051 (60 μm), ***p* = 0.0036
- 1207 (70 μ m), ****p* = 0.00070 (80 μ m), ***p* = 0.0015 (90 μ m), **p* = 0.016 (100 μ m), **p* = 0.011 (110 μ m);
- 1208 OE-Ctrl/AOH vs OE-Islr2/AOH (*n* = 13 RGCs), **p* = 0.010 (30 μm), ***p* = 0.0093 (40 μm), ***p* = 0.0019
- 1209 (50 μm), ****p* = 0.00085 (60 μm), ****p* = 0.00067 (70 μm), *****p* = 4.25E-05 (80 μm), *****p* = 2.54E-
- 1210 05 (90 μm), ****p* = 0.00020 (100 μm) , ***p* = 0.0016 (110 μm). All by unpaired Student's *t* test.

- 1213 Figure 8—figure supplement 1. *Hspa12a* and *Islr2* are two target mRNAs of YTHDF2 in adult retina.
- 1214 (A, B) The curves from *Figure 3D*, *F* and *Figure 8A*, *B* were plotted together for easy comparison. The
- 1215 error bars and the asterisks were removed from these graphs for easy reading and these information
- 1216 can still be seen in *Figure 3D,F* and *Figure 8A,B*.
- 1217 (C) Upregulation of YTHDF2 target mRNA *Hspa12a* and *IsIr2* in adult *Ythdf2* cKO retina compared with
- 1218 control by RT-qPCR. Data are mean \pm SEM and are represented as dot plots (n = 3 replicates): **p =
- 1219 0.0035 for *Hspa12a*; ****p* = 0.00012 for *Islr2*; by unpaired Student's *t* test.
- 1220 (D) Verification of m⁶A modification of *Hspa12a* and *IsIr2* mRNAs by anti-m⁶A pulldown followed by
- 1221 RT-qPCR. ND, not detected. Data are mean ± SEM and are represented as dot plots (*n* = 3 replicates):
- 1222 *****p* = 7.07E-06 for *Islr2*; *****p* = 1.55E-06 for *Hspa12a*; by unpaired Student's *t* test.
- 1223 (E) Downregulation of Hspa12a and Islr2 mRNA levels in retina 3 days after AOH. Data are mean ±
- SEM and are represented as dot plots (n = 3 replicates): **p = 0.0032 for Hspa12a; ****p = 5.41E-07
- 1225 for *Islr2*; by unpaired Student's *t* test.
- 1226 (F, G) Cross-sections of retina showing increased YTHDF2 expression in Brn3a⁺ RGCs by IF. AOH was
- 1227 performed using P60 mice, and retinas were collected 1 day after AOH for analysis. Quantification
- data of YTHDF2 IF were represented as box and whisker plots (G): ****p = 1.13E-06 (n = 110 RGCs for
- each condition); by unpaired Student's *t* test. Scale bar: 10 μm.
- 1230 (H) Upregulation of *Ythdf2* mRNA level after AOH. Data are mean ± SEM and are represented as dot
- 1231 plots (n = 3 replicates): ***p = 0.00066; by unpaired Student's t test.
- 1232
- 1233
- 1234 Supplementary file 1. List of YTHDF2 target mRNAs by anti YTHDF2 RIP-seq.
- 1235
- 1236 Supplementary file 2. Proteome of YTHDF2 knockdown vs control.
- 1237
- 1238 Supplementary file 3. Overlapping mRNA of Y2-RIP vs Y2-KD-MS.

1239	
1240	Figure 1-source data 1. Source data for Figure 1B.
1241	(A) WB of anti YTHDF2 after KD of YTHDF2.
1242	(B) WB of anti β -actin after KD of YTHDF2.
1243	
1244	Figure 1-source data 2. Source data for Figure 1B.
1245	Original file of the full raw unedited blot of anti YTHDF2 after KD of YTHDF2.
1246	
1247	Figure 1-source data 3. Source data for Figure 1B.
1248	Original file of the full raw unedited blot of anti β -actin after KD of YTHDF2.
1249	
1250	Figure 1-figure supplement 1-source data 1. Source data for Figure 1-figure supplement 1E,F.
1251	(A) WB of anti YTHDF1 after KD of YTHDF1.
1252	(B) WB of anti β -actin after KD of YTHDF1.
1253	(C) WB of anti YTHDF3 after KD of YTHDF3.
1254	(D) WB of anti β -actin after KD of YTHDF3.
1255	
1256	Figure 1-figure supplement 1-source data 2. Source data for Figure 1-figure supplement 1E.
1257	Original file of the full raw unedited blot of anti YTHDF1 after KD of YTHDF1.
1258	
1259	Figure 1-figure supplement 1-source data 3. Source data for Figure 1-figure supplement 1E.
1260	Original file of the full raw unedited blot of anti β -actin after KD of YTHDF1.
1261	
1262	Figure 1-figure supplement 1-source data 4. Source data for Figure 1-figure supplement 1F.
1263	Original file of the full raw unedited blot of anti YTHDF3 after KD of YTHDF3.
1264	

1265 Figure 1-figure supplement 1-source data 5. Source data for Figure 1-figure supplement 1F.

1266 Original file of the full raw unedited blot of anti β -actin after KD of YTHDF3.

1267