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Abstract  

The continual evolution of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the emergence of 

variants that show resistance to vaccines and neutralizing antibodies (1–4) threaten to prolong the coronavirus disease 

2019 (COVID-19) pandemic (5). Selection and emergence of SARS-CoV-2 variants are driven in part by mutations 

within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for 

neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine learning-guided protein 

engineering technology, which is used to interrogate a massive sequence space of combinatorial mutations, 

representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A 

highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of 

evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including 

highly mutated variants such as omicron (B.1.1.529), thus supporting decision making for public heath as well as 

guiding the development of therapeutic antibody treatments and vaccines for COVID-19.     
 
Introduction 

As of late 2021, variants of SARS-CoV-2 associated with higher transmissibility and/or immune evasion (antibody 

escape) have almost entirely supplanted the original founder strain (Wu-Hu-1) (6). Emerging variants often possess at 

least one mutation in the RBD (1, 7–9), which can directly influence binding to ACE2 (10, 11). For example, alpha 

(B.1.1.7), beta and gamma variants all possess the N501Y mutation, which is associated with higher affinity binding 

to ACE2 (12), suggesting this may represent a possible selective pressure for variant emergence.  

 

Neutralizing antibodies, including monoclonal antibody therapeutics and those induced by vaccination (with the 

original Wu-Hu-1 spike protein), often display reduced binding and neutralization to variants. Detailed molecular 

analysis has revealed that many neutralizing antibodies to SARS-CoV-2 share sequence and structural features (13–

17), which has led to their categorization into four common classes defined by groups of targeted RBD epitopes (16, 

18). For example, class 1 antibodies include the clinically approved REGN10933 (casirivimab) (19, 20) and LY-CoV16 

(etesevimab) (21). Circulating variants with mutations in position K417 [e.g., beta, gamma and delta plus (B.1.617.2 

+ K417N)] as well as the mink-selected Y453F mutation (Cluster 5) display decreased neutralization by these class 1 

antibodies (1, 2, 22). Class 2 neutralizing antibodies including the clinically used LY-CoV555 (bamlanivimab) also 

strongly inhibit ACE2 binding, however, variants such as beta, gamma, eta (B.1.525), kappa (B.1617.1) and iota 
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(B1.526) all possess the RBD mutation E484K/Q that can lead to a substantial loss of binding and neutralization. Class 

3 antibodies, including the clinically approved REGN10987 (imdevimab) and S309 (sotrovimab) (23), bind partially 

conserved epitopes and have so far retained binding to most circulating variants, with the exception of the N439K 

mutation, which reduces binding of REGN10987 by 28-fold (24). Class 4 antibodies such as CR3022 target a highly 

conserved epitope among sarbecoviruses (25–27), and are therefore largely resistant to escape variants, but generally 

lack neutralizing potency since they do not directly inhibit ACE2 binding. This clustering of human neutralizing 

antibodies into discrete epitope-binding classes further suggests that the evolution of SARS-CoV-2 may converge via 

mutations that provide escape to these common antibody classes, which could result in variants with immune evasion.  

 

Bloom and colleagues have performed yeast surface display and deep mutational scanning (DMS) (28) on the entire 

201 amino acid RBD of SARS-CoV-2 in order to determine the impact of single-position substitutions on binding to 

ACE2 and monoclonal or serum antibodies (22, 29–32). While DMS has been very effective at single mutation 

profiling of the RBD, several widely circulating variants (e.g., beta, gamma and delta) as well as newly emerging 

variants [e.g., mu (B.1621) and lambda (C.37)] possess multiple mutations in the RBD, which are associated with 

enhanced ACE2 binding and/or multi-class antibody escape (18). Critically, the recent emergence of the omicron 

variant possessing 15 RBD mutations represents a substantial risk for immune evasion, thus underscoring the urgent 

need to determine the impact of combinatorial mutations. However, combinatorial sequence space grows exponentially 

as the number of mutations and amino acid diversity increases, rapidly outpacing the capabilities of experimental 

screening techniques. For instance, when focusing only on a subset of twenty RBD residues directly involved in ACE2 

binding (33), theoretical sequence space (2020 = 1 x 1026) far exceeds what can be screened by yeast display libraries 

(~109).  Here, we establish deep mutational learning (DML), which integrates experimental yeast display screening of 

RBD mutagenesis libraries with deep sequencing and machine learning (Fig. 1). DML provides comprehensive 

interrogation of combinatorial RBD mutations and their impact on ACE2 binding and antibody escape, thus enabling 

predictive profiling of SARS-CoV-2 variants.  

  

Figure 1. Overview of deep mutational learning of the RBD for prediction of ACE2 binding and antibody escape. The RBD or 
the SARS-CoV-2 spike protein is expressed on the surface of yeast, mutagenesis libraries are designed on the receptor-binding motif 
(RBM-2) of the RBD, which are the sites of interaction with ACE2 and neutralizing antibodies (e.g., therapeutic antibody drugs). RBD 
libraries are screened by FACS for binding to ACE2 and neutralizing antibodies, both binding and non-binding (escape) populations 
are isolated and subjected to deep sequencing. Machine learning models are trained to predict binding status to ACE2 or antibodies 
based on RBD sequence. Machine learning models are then used to predict ACE2 binding and antibody escape on current and 
prospective variants and lineages.  
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Design and screening of RBD mutagenesis libraries   
SARS-CoV-2 RBD mutagenesis libraries were targeted to a core region of the receptor-binding motif (RBM-2, 

positions 484-505), a subregion of the RBD that directly interfaces with ACE2 and where mutations are commonly 

observed in viral genome sequencing data [available on GISAID (www.gsaid.org)]. To generate training datasets 

covering a high mutational sequence space, a combinatorial mutagenesis scheme was designed based on DMS data for 

ACE2 binding, previously published by Starr et al. (29). Single mutation fitness values were empirically thresholded 

and converted to amino acid frequencies, with mutations below the ACE2 binding fitness threshold excluded. For each 

position, degenerate codons approximating the desired amino acid distribution were selected by minimizing mean-

squared error (34) (some positions remained fixed due to their inability to tolerate mutations and retain ACE2 binding), 

resulting in a library with a theoretical amino acid diversity of 1.50 x 1010 (library 2C) (Fig. 2a). An extended version 

of this library was also designed, with fully degenerate codons (NNK) at positions 417 and 439, which are mutated in 

a number of circulating variants and associated with antibody escape (35, 36), resulting in a theoretical amino acid 

diversity of 5.99 x 1012 (library 2CE). To generate training datasets covering a lower mutational sequence space, we 

constructed a tiling mutagenesis library, whereby fully degenerate codons (NNK) were tiled across three of the 

positions in RBM-2, resulting in a theoretical amino acid diversity of 1.53 x 106 (library 2T) (Fig. 2b).  
 

Synthetic oligonucleotides encoding the different libraries and spanning the region of interest were amplified by PCR 

to produce double-stranded DNA with homology to the full RBD sequence. Co-transformation of yeast (S. cerevisiae 

EBY100) with library-encoding DNA and linearized plasmid yielded more than 2 x 107 transformants for each library. 

RBD variants, displayed on the yeast surface as a C-terminal fusion to Aga2 (37), were isolated by fluorescence-

activated cell sorting (FACS) based on binding to soluble human ACE2 receptor (Wu-Hu-1 RBD used as a guide for 

gating). RBD variants which showed a complete loss of binding to ACE2 were also isolated (Fig. 2c, Supplementary 

Table 1). Importantly, this did not include variants with only partially reduced binding since such an intermediate 

population could not be assigned as binding or non-binding with sufficient confidence necessary for training supervised 

machine learning models. Targeted deep sequencing (Illumina) of the RBD gene was performed on all the sorted 

libraries; protein sequence logos revealed highly similar patterns of amino acid usage between the ACE2-binding and 

non-binding fractions (Fig. 2d, Supplementary Table 2).   

 

Next, using exclusively the ACE2-binding populations, FACS was performed to isolate variants that maintained 

binding or showed a complete loss of binding (escape) to four clinically used antibodies (LY-CoV16, LY-CoV555, 

REGN10933 and REGN10987). Wu-Hu-1 RBD was again used as a guide for gating antibody binding or escape (Fig. 

2e, Supplementary Fig. 1). The proportion of binding and escape (non-binding) for each antibody and library was 

highly variable, with REGN10933 having the lowest fraction of escape variants and LY-CoV555 having the highest 

(Supplementary Table 1). Deep sequencing was once again performed on antibody binding and escape fractions of 

all the sorted RBD libraries, and similar to ACE2, protein sequence logos of the two fractions looked highly similar 

(Fig. 2f). 
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Figure 2. Design of RBD mutagenesis libraries and screening by yeast surface display and deep sequencing. a, Shown is the 
amino acid usage in positions RBM-2 (484-505 of the RBD), which was based on DMS data for ACE2 binding (29) and used to design 
the combinatorial library 2C. b, Shown are representative examples of degenerate codons tiled across RBM-2, which are pooled 
together to comprise library 2T. c, Flow cytometry dot plots depict yeast display screening of RBD libraries (2C, 2CE and 2T) and 
control RBD (Wu-Hu-1); gating schemes correspond to selection of ACE2-binding and non-binding variants. d, Amino acid logo plots 
of the RBD are based on deep sequencing data from ACE2-binding and non-binding selections. e,  Flow cytometry dot plots depict 
yeast display screening of pooled RBD libraries (2C and 2CE) that were pre-selected for ACE2 binding; gating schemes correspond 
to selection of variants for binding and escape (non-binding) to four therapeutic monoclonal antibodies (mAbs). f, Amino acid logo 
plots of the RBD are based on deep sequencing data from antibody-binding and escape selections.  
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Machine learning models accurately predict ACE2 binding and antibody escape  
Deep sequencing data from ACE2 selections underwent pre-processing, quality filtering and balancing steps to create 

the final training sets (Methods, Supplementary Tables 3, 4). Following nucleotide to protein translation, amino acid 

sequences were converted to an input matrix by one-hot encoding (Fig. 3a). Supervised machine learning models were 

trained for classification of ACE2 binding, which is defined as the probability (P) that any given RBD sequence binds 

to ACE2 (higher P correlates with binding). For initial benchmarking, a range of different baseline models (default 

parameters) were evaluated for their classification performance across several metrics (accuracy, F1, precision, recall). 

Machine learning models tested included K-nearest neighbor, logistic regression, naive Bayes, support vector 

machines, and random forests (RF); long-short term memory recurrent neural networks (RNN) were also trained, which 

are a class of deep learning models that have the ability to learn long-range dependencies in sequential data (38–41). 

 

 
 
Figure 3. Training and testing of machine and deep learning models for prediction of ACE2 binding and antibody escape 
based on RBD sequence.  a, Deep sequencing data from ACE2 and monoclonal antibody (mAb) selections is encoded by one-hot 
encoding and used to train supervised machine learning (e.g., Random Forest, RF) and deep learning models (e.g., recurrent neural 
network, RNN). Models perform classification by predicting a probability (P) of ACE2 binding or non-binding and mAb binding or 
escape (non-binding) based on the RBD sequence.  b and c, Performance of fully trained and optimized RF and RNN models for 
prediction of ACE2 binding and antibody escape on test data is shown with ROC curves and accuracy graphs. Low and high distance 
sequences are defined as those !"#$5 and %"#$6 from Wu-Hu-1 RBD, respectively. 
 

While all baseline models performed effectively (e.g., accuracy scores between 0.87 - 0.94), RF and RNN were selected 

for further optimization and application since they showed relatively higher performance metrics and could be trained 

faster (Supplementary Fig. 2). After hyperparameter optimization, the classification performance of both RF and 
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RNN models was improved further, resulting in an area under ROC curve (AUC) values of 0.969 and 0.973, 

respectively (Fig. 3b, Supplementary Table 5). 

 

SARS-CoV-2 is evolving across a range of mutational trajectories, including variants such as omicron that rapidly 

accumulate mutations, as well variants that develop into lineages with subvariants (e.g., C.1, C.1.1, C.1.2) (42, 43). 

Determining the performance of machine learning models across various mutational edit distances [Edit Distance (ED) 

from the reference Wu-Hu-1 RBD sequence] is therefore an important criterion. We thus examined model performance 

on test data that was divided into low mutational distances (≤ ED5), which corresponds to variants such as beta and 

gamma, and high mutational distances (≥ ED6), which corresponds to variants such as omicron. For both low and high 

distance variants, RF and RNN models showed high accuracy scores (>94% and >92% for low and high distances 

respectively) (Fig. 3b, Supplementary Fig. 3a, Supplementary Tables 6, 7).  

 

Similar to the ACE2 selections, deep sequencing data from antibody selections was pre-processed, quality filtered, 

balanced and encoded as before. Supervised machine learning models (RF and RNN) were trained to classify antibody 

escape, which is defined as the probability that a given RBD sequence escapes a defined antibody (lower P correlates 

with escape). Following hyperparameter optimization, individual models trained for each of the four therapeutic 

antibodies displayed high performance metrics (Fig. 3c). Similar to ACE2 models, antibody escape models also 

showed high performance metrics across both low and high distance variants (Supplementary Tables 6, 7). Closer 

examination revealed that it was crucial to combine training data from low distance libraries (2T) and high distance 

libraries (2C, 2CE) to achieve better performance for ACE2 and antibody escape models (Supplementary Fig. 3b).  

 

Predictive profiling on synthetic lineage variants  
Having established that ACE2 binding and antibody escape machine learning models can make highly accurate 

predictions on test data, we next evaluated their classification performance on defined variants, followed by 

experimental validation and structural modeling (Fig. 4a). Synthetic lineages were generated in silico to simulate 

plausible evolutionary paths, where variants without predicted ACE2-binding intermediates at each mutational step 

were excluded. The lineages were designed to include variants at ED3, ED5 and ED7 from the original Wu-Hu-1 RBD 

sequence (nucleotide and amino acid). Additionally, the sequences were chosen to form lineages containing mutations 

observed in circulating variants (e.g., alpha: N501Y, beta/gamma: E484K and N501Y, kappa: E484Q and N501Y). 

ACE2 binding was predicted based on a consensus model, whereby a given RBD sequence is predicted to bind ACE2 

when both RF and RNN models yield P > 0.5, else they are predicted to be non-binders. The 46 synthetic lineage 

variants were chosen to contain diversity in ACE2 binding prediction (36 predicted binders, 10 predicted non-binders) 

(Fig. 4b). Additionally, predictions for escape from each of the four therapeutic antibodies were made for the synthetic 

variants using a similar consensus model approach (RBD sequence escapes an antibody when both RF and RNN 

outputs are P < 0.5) (Supplementary Fig. 4a–d). After having made all machine learning predictions, each synthetic 

RBD variant was individually expressed on the surface of yeast cells and assessed for ACE2 binding and antibody 

escape. The consensus model correctly predicted ACE2 binding for 91.67% (33/36) of the synthetic variants, with an 

accuracy of non-binding prediction of 100% (10/10), resulting in an overall prediction accuracy of 93.48% (43/46) 

(Fig. 4b, Supplementary Fig. 5). For the 33 correctly predicted ACE2-binding variants, the combined accuracy of 

antibody escape predictions across all four therapeutic antibodies was 93.94% (124/132) (LY-CoV16: 31/33, LY-

CoV555: 30/33, REGN10933: 31/33, REGN10987: 32/33) (Fig. 4c, Supplementary Fig. 4a–d). Additionally, we 
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identified three variants that were only ED3 (nucleotide and amino acid) from the Wu-Hu-1 RBD and in which 

consensus models predicted ACE2 binding and escape from all four therapeutic antibodies. One of these variants 

possessed mutations in positions 493, 498 and 501, which are all mutated in the omicron variant. Subsequent yeast 

display experiments confirmed these machine learning predictions of antibody escape to all four therapeutic antibodies, 

including escape from the often mutation-resistant REGN10987 (Supplementary Fig. 6). Structural modeling by 

AlphaFold2 (44) was performed on eight synthetic RBD variants (all variants were accurately classified and 

experimentally validated for ACE2 binding or non-binding) (Fig. 4d). The structural predictions showed that several 

ACE2 non-binding variants did not differ substantially from the original Wu-Hu-1 RBD. In contrast, the ACE2-binding 

variants showed a wide diversity of possible structural conformations. 

 
Figure 4. Prediction and experimental validation of synthetic lineages of RBD variants. a, Workflow to select and test synthetic 
variants at chosen edit distances (ED3, ED5, and ED7) from Wu-Hu-1 RBD. b, Lineage plot of synthetic variants depicts machine 
learning predictions and experimental validation (Supplementary Fig. 5) for ACE2 binding and non-binding.  c, Dot plots of synthetic 
variants correspond to machine learning model (RF and RNN) predictions and experimental validation for antibody binding or escape. 
d, Structural modeling by AlphaFold2 shows predicted structures of RBD variants that are ACE2 binding (green boxes) or non-binding 
(red boxes); control is Wu-Hu-1 RBD (black box).   
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Predictive profiling of current and prospective variants 
In addition to the selected synthetic lineages, we also performed machine learning to predict ACE2 binding and 

antibody escape on a panel of 12 naturally-occurring variants of SARS-CoV-2 (Supplementary Table 8). We 

determined the accuracy of machine learning predictions on antibody escape by using, as a reference, the Stanford 

SARS-CoV-2 Susceptibility Database (24). Applying the same consensus model approach (RF and RNN) and 

thresholds as before, the prediction accuracy for ACE2 binding was 100% (12/12) and the prediction accuracy for 

escape across all four therapeutic antibodies was 85.42% (41/48) (antibody escape is defined here as a reported 30-

fold reduced neutralization in the Stanford database). Strikingly, when applying a more stringent threshold for antibody 

escape prediction that requires both RF and RNN models to have high certainty in their prediction (both models P < 

0.25 for escape and P > 0.75 for binding), 100% (30/30) of the machine learning predictions matched the results 

reported in the Stanford database. 

  

Next, we used machine learning models to predict antibody escape on prospective ACE2-binding lineages at low 

mutational distances (ED1 and ED2) from the Wu-Hu-1, alpha, beta, kappa, gamma and B.1.1523 RBD sequences. 

(Fig. 5, Supplementary Figs. 7–9, Supplementary Table 9). Using a stringent threshold for antibody escape, we 

identified distinct patterns based on the starting variant. For example, REGN10933 and REGN10987 were largely 

resilient to escape from ED1 lineages of Wu-Hu-1, alpha and kappa (Fig. 5a–i and Supplementary Fig. 7a–i). While 

ED1 lineages of beta and gamma almost entirely escape both LY-CoV555 and LY-CoV16. A large fraction of ED2 

lineages from all variants escaped REGN10933, LY-CoV555 and LY-CoV16, revealing an increasing likelihood of 

escape with an increasing number of mutations. Notably, a small fraction (0.17%) of beta ED2 lineages are predicted 

to escape all four therapeutic antibodies, whereby several of these variants possessed mutations in positions 417, 484, 

493 and 501, which are all mutated in the omicron variant (Fig. 5f). For further visualization, we constructed deep 

escape networks (Fig. 5c, f, i and Supplementary Fig. 7c, f, i), depicting the vulnerability of the four therapeutic 

antibodies to low distance mutations (ED1 and ED2). Specifically, deep escape networks illustrate the increase in 

sequence space per mutation while also pointing out the presence of mutations that vastly increase escape from multiple 

antibodies. For example, there are variants at ED1 from Wu-Hu-1 that are predicted to not escape any of the four 

antibodies, however, just one additional mutation (ED2) can result in variants predicted to escape up to three antibodies.  

 

Finally, DML enables rapid in silico evaluation of new variants that appear on genomic databases (GISAID). For 

example, we performed a similar analysis on the recently reported B.1.1.523 variant possessing RBD mutations E484K 

and S494P (45), which revealed complete escape from LY-CoV555 and ED1 lineages, as well as substantial escape for 

other antibodies in ED2 lineages, including three variants that escaped all four therapeutic antibodies (Supplementary 

Fig. 7g, h, i).   
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Figure 5. Predictive profiling of selected RBD variants for antibody escape across low mutational distances. a, d, g, Heatmap 
depicts monoclonal antibody (mAb) binding as assessed by RF and RNN models of ED1 and ED2 variants of alpha, beta and kappa. 
b, e, h, The number of sequences escaping a combination of n (number) mAbs for ED1 and ED2 (agreement between models, 
threshold >0.5). c, f, i, Deep escape networks display possible evolutionary paths between variants and their escape from mAbs. 
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Discussion 
For a multitude of reasons, eradication of SARS-CoV-2 appears improbable. Instead, an endemic future likely awaits 

(46, 47). An endemic and continually evolving SARS-CoV-2 poses a perpetual risk for the emergence of new variants 

that escape from vaccine- or infection-induced antibodies. In this study, we develop DML, a machine learning-guided 

protein engineering method for determining the impact of mutations in the SARS-CoV-2 RBD on ACE2 binding and 

antibody escape. In DML, machine learning models trained on thousands of classified RBD variants obtained from 

library screening make highly accurate predictions across a sequence space of billions of RBD variants, several orders 

of magnitude larger than what is possible from experimental screening alone. While we focused in this study on a 

subregion of the RBD associated with variants such as alpha, beta and gamma, this method can be expanded to 

incorporate mutations in additional regions across the RBD, which are associated with other variants and their 

corresponding lineages (e.g., omicron, delta, delta plus) (48).  

 

DML could be used as a de facto monitoring system by rapidly and efficiently making predictions on genomic 

surveillance data of new variants, without the immediate need for experimental assays. This is especially crucial given 

the emergence of highly mutated variants such as omicron, where crucial public health decisions have to urgently be 

made, often before experimental assays of antibody escape or vaccine resistance can be performed.  

 

By providing accurate predictions of antibody escape across a large mutational landscape, DML may enable 

researchers to select candidate antibody therapeutics and cocktails with the broadest efficacy against the spectrum of 

possible variants, some of which may occur simultaneously and may be highly mutated such as omicron. Assessing 

the efficacy of candidate antibodies against future variants puts therapeutic development on a proactive rather than 

reactive footing, potentially avoiding cases like LY-CoV555, which has lost efficacy to most variants of concern (22, 

24), resulting in the revocation of its clinical authorization as a monotherapy. Furthermore, such an approach could be 

used to guide the development of antibodies and cocktails that maximize breadth and potency (49, 50) to both current 

and prospective variants. Finally, evidence exists that the receptor-binding domains of other endemic coronaviruses 

may be undergoing adaptive evolution to escape from human antibody responses (51, 52). Consequently, the 

application of DML to predict SARS-CoV-2 escape from polyclonal antibodies present in serum of vaccinated or 

convalescent individuals, combined with phylogenetic models of viral evolution (53), may enable the prospective 

identification of future variants with the highest likelihood of emergence and thus support vaccine development for 

COVID-19.  
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MATERIALS & METHODS 
 

Rational design of SARS-CoV-2 RBD mutagenesis libraries  

Combinatorial library design.  

The design of the combinatorial library 2C consisted of mutating residues within the RBM-2 region (positions 484-

505 of the RBD) and was based on previously described results from deep mutational scanning (DMS) experiments 

(1). DMS enrichment ratios described by Starr et al. were thresholded to exclude mutations with decreased ACE2-

binding fitness and then converted to amino acid frequencies as described previously (2). For each position, degenerate 

codons approximating the amino acid frequency distribution and diversity were selected, resulting in a library with a 

theoretical diversity of 1.50 x 1010 amino acid sequences. Library 2CE consisted of the same combinatorial design in 

positions 484-505 but with additional fully degenerate codons (NNK) in positions 417 and 439, resulting in a 

theoretical amino acid diversity of 5.95 x 1012.  

 

Tiling library design.  

The tiling library 2T was designed by incorporating three positions with full degenerate codons (NNK) within the 

RBM-2 (positions 484-505) of the RBD. The degenerate codons are tiled across such that the total sequences of a 

tiling library, i.e., the number of variants of up to a maximum edit distance (ED) k away from the wild-type sequence 

is determined by the length of sequence (n, here = 14 non-fixed positions in RBM-2), the number of NNKs (or max 

ED) introduced (k, here = 3) and the size of the alphabet (a, here = 20): 

 
Similarly, the number of sequences for a given ED k is given by:  

 
The resulting total diversity of the library 2T is 1,533,035 sequences.  

 

Cloning and expression of RBD mutagenesis libraries for yeast surface display  

For libraries 2C and 2CE, synthetic single-stranded oligonucleotides (ssODNs) (Integrated DNA Technologies 

ultramers or oPools) were designed with degenerate codons spanning the region of interest and encoding the desired 

library diversity, with 30 bp overhangs on each end that were homologous to the yeast display plasmid pYD1. For 

library 2T, pools of ssODN were designed, where each member of the pool contains one combination of the three 

‘NNK’ codons; in this case, consisting of 120 unique ssODNs. The ssODNs were amplified by PCR to produce double-

stranded DNA. The plasmid pYD1 was modified such that the entire C-terminal fusion to Aga2 was replaced with a 

cassette encoding the RBD (Wu-Hu-1 sequence), expression tags and stop codon (HA Tag-RBD-FLAG-Stop). The 

RBM-2 residues 484-505 were replaced with an EcoRI recognition site, allowing production of a linearized vector 

with homology to mutagenesis ssODNs and with no parental background. Insert and EcoRI-linearized plasmids were 

concentrated and purified by silica spin columns (Zymo D4013) followed by drop dialysis for 1 hour in nuclease-free 

H2O (Millipore VSWP02500). The libraries were cloned and expressed in yeast by in vivo homologous recombination, 

as previously described (3, 4), using 1 μg each of plasmid and insert DNA per 300 μl of electrocompetent EBY100 

cells in a 2 mm electroporation cuvette. 
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Screening RBD libraries for ACE2-binding and non-binding  

Surface expression of SARS-Cov2 RBD was induced by growth in SG-UT medium at 23°C for 16-40 hours, as 

previously described (3). Approximately 108 library cells were washed once with 1 mL wash buffer (Dulbecco’s PBS+ 

0.5% BSA + 0.1% Tween20 + 2 mM EDTA) by centrifugation at 8000 x g for 30 s.  Washed cells were stained with 

50 nM biotinylated human ACE2 (Acros AC2-H82E6) for 30 minutes at 4 °C, followed by an additional wash.  Cells 

were then stained with 2.5 ng/μlstreptavidin-AlexaFluor 647 (Biolegend 405237) and 1 ng/μl anti-FLAG-PE 

(Biolegend 637310) for 30 minutes at 4 °C.  Cells were subsequently pelleted by centrifugation at 8000 x g for 30s and 

kept on ice until sorting. Binding (ACE2+/FLAG+) and non-binding (ACE2-/FLAG+) cells were sorted by FACS (BD 

FACSAria Fusion or Sony MA800 cytometer) (Fig. 2).  Collected cells were cultured in SD-UT medium for one to 

two days at 30 °C.  Induction and sorting was repeated until the desired populations were pure. 

 

Screening RBD libraries for binding and escape to monoclonal antibodies   

RBD libraries pre-sorted for ACE2-binding were cultured and induced, as described above.  Induced cells were washed 

once with DPBS wash buffer, followed by incubation with 100 nM monoclonal antibody, or antibody mixtures.  In the 

case of antibody mixtures, 100 nM of each antibody was used.  Following an additional wash, cells were resuspended 

in 5 ng/μl anti-human IgG-AlexaFluor647 (Jackson Immunoresearch 109-605-098) and incubated for 30 minutes at 

4°C. Cells were washed once more and resuspended in 1 ng/μl anti-FLAG-PE before 30 minutes of incubation at 4°C. 

Cells were then pelleted by centrifugation at 8000 x g for 30s and kept on ice until sorting. Cells expressing RBD that 

maintained antibody-binding (IgG+/FLAG+) or showed a complete loss of antibody binding (escape) (IgG-/FLAG+) 

were sorted by FACS (BD Aria Fusion or Sony MA800 instrument). Collected cells were cultured in SD-UT medium 

for 16-40 hours at 30 °C. Induction and sorting was repeated for multiple rounds until the desired populations of RBD 

variants showed purity for binding and escape (non-binding) to antibodies. 

 

Antibody production and purification 

Heavy chain and light chain inserts for REGN10933, REGN10987 (PDB: 6XDG) and LY-CoV16 (PDB: 7C01), LY-

CoV555 (PDB: 7KMG) were cloned into pTwist transient expression vectors by Gibson Assembly. 30 mL cultures of 

Expi293 cells (Thermo, A14635) were transfected according to the manufacturer’s instructions. After 5-7 days, dense 

Expi293 cultures were centrifuged at 300 x g for 5 minutes to pellet the cells. Supernatant was filtered using Steriflip® 

0.22 µm (Merck, SCGP00525) filter units. Using protein G purification, Expi supernatant was directly loaded onto 

Protein G Agarose (Pierce, Cat# 20399) gravity columns, washed twice with PBS and eluted using Protein G Elution 

Buffer (Pierce, Cat# 21004). The eluted fractions were immediately neutralized with 1M TRIS-Buffer (pH 8) to 

physiological pH and quantified by Nanodrop™ 2000c for A280 nm absorption. Protein containing fractions were 

pooled and buffer exchanged using SnakeSkin™ dialysis tubing (10 MWCO, Pierce Cat#68100) followed by further 

dialysis and concentration using Amicon Ultra-4 10kDa centrifugal units (Merck, Cat# UFC801096), as described 

previously (5).   

 

Deep sequencing of RBD libraries 

Plasmid DNA encoding the RBD variants was isolated following the manufacturer’s instructions (Zymo D2004).  

Mutagenized regions of the RBD were amplified using custom oligonucleotides. Illumina Nextera barcode sequences 

were added in a second PCR amplification step, allowing for multiplexed high-throughput sequencing runs. 
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Populations were pooled at the desired ratios and sequenced using Illumina 2 x 250 PE or 2 x 150 PE protocols (MiSeq 

or NovaSeq instruments).   

 

Processing of deep sequencing data, statistical analysis and plots 

Data preprocessing 

Sequencing reads were paired, quality trimmed and assembled using Geneious and BBDuk, with a quality threshold 

of qphred ≥ 25. Mutagenized regions of interest were then extracted using custom Python scripts, followed by 

translation to amino acid sequences. The sequences obtained from each of the three libraries (2C, 2CE and 2T) were 

pre-processed separately before being combined into the final training set used for model training and evaluation. To 

remove sequencing errors, all libraries were filtered for sequences complying with the initial degenerate codon 

mutagenesis scheme. Library 2CE was filtered for only those sequences retaining unmutated residues in positions 

417/439, to focus on the 484-505 region. Next, library 2T was filtered using a threshold of read counts > 4 and restricted 

to sequences that were ≤ ED3 from Wu-Hu-1 RBD sequence.  

 

Duplicate sequences in the full dataset were removed and a balanced dataset was created from the remaining data such 

that equal numbers of positive (binding) and negative class (non-binding) sequences were present for each ED. We 

observed significant bias in model performance when predictions are separated by ED from the Wu-Hu-1 RBD 

sequence, which was likely due to class imbalance in the training data. Class balancing was thus performed through 

random subsampling from the majority class at each ED equal to the counts from the minority class. Those that were 

not sampled from the majority class were then reserved separately as additional “unseen sequences”. These were then 

used for model evaluation to ensure that the models could generalize well even to the sequences removed during 

balancing. 

Statistical analysis and plots  

Statistical analysis was performed using R 4.0.1 (6) and Python 3.8.5 (7) . Graphics were generated using the ggplot2 

3.3.3 (8), ComplexHeatmap 2.4.3 (9) pheatmap 1.0.12 (10), igraph 1.2.6 (11), RCy3 2.8.1 (12), stringr 1.4.0 (13), dplyr 

1.0.6 (14), and RColorBrewer 1.1-2 (15) R package. 

Escape Networks  

Network plots were generated using the igraph package 1.2.6 (11) and Cytoscape software 3.8.2 (16) with edges drawn 

between every pair of two amino acid sequences from ED  1 and 2, when the pair of sequences share a common 

mutation on amino acid level. Edges were colored according to the change in number of antibodies that escape. Nodes 

representing RBD variant sequences were clustered and colored according to the number of antibodies that escape, and 

the mutational distance from the reference sequence. 

 

Machine learning model training and evaluation   

All machine learning (ML) classifier models were built in Python (3.8.5) (7). Data was prepared and visualized using 

numpy (1.19.2), matplotlib (3.3.4), and pandas (1.2.4). Random Forest (RF) and other benchmarking ML models were 

built using Scikit-Learn (0.24.2), a 80/20 train-test data split (random split) to train baseline models, and a 90/10 train-

test data split (random split) for final RF and RNN models. Keras libraries (2.4.3) from Tensorflow (v2.5) were used 

to build the long-short-term-memory recurrent neural networks (RNN) models. 
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RBD sequences were one-hot encoded prior to being used as inputs into the models. For the RNN, the 2D one-hot 

encoded matrix was used as the input, while for all other models, the matrix was flattened into a single dimensional 

vector beforehand. After selecting the best models, hyperparameter optimization was performed to further improve the 

performance of the chosen RF and RNN models using 50 rounds of Random Search with 5-fold cross-validation while 

scoring based on precision. All RF models were further calibrated using both the “isotonic” and Platt scaling (17–19), 

and the best model from the three was selected by calculating the overall mean-square error (MSE) from the true labels, 

with the RF model with the lowest MSE selected as the final model. For evaluation of the models on the held-out test 

set, models were evaluated on the basis of Accuracy, F1, Precision, Recall, and AUC-ROC curve using the entire test 

set. For further detailed evaluation, the test data was separated into two distances: low and high distance sequence sets, 

which consisted only of sequences ≤ ED5 or  ≥ ED6 from Wu-Hu-1 RBD sequence, respectively. These two sets were 

then used to evaluate the accuracy, F1, Precision, and Recall of models to investigate any performance bias at different 

distances. The accuracy of the models were also evaluated on the sequences reserved during dataset balancing (‘unseen 

sequences’) separated similarly by ED.  

 

In silico sequence generation and evaluation 

Synthetic RBD variant sequences were generated in silico using custom Python scripts for selected edit distances (ED) 

from the Wu-Hu-1 RBD sequence. The ED was defined on both the nucleotide and amino acid level, such that each 

generated nucleotide sequence was categorized by an ED pair (distance_nt, distance_aa). The synthetic variants (in 

silico generated sequences) were evaluated for their probability of ACE2-binding and non-binding using a consensus 

model (RF and RNN) approach. For a given RBD sequence, ACE2-binding prediction was defined as the case where 

both models output P > 0.5, else the sequence was considered as ACE2 non-binding. Similarly, the sequences were 

evaluated for binding and escape (non-binding) from monoclonal antibodies. Here the sequences were categorized into 

one of four categories: escape (both models P <0.25), antibody binding (both models P >0.75), unsure (at least one 

model gives P between 0.25 and 0.75), and disagree (one model outputs P <0.25 while the other model outputs a 

P >0.75). 

 

Experimental validation of selected RBD variants for ACE2-binding and antibody escape  

Individual sequences for RBD variants were ordered as complementary forward and reverse primers (Integrated DNA 

Technologies) in 96-well plates A single round of annealing and extension was used to produce double-stranded DNA 

with 14-bp of homology at 5’ and 3’ ends to the pYD1-RBD entry vector, followed by Gibson Assembly with EcoRI 

digested vector.  Plasmids were transformed into EBY100 prepared with the Frozen-EZ Yeast Transformation Kit II 

(Zymo) and plated on SD-UT agar.  Individual colonies were picked and grown in SD-UT liquid medium overnight at 

30°C, then diluted to OD600 = 0.5 in SG-UT medium and grown for 40-48 hours at 23°C.  Cells were stained with 

biotinylated ACE2 or purified antibody as described above.  Flow cytometry analysis was performed on the BD 

Fortessa cytometer. 

 

Structural Prediction of RBD variants by AlphaFold2 

Structural predictions were generated with the Alphafold v2.1.0 public iPython notebook using residues 331-530 of 

the spike protein. 

(https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold .ipynb) (20).  

Results were visualized and aligned in PyMol v2.2.3 (21). 
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Supplementary Figure 1. Selection of RBD variants for antibody binding and escape by flow cytometry. Yeast display of RBD 
libraries pre-selected for ACE2 binding were sorted by flow cytometry for binding and escape to four therapeutic monoclonal 
antibodies (mAbs): LY-CoV16, LY-CoV555, REGN10933, and REGN10987. (a) The RBD libraries 2C and 2CE were pooled together; 
(b) library 2T was pooled with libraries 1T and 3T. The original Wu-Hu-1 RBD (c) was used as a control for antibody binding and 
escape. Approximately 107 yeast cells were screened for each antibody (Supplementary Table 1).   
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Supplementary Figure 2. Performance metrics for seven different baseline machine learning models. K-nearest Neighbours 
(KNN), Logistic Regression (Log Reg), Naive Bayes (NB), Random Forest (RF), Long-short term memory recurrent neural network 
(RNN), Support vector machine with linear kernel (SVM Linear), and Support vector machine with radial basis function kernel (SVM 
RBF) models were trained on the ACE2 deep sequencing data without hyperparameter optimization. Models were then challenged 
to perform classification by predicting a probability (P) of ACE2 binding on test data. Performance of models was evaluated by 
Accuracy, F1, Precision, and Recall. All models except RNN were trained using Sci-kit Learn, and the RNN was trained using Keras.  
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Supplementary Figure 3. Accuracy and ROC curves for models trained on data from low and high distance libraries. a, b, &'("

)*+,-,-."/+)+"01*"23#4"1*"5673189:";(*("<=>,)",-)1");1"<?@<()<")1")*+,-"<?=(*A,<(/"B+C',-(">(+*-,-."DE+-/1B"F1*(<)G"EFH"+-/"/((="

>(+*-,-."D*(C?**(-)"-(?*+>"-();1*IG"EJJH"B1/(><K"5,@*+*L"4&" )*+,-,-."/+)+"C1-)+,-(/"1->L"<(M?(-C(<" )'+)";(*("!"#$ 3"+-/"5,@*+*L"

43N3#")*+,-,-."/+)+"C1-)+,-(/"1->L"<(M?(-C(<")'+)";(*(""%"#$4 from original Wu-Hu-1 RBD. The models then performed classification 
on the entirety of the held-out test data, and the unseen data were removed during balancing. Low and high distance sequences are 
defined as those !"#$5"+-/"%"#$6 from Wu-Hu-1 RBD, respectively. Model performances are evaluated by accuracy and AUC-ROC.   
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Supplementary Figure 4. Evaluation of antibody escape predictions for synthetic lineages. a-d, RBD sequences at chosen EDs 
(ED0, ED 3, ED5, ED7) from the Wu-Hu-1 RBD were predicted for ACE2 binding and escape from four therapeutic monoclonal 
antibodies (mAbs). Accuracy for antibody escape predictions are the following: LY-CoV16 = 31/33 (93.94%), LY-CoV555 = 30/33 
(90.91%),  REGN10933 = 31/33 (93.94%), REGN10987 = 32/33 (96.97%).  
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Supplementary Figure 5. Yeast display screening of synthetic RBD variants for ACE2 binding. The 46 selected synthetic variants 
(see Fig. 4) were individually cloned and expressed for yeast display and ACE2 binding by flow cytometry. 43 variants showed ACE2 
binding or non-binding that matched machine learning predictions. The ACE2-binding status for two variants (38 and 42) could not 
be conclusively determined, while one variant (41) showed was incorrectly predicted by machine learning for ACE2 binding.    
 
 
 

 
Supplementary Figure 6. Experimental validation of synthetic RBD variants predicted to escape all four therapeutic 
antibodies. Three synthetic RBD variants of ED3 from Wu-Hu-1 RBD that were predicted to escape all four therapeutic antibodies by 
the consensus machine learning model were expressed as individual clones in yeast and evaluated by flow cytometry for binding to 
antibody (a)  or ACE2 (b).  
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Supplementary Figure 7. Predictive profiling of additional selected RBD variants for antibody escape across low mutational 
distances. a,d,g, Heatmap depicts monoclonal antibody (mAb) binding as assessed by RF and RNN models of ED1 and ED2 variants 
of Wu-Hu-1, gamma, and B.1.523. b, e, h, The number of sequences escaping a combination of n (number) mAbs for ED1 and ED2 
(agreement between models, threshold >0.5). c, f, i, Deep escape networks display possible evolutionary paths between variants and 
their escape from mAbs. 
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Supplementary Figure 8. ACE2 binding predictions of synthetic  RBD variants. Synthetic variants at ED1 and ED2 from alpha, 
beta, kappa, Wu-Hu-1, gamma  B.1.1.523 were assessed for ACE2 binding using the RF and RNN models. Variants where both 
models output of P  > 0.5 were predicted as ACE2 binding, all others as non-binding. 
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Supplementary Figure 9. Antibody escape predictions of synthetic RBD variants. a–f, Synthetic RBD variants at edit acid 
distances 1 and 2 from alpha, beta, kappa, Wu-Hu-1, gamma, and B.1.1.523 were assessed for binding or escape to four therapeutic 
antibodies using the RF and RNN models. Variants where both models output a P > 0.25 were predicted as escape, when both 
models output P  > 0.75 were predicted as  binding , all other cases were determined to be unsure (at least one model with output of 
P between 0.25 and 0.75) or disagree (one mode output of Pl < 0.25 and other model output of P  > 0.75).  
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Supplementary Table 1. Sorting statistics for RBD library sorting  

 
Supplementary Table 2. Sequencing statistics for RBD library sorting 

 

Supplementary Table 3 (see Excel File). Detailed counts of sequences from each dataset separated by ED from Wu-Hu-1  
RBD and class label. Counts include raw sequences, after balancing, and train/test split. 
 
Supplementary Table 4 (see Excel File). Detailed sequences used as the training data for individual models. Each dataset 
combines sequences from 2T/2C/2CE libraries after preprocessing, filtering, and removing duplicates. All files are separated into 
train/test/unseen sequences.  
 

Random Forest RNN 

n_estimators = 500, 
min_samples_split = 2, 
min_samples_leaf = 1, 
max_depth = 150, 
max_features = ‘sqrt’, 
criterion = gini 
 
HP tuning parameters: 
n_estimators: [50-500] 
min_samples_split: [2,5,10] 
min_samples_leaf: [1,2,5] 
max_features: [‘auto’, ‘sqrt’] 
max_depth: [20-150,None] 

3 sequential LSTM/Dropout layers 
Dense layer 50 units 
Sigmoid activation output 
Cross-entropy loss 
 
 
HP tuning parameters: 
batch size: [16, 32] 
epochs: [10, 20] 
dropout rate: [0.1,0.2], 
LSTM units: [40, 80], 
optimizer: [adam, rmsprop] 

 
Supplementary Table 5. Hyperparameter tuning values used for Random Forest and RNN Models. Hyperparameters were tuned 
though RandomSearchCV, scored for “precision”, using Sci-kit Learn for 50 rounds.  
 

Supplementary Table 6 (see Excel File). Detailed metrics of all baseline models trained on ACE2 sequences. Metrics evaluated 
include: total accuracy and F1, precision, and recall for both classes. Models were evaluated on the entirety of the held-out test set, 
without hyperparameter optimization. 
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Supplementary Table 7 (see Excel File). Detailed metrics of all final models. Metrics evaluated include: total accuracy and F1, 
precision, and recall for the positive class. Models were evaluated on the entirety of the held-out test set, or “Low Distance” and 
“High Distance” subsets of the held-out test set.  
 

 
Supplementary Table 8 (see Excel File). Machine and deep learning model predictions compared to susceptibility data from 
the Stanford Database (https://covdb.stanford.edu/page/susceptibility-data/, 2021-10-19). RF and RNN model predictions are 
compared to previously published susceptibility data. The sequences had previously been excluded from the training datasets. 
 
 
Supplementary Table 9 (see Excel File). DML predictions on in silico generated sequences ED1-2 from selected variants. RF 
and RNN model predictions.  
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