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Abstract
Fibrillar adhesins are bacterial cell surface proteins that mediate interactions with the environ-
ment including host cells during colonisation or other bacteria during biofilm formation. These
proteins are characterised by a stalk that projects the adhesive domain closer to the binding
target. Fibrillar adhesins evolve quickly and thus can be difficult to computationally identify, yet
they represent an important component for understanding bacterial host interactions.
To detect novel fibrillar adhesins we developed a random forest prediction approach based on
common characteristics we identified for this protein class. We applied this approach to Firmicute
and Actinobacterial proteomes, yielding over 6,500 confidently predicted fibrillar adhesins. To
verify the approach we investigated predicted fibrillar adhesins that lacked a known adhesive do-
main. Based on these proteins, we identified 24 sequence clusters representing potential novel
members of adhesive domain families. We used AlphaFold to verify that 15 clusters showed
structural similarity to known adhesive domains such as the TED domain.
Overall our study has made a significant contribution to the number of known fibrillar adhesins
and has enabled us to identify novel members of adhesive domain families involved in the bac-
terial pathogenesis.

Importance Fibrillar adhesins are a class of bacterial cell surface proteins that enable bacteria
to interact with their environment. We developed aMachine Learning approach to identify fibrillar
adhesins and applied this classification approach on the Firmicutes and Actinobacteria Refer-
ence Proteomes. This method allowed us to detect a high number of novel fibrillar adhesins, and
also novel members of adhesive domain families. To confirm our predictions of these potential
adhesin protein domains, we predicted their structure using the AlphaFold tool.
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Introduction
Fibrillar adhesins are an important class of bacterial surface proteins, which are expressed by
a wide range of bacterial species to mediate binding interactions. Essential binding targets
include different host surface structures, such as extracellular matrix proteins. A pathogenic
colonization and infection can occur as a consequence of the binding interactions to host cells
[1]. Single fibrillar adhesins have therefore been studied in depth and have been the focus point
for anti-adhesion therapies [2, 3]. Fibrillar adhesins have also been described to mediate biofilm
formation [4, 5].
Fibrillar adhesins are a recently defined class of proteins that led to a domain-based character-
ization and identification of these proteins across a wide range of bacterial species [6, 7]. Key
characteristics of fibrillar adhesins are their large length with an adhesion region, a rod-like repet-
itive region and a cell surface anchor. The repetitive region contains repeating protein domains,
also called stalk domains, which fold into a filamentous stalk. It has been suggested that the
stalk projects the binding region closer to the binding target [8] and enables the adhesive region
to be presented outside the cell by reaching beyond the surface layer. The repeats can vary in
number leading to fibrillar adhesins with stalks of different lengths. Proteins with varying repeat
number of stalk domains between related bacterial strains have recently been termed ‘Periscope
proteins’ [9]. Whelan et al. propose that the varying length is used as a regulation mechanism
to facilitate the binding to targets at different distances [9]. The varying length may also lead to
the adhesive region being differentially displayed beyond the surface layer based on the number
of repeats. Several adhesive domains have been identified when studying the binding regions
of bacterial adhesins, of which most bind to protein ligands, some bind to carbohydrates and
one adhesive domain is known to bind to ice crystals [10]. Nevertheless, undoubtedly a large
number of adhesive domains remain undiscovered.
In our previous work, we have used the presence of known adhesive and stalk domains identi-
fied in fibrillar adhesins to detect more than 3,000 fibrillar adhesins-like (FA-like) proteins across
all bacterial species based on profile hidden Markov models (HMM)-searches [7]. The limitation
of this domain-based discovery approach is that only FA-like proteins with known adhesive and
stalk domains are found. Not all adhesive and stalk domains are identified yet and finding novel
binding proteins or domains is important for the understanding of emerging bacterial interac-
tions. To overcome this limitation we studied the properties of FA-like proteins and developed
a random-forest based discovery approach. The aim of this study is to enable the identification
of FA-like proteins on a large-scale, including those lacking a known adhesive or stalk domain.
We apply our newly developed machine learning approach on the Firmicute and Actinobacteria
UniProt Reference Proteomes and verify the approach by predicting the structure of Firmicute
FA-like proteins lacking a known adhesive domain with AlphaFold [11]. Our approach facilitates
the identification of relevant proteins during bacterial infection processes, enabling the investiga-
tion of novel members of adhesive domain families leading to a better understanding of microbial
interaction mechanisms.

Results

Random Forest classification
The aim of this study is the extension of the identification of fibrillar adhesins compared to the
domain-based approach described in our earlier study [7]. To achieve this goal, additional iden-
tification features were combined with the presence of adhesive and stalk domains, although
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the adhesive and stalk domains clearly remain the most important features in this study. To un-
dertake the identification approach based on the selected features a Random Forest approach
was selected. This is composed of individual decision trees classifying the proteins by sets of
maximum three features of all identification features provided as input to the algorithm and re-
turning the strongest class as prediction.
We decided to concentrate on the Firmicute and Actinobacteria phyla in this study. Fibrillar
adhesins are best studied in Firmicutes and the cell surface composition and FA-like protein ar-
chitecture of the Actinobacteria resembles those of the Firmicutes [3, 7]. We created a positive
training set based on the FA-like proteins identified in our previous study [7]. For the negative
training set we randomly selected non-FA-like proteins from eight Firmicute and Actinobacte-
ria Reference Proteomes, in which FA-like proteins were detected in our previous study [7].
Although an individual proteome may contain several FA-like proteins, they are present at rela-
tively low numbers per proteome (0% to 1.47%), thus randomly selecting the negative examples
is unlikely to select many, if any, true FA-like proteins [7]. In total, the training set consists of
3,332 proteins, equally balanced between the positive and negative training sets. Using this
training set, common properties for this protein class were determined.
Nearly all proteins of the positive training set (98%) have at least one adhesive and one stalk
domain, whereas less than 0.1% of the proteins in the negative training set possess a known ad-
hesive or stalk domain. Hence, the adhesive and stalk domains are the strongest identification
features for this protein class (Figure 1). To increase the chance to detect proteins with uniden-
tified stalk domains, we selected the presence of tandem sequence repeats with a minimum of
70% sequence identity allowed by the T-REKS tool [12]. In periscope proteins the stalk domains
are described to be found in highly identical tandem repeats [9]. But compared to periscope pro-
teins, not all stalk domains in FA-like proteins are found in highly identical tandem repeats and
are therefore missed by T-REKS. We observed that the stalk domain region tends to have a bi-
ased sequence composition and tends to be predicted as disordered despite known structures
being found in some of these regions. We used the fraction of predicted disordered residues by
IUPRED2, as an additional feature [13].
Fibrillar adhesins are attached to the bacterial cell surface. Known anchor domains or sortase
motifs were found in 846 out of 1666 proteins of the positive training set and were used as an-
other identification feature.
FA-like proteins are among the longest proteins in the protome, thus the protein length turned
out to be one of the strongest prediction features (Figure 1). Their high length facilitates FA-like
proteins to cross the peptidoglycan layer, which can be around 20-50 nm wide depending on the
bacterial species [14]. The average protein length of the positive training set is 1,196 residues
compared to 300 residues for the negative training set. Hence, with a higher sequence length
of a protein, the probability increases that the protein functions as a FA-like protein.
To characterize the protein sequence of FA-like proteins, the amount of charged as well as hy-
drophobic amino acids per protein were selected as additional features. The protein sequences
of the positive training data tend to have a slightly lower fraction of charged amino acids and
tend to have a lower fraction of hydrophobic amino acids compared to the negative training data
set.
Finally, we selected features related to the sequence composition. We calculated the fraction
of each amino acid per sequence as well as the relative entropy describing the sequence com-
position bias. We observed that the relative entropy tends to be slightly higher in the positive
training set and that threonine is 1.8-fold increased and leucine is 1.5-fold decreased in the pos-
itive training set compared to the negative training set (Figure S1).
We implemented the selected features in a random forest classification approach and analysed
the feature importance in the classification prediction based on the training data (Figure 1). The
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adhesive and stalk domain features can yield a Receiver Operating Characteristics (ROC) Area
Under the Curve (AUC) of 0.99 due to the fact that the training set is built upon FA-like proteins
identified in our previous work using known adhesive and stalk domains (Figure 1). The low
diversity of the training data, considering that the positive training data nearly solely consists
of proteins with at least one adhesive and one stalk domain, is reflected in the reliability and
precision-recall curve (Figure 2a,b). The reliability curve shows the high number of proteins of
the negative training set predicted with a prediction score below 0.1 and the high number of pro-
teins of the positive training set predicted with a score above 0.9. Even though the number of
predicted proteins with a score between 0.2 and 0.8 are low, the ratio of false positives tends to
increase in the prediction score ranges 0.5 to 0.7. To test if the training set leads to an overfitted
model, we evaluated the random forest classification approach with an extreme case of FA-like
proteins that we artificially present to have no adhesive or stalk domains (all other features of
the proteins are retained), yielding a precision score of 0.8 and achieving a recall score of 0.67
due to missed true matches (Figure 2b).
An important challenge for this work is to determine the random forest score threshold that will
reliably identify novel FA-like proteins that potentially lack known stalk or adhesive domains.
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Figure 1: A bar plot showing the relative importance of prediction features: This plot
visualizes the importance of each feature for the random forest classification. The bars show
the calculated ROC AUC per feature when using it alone for classification. The dot represents
the feature importance as calculated by the feature importance attribute implemented in the
sklearn ensemble random forest classifier.
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A) B)

Figure 2: Validation of the trained random forest classifier: a) the subplot on the top repre-
sents the reliability curve showing the observed fraction of predicted proteins belonging to the
positive training data set against the expected fraction of positives. The subplot below indicated
the total number of proteins of the training set predicted per prediction score. b) Precision-Recall
curves calculated with the training set using a cross-validation approach (orange) or using a test
set with a positive set of FA-like proteins with adhesive and stalk domains artificially removed
(blue).

Analysis of predicted FA-like proteins
When applying the classification approach on the Firmicute and Actinobacteria UniProt Ref-
erence Proteomes, 45,444 FA-like proteins with a prediction score above 0.5 were identified,
24,197 proteins in Firmicutes and 21,247 proteins in Actinobacteria (Table 1). These represent
0.49% and 0.32% of the total number of reference proteins respectively. The reference pro-
teomes with the highest fraction of predicted FA-like proteins with a score of 0.7 or above are
listed in supplementary table S1. Here we provide an analysis to help to determine a reasonable
threshold to apply for downstream analysis and application of the classifier in general.

Table 1: Number of FA-like proteins discovered in Firmicutes and Actinobacteria per pre-
diction score bin.

Score 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 – 1.0 1.0

Firmicutes 6,325 7,110 5,751 2,694 1,130 1,187

Actinobacteria 6,715 8,718 4,121 924 303 466

To study the characteristics of the predicted FA-like proteins (at a threshold >0.5), we predicted
their subcellular localizations using PSORTb (version 3) [15]. For nearly half of the predicted FA-
like proteins in Firmicutes with a prediction score of 0.7 or below no localization was predicted,
whereas the majority of FA-like proteins with a prediction score above 0.7 are predicted to be
localised at the cell wall (Figure 3a). For most of the predicted FA-like proteins in Actinobac-
teria no localization was predicted by PSORTb. The highest protein number with a predicted
localization are said to be extracellular, with around half of the FA-like proteins with a prediction
score between 0.8 and 0.9 being predicted to be localised at the cell wall (Figure 3b). Conse-
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quently, the cell wall anchor characteristic of FA-like proteins is more strongly represented in the
predicted proteins in Firmicutes compared to Actinobacteria.

A) B)

Figure 3: Predicted Subcellular Localization: By PSORTb predicted subcellular localizations
for FA-like proteins predicted with a prediction score between 0.5 and 1.0 for a) Firmicutes and
b) Actinobactria.

Even though most of the proteins (>75%) predicted with a score of 1.0 with known stalk domains
have an adhesive domain, over 90% of the predicted FA-like proteins above a prediction score
of 0.5 with known stalk domains have no known adhesive domain (Table 2a,b). Given that our
training set is biased towards FA-like proteins with both stalk and adhesive domains, this result
may suggest that there exist a large number of FA-like proteins with as yet undiscovered or
unannotated adhesive domains.
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Table 2: Overview of the presence and absence of known adhesive and stalk domains:
The number of proteins per prediction score category is counted, differentiating between proteins
with an adhesive and/or stalk domains or neither an adhesive nor a stalk domain. The results
are listed for the predicted FA-like proteins in a) Firmicutes and b) Actinobacteria.

a) Firmicutes

Score 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 – 1.0 1.0

Stalk solely 4,254 6,023 5,322 2,574 854 179

Adh. solely 423 281 121 58 26 3

Adh. and stalk 0 1 4 3 246 1,003

Neither adh.
nor stalk 1,648 805 304 59 4 2

b) Actinobacteria

Score 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 – 1.0 1.0

Stalk solely 4,782 7,472 3,588 808 211 171

Adh. solely 468 527 370 73 5 6

Adh. and stalk 0 2 3 0 80 288

Neither adh.
nor stalk 1,465 717 160 43 7 1

We investigated the predicted proteinsmissing an adhesive domain and found adhesive-domain-
like sequences (Table 3). These were searched with the known adhesive domains using HM-
MER with a higher (less significant) E-value threshold of 1.0. Already over 60% of the proteins
with a prediction score of 1.0 have a known adhesive domain (Table 3). Adding the number
of proteins with distantly related adhesive domains leads to an increase up to 6.72% for a pre-
diction score between 0.8 to 0.9 in Firmicutes (Table 3). These results suggest the presence
of novel adhesive domain families distantly related to existing ones detected in the predicted
FA-like proteins. The results also indicate the possible existence of potential novel adhesive
domains, unrelated to known adhesive domains.
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Table 3: Distantly related adhesive domains: Percentage of the total predicted FA-like pro-
teins with only known adhesive domains and additional with the distantly related adhesive do-
mains found by using a less significant Evalue.

Score 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 – 1.0 1.0

Firmicutes (only known
adh.)

6.69%
(423)

3.97%
(282)

2.17%
(125)

2.26%
(61)

24.07%
(272)

84.75%
(1006)

Firmicutes (+ distantly
related adh.)

9.98%
(631)

8.28%
(589)

7.55%
(434)

8.98%
(242)

28.76%
(325)

84.92%
(1008)

Actinobacteria (only
known adh.)

6.97%
(468)

6.07%
(529)

0.9%
(37)

7.9%
(73)

28.05%
(85)

63.09%
(294)

Actinobacteria (+ dis-
tantly related adh.)

7.55%
(507)

7.66%
(668)

3.45%
(142)

10.71%
(99)

28.38%
(86)

63.09%
(294)

Taking the observed results into account, we suggest a high confidence scoring threshold of
0.8, since the predicted FA-like proteins with a scoring threshold below 0.8 might include false
positives. Nevertheless, a scoring threshold of 0.7 can be used to find an extended set of FA-like
proteins as long as a careful verification of the predicted proteins is carried out.

Verification of novel adhesive domains
To verify the random forest based discovery approach we further investigated the predicted
FA-like proteins in the Firmicute Reference Proteomes. These include proteins without known
adhesive or stalk domains. Here, we are interested in the proteins with known stalk domains
that lack a known adhesive domain. We observed that many of them have a domain annotation
gap at the N-terminus, distal to the cell surface anchor. Of these proteins we selected a subset
of proteins with a minimum of 4 stalk domains. These were 1,546 proteins in Firmicutes with
a prediction score above 0.5. Under the assumption that these annotation gaps might include
an adhesive region of the proteins, we clustered the N-terminal sequences into homologous se-
quence clusters using blastp [16]. We selected the clusters with more than 5 sequences and
with an average prediction score of 0.7 or above for further investigation, resulting in 24 clusters.
To further investigate the clusters we chose one representative sequence per cluster (Table S2).
We carried out two analyses (i) to search for overlapping known Pfam domains, using the highly
sensitive iterative Jackhmmer search, and (ii) to predict the structure of the sequence using Al-
phaFold [17, 11]. Using Jackhmmer can be considered a more sensitive version of our previous
analysis where we used a less significant HMMER threshold for known Pfam adhesive domains.
Using Jackhmmer we are able to detect even more distant similarities to known domains. To find
out more about the function, particularly for sequences without overlapping Pfam domains, we
searched with the predicted AlphaFold structure models against the PDB database for similar
structures [18] (Suppl. Table S3). We aligned the sequences of each cluster and built profile-
HMMs specific to each cluster. To understand the relative abundance of each of our clusters we
then searched for homologous sequences in UniProtKB and UniProt Reference Proteomes as
well as in the metagenomic MGnify database [19, 20].
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Clusters with sequence similarities to known adhesive domains

The Jackhmmer search using the putative adhesive region indicated 8 out of the 24 sequence
clusters (cluster number 2, 6, 8, 15, 17, 19, 21, and 24) to be similar to known adhesive domain
sequences (Table 4). These sequence similarities were confirmed by the DALI search with the
AlphaFold predicted structure models (Figure 4a-i, S2a-i).

Table 4: Information about clusters with detectable sequence similarities to known Pfam
adhesive domains. The similar Pfam adhesive domains found with Jackhmmer are indicated
under ‘Domain overlap’. Other information are the homologous sequence hits per cluster in
the UniProtKB, UniProt Reference Proteomes and MGnify database as well as the cluster size
(‘Seqs #’) and the average protein prediction score per cluster (‘Avg. Score’).

Nr. Avg. Score Seqs.
# Domain overlap UniProtKB UniProt Ref.

Proteomes MGnify

2 0.93 ± 0.06 8
Big_8 (PF17961),
Collagen_bind
(PF05737)

487* 19* 650*

6 0.86 ± 0.05 6 Collagen_bind
(PF05737) 276* 66* 1,174*

8 0.84 ± 0.09 28 TED (PF08341) 1,149 222 48,395

15 0.78 ± 0.11 8 LRR_4
(PF12799) 45,022 2,793 170,274

17 0.78 ± 0.05 47 TED (PF08341) 1,170 170 54,096

19 0.77 ± 0.07 39 TED (PF08341) 954 148 28,283

21 0.74 ± 0.03 7 TED (PF08341) 56** 16** 3,617**

24 0.71 ± 0.05 13 TED (PF08341) 1,223 214 53,312

* C-terminal domain
** N-terminal domain

Cluster 2 The predicted structure of cluster 2 representative sequence (UniProtKB:K8EVB1)
shows that it contains two distinct domains (Figure 4b). For the N-terminal domain Jackhmmer
identified a Big_8 domain (Pfam:PF17961), which is found in a variety of bacterial adhesins
such as the Staphylococcus aureus proteins FnBPA, ClfA and ClfB. A DALI search with the
N-terminal domain strengthens the Jackhmmer results as the best hit is the N-terminal Big_8
domain of the FnBPA binding region (PDB:4b60:B). For the C-terminal end of the C-terminal
domain of cluster 2 the Jackhmmer search indicates an overlap to the Collagen_bind domain
(Pfam:PF05737). The second domain structure yields with the DALI search the Streptococ-
cus gordonii adhesin Sgo0707, where the structure superposes to the Sgo0707_N2 domain
(Pfam:PF20623) (PDB:4igb:B). The subsequent DALI hits are the SdrG_C_C adhesive domain
(Pfam:PF10425) (PDB:4jdz:A) (Figure S2b). The SdrG_C_C domain is also often found asso-
ciated with the Big_8 domain in known adhesins and is likely to be homologous to the Colla-
gen_bind domain. Cluster group 2 includes the Enterococcus faecalis protein with the gene
name EF2505 or Fss2, which was described to bind to fibrinogen and to play an important role
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in the adherence and virulence of E. faecalis [21]. Thus we propose that proteins in cluster 2
are likely to bind fibrinogen or other animal extracellular matrix proteins.

Cluster 6 For cluster 6 AlphaFold predicted a structure composed of two domains (Figure
4c). The DALI search indicates, similar to cluster 2, for the N-terminal domain a Big_8 domain
as the top hit (PDB:5cf3-A) and for the C-terminal domain a Collagen_bind domain as the best
match (PDB:2z1p-A) (Figure S2c), thereby confirming the Jackhmmer search results. The Big_8
domain functions together with the Collagen_bind domain as supra-domain, enabling the binding
to collagen by the collagen hug binding mechanism [22].

Cluster 15 Cluster group 15 includes the Listeria monocytogenes InternalinJ (UniProtKB:
Q8Y3L4), for which the crystal structure of the adhesive domain exists (PDB:3bz5:A) [23], which
was found using DALI with the predicted AlphaFold structure, reflecting the high accuracy of Al-
phaFold (Figure 4d, S2d). The adhesive domain is formed by a series of Leucine Rich Repeats
that are not matched by the LRR_4 family (Pfam:PF12799) in Pfam. Proteins related to this
class are one of the most prevalent that we found with over 170,000 homologues identified in
the MGnify protein sequence database.

Cluster 8 The Jackhmmer search as well as the DALI search with the AlphaFold prediction
indicate cluster 8 being a class II TED (Pfam:PF08341) adhesive domain (PDB:6fx6:A) (Figure
4e, S2e), whose binding partner is unknown [24, 25]. The TED adhesive domain is categorized
into a class I and class II TED domain, depending on an additional N-terminal indel forming
an alpha helix or an additional C-terminal indel folding into a beta-sandwich, respectively [24].
Cluster group 8 includes the fibrinogen binding E. faecalis Fss3 protein (UniProtKB:Q833P7) as
well as an E. faecalis protein (UniProtKB:Q831Z5) encoded by the virulence associated EF2347
gene [21].

Cluster 17 The Jackhmmer search indicates cluster 17 to also be distantly related to the TED
adhesive domain [25]. The DALI results with the best hit being a class II TED domain (PDB:6fwv)
(Figure 4f, S2f) strengthens this hypothesis. To confirm that cluster 17 is a class II TED domain,
we extended the representative sequence above the 400 residues limit by around 100 residues
in order to include the characteristic C-terminal indel.

Cluster 19 Again, a TED domain was indicated by the Jackhmmer search for cluster 19, and
supported by the DALI results, which indicated a class II TED domain (PDB:6fx6:A) (Figure 4g,
S2g). Analysing the domain topology showed that there exists no seven-stranded beta-sandwich
insertion, which is present in class II TED domains, whereby two beta-strand (A’ and B’) missing
in class I TED domains are present [24]

Cluster 21 The predicted structure of cluster 21 showed two distinct domains (Figure 4h, S2h).
The Jackhmmer search again indicated a TED domain. This is supported for the N-terminal
domain by the DALI results, which indicated a class II TED domain. As in cluster 19, the seven-
stranded beta-sandwich insertion is not present, but the two beta-strands A’ and B’. The C-
terminal domain structure includes ten beta-strands and two longer alpha helices. The best
DALI hit for the C-terminal domain is a stalk-like structure (PDB:3kpt:A), which only aligns to the
beta-strands of the domain. Interestingly, the N-terminal TED-like domain is predicted to interact
with the C-terminal domain.
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Cluster24 The Jackhmmer search as well as the DALI results indicate a TED domain for clus-
ter 24 (PDB:6fwy:B). The existing beta-stranded insertion clearly characterises this TED domain
as class II TED domain (Figure 4i and S2i).

The sequences of five of the eight above described clusters show similarity to known TED ad-
hesive domains. TED domains were previously described to show a high sequence diversity
[25].
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very low (pLDDT < 50) low (70 > pLDDT >= 50)

confident (90 > pLDDT >= 70) very high (pLDDT > 90)

B) C)

D) E)

F) G)

H) I)

Figure 4: Structure models of cluster groups with sequence similar adhesive domains
found by Jackhmmer: (a) Colour legend representing the quality of the AlphaFold models.
Structure models of the potential adhesive domain of (b) cluster 2 (UniProtKB:K8EVB1/117-
417), (c) cluster 6 (UniProtKB:V2XMF4/80-366), (d) cluster 15 (UniProtKB:A0A4U7JL97/37-
420), (e) cluster 8 (UniProtKB:R3TX93/40-276), (f) cluster 17 (UniProtKB:A0A2Z4U801/240-
508), (g) cluster 19 (UniProtKB:S0JHJ4/32-199), (h) cluster 21 (UniProtKB:A0A373LEL7/30-
196) and (i) cluster 24 (UniProtKB:B1BZ86/36-324). The figures were produced using Pymol
[26].

Clusters with structure models indicating role in adhesion function

The cluster groups 1, 3, 4, 5, 10, 12 and 13 don’t yield persuasive Jackhmmer matches (Table 5),
but their predicted structures resemble structures of known adhesive domains or adhesion as-
sociated domains, suggesting that these clusters might be novel domains with potential binding
functions.
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Table 5: Investigation of the potential novel adhesive domains: This table lists information
regarding overlapping known Pfam domain families found with Jackhmmer (Domain overlap)
and the abundance in the UniProtKB, UniProt Reference Proteomes and MGnify database for
the N-terminal sequence clusters. The ‘Seqs #’ column represents the cluster size and the ‘Avg.
Score’ column the average prediction score of the proteins per cluster.

Nr. Avg. Score Seqs.
# Domain overlap UniProtKB UniProt Ref.

Proteomes MGnify

1 0.93 ± 0.09 7 256 38 569

3 0.91 ± 0.05 9 502 122 1,124

4 0.89 ± 0.06 8 145 32 157

5 0.87 ± 0.06 11 MBG (PF17883)
(C-terminal) 53 24 125

10 0.82 ± 0.07 10 2,359 551 6,668

12 0.82 ± 0.05 6 Cthe_2159
(PF14262) 495 65 1,495

13 0.8 ± 0.08 8 444 47 1,180

Clusters with jelly-roll resembling structure predictions The structure predictions for clus-
ter 4 and 5 are jelly-roll like structures (Figure 5a-c).
The best DALI hit for cluster group 4 was a GramPos_pilinBB domain of the RrgB pilus back-
bone (PDB:2x9x:A) (Figure 5b, S3b).
The Jackhmmer search for cluster group 5 showed an overlap with the MBG stalk domain at the
C-terminus of the sequence, which was trimmed off, leaving a significant N-terminal sequence
region for which the structure was predicted. The top DALI matches are related to surface ad-
hesins with the best match being a Clostridium perfringens pilin protein (PDB:5xcb:A) with the
GramPos_pilinBB domain (Pfam:PF16569) (Figure S3c).
The Evolutionary Classification Of protein Domains (ECOD) databases classifies the Gram-
Pos_pilinBB domain under the topology named ‘Common fold of diphtheria toxin/transcription
factors/cytochrome f’ [27]. This category also includes the adhesive domains SdrG_C_C and
Collagen_bind. The Collagen_bind adhesive domain is a well studied jelly-roll structure [28],
which is composed of two antiparallel beta-sheets and two short alpha-helices. Both AlphaFold
structures for cluster 4 and 5 fold into jelly-roll like structures and show a high similarity to the
Collagen_bind domain (PDB:1amx-A). The structure surfaces seem to provide a groove on the
beta-sheets, indicating a potential collagen binding site [28]. However, the Collagen_bind do-
main alone has a 10-fold lower collagen binding affinity compared to the collagen hug binding
mechanisms based on the Big_8:Collagen_bind supra-domain [22]. The similarity to the Col-
lagen_bind structure, but also the N-terminal protein position distal to the cell surface anchor
strongly suggests adhesive function for clusters 4 and 5.
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confident (90 > pLDDT >= 70) very high (pLDDT > 90)

B) C)

Figure 5: Potential novel adhesive domains with jelly-roll like predicted structures: (a)
Colour legend representing the quality of the AlphaFold models. Structure models of the
potential adhesive domain of (b) cluster 4 (UniProtKB:B0S3M8/153-316) and (c) cluster 5
(UniProtKB:A0A5R8Q9T8/68-240). The figures were produced using Pymol [26].

Beta-solenoid fold cluster structure models Clusters 1, 10 and 12 are predicted to fold into
beta-solenoid structures (Figure 6a-d). The predicted structures for cluster group 1 as well as 12
are most similar to the binding region of the serine-rich repeat protein (SRRP) from Lactobacillus
reuteri strain 100-23C (PDB:5ny0:A) (Figure S4b,c), being described to bind to epithelial cells,
pectic acids and to play a role in the biofilm formation [29]. The Jackhmmer search for clus-
ter 12 already indicated after the second iteration a distant relation to the carbohydrate binding
Cthe_2159 (Pfam:PF14262) domain which is part of the Pectate Lyase superfamily, whereas
the DALI search clearly indicated the highest similarity to the L. reuteri SRRP adhesive region
[29]. The SRRP protein is not part of any existing Pfam family. Although we limited the cluster-
ing sequence to 400 residues we investigated whether the domains were longer with AlphaFold
and extended it in the case of cluster 1 to about 800 residues. Interestingly, cluster 1 is found
on a Staphylococcus epidermidis protein with a SasG_G5-E stalk (UniProtKB:A0A3G1RMM4),
which was so far only found associated with the Bact_lectin adhesive domain (Pfam:PF18483)
in S. epidermidis and S. aureus SasG homologues [30]. In our previous study we discussed
the possibility that an adhesive domain can function with any arbitrary stalk [7]. The described
example underlines this hypothesis and furthermore indicates a possible transfer of the adhe-
sive domain onto a given stalk increasing the adhesins variability. The SasG_G5-E stalk is also
described to promote biofilm formation [30].
Cluster group 10 resembles an ice binding domain (PDB:4nuh:A) (Figure S4d), where the rep-
resentative protein sequence (UniProtKB:A0A0F7RLJ7) is identical to a Bacillus anthracis pro-
tein (UniProtKB:A0A384LNE7) with the gene name BA_0871 or BASH2_04951, which was de-
scribed to be collagen binding and to be linked to the bacterial pathogenicity [31].
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confident (90 > pLDDT >= 70) very high (pLDDT > 90)

B) C) D)

Figure 6: Predicted structures for clusters with potential novel adhesive domains,
whose structure, but not sequence, seem to be related to known adhesive domains:
(a) Colour legend representing the quality of the AlphaFold models. Structure models of the
potential adhesive domain of (b) cluster 1 (UniProtKB:A0A2Z6T9E9/185-718), (c) cluster 12
(UniProtKB:A0A099WCN8/48-417) and (d) cluster 10 (UniProtKB:A0A0F7RLJ7/46-326). The
figures were produced using Pymol [26].

Remaining clusters with structure models indicating potential adhesion function The
best DALI hit for the cluster 3 structure model (Figure 7b) is an N-terminal helical domain of
a group B streptococcus immunogenic bacterial adhesin named BibA (PDB:6poo:A) (Figure
S5b), which superposes with the N-terminal alpha helices of the structure model [32]. Running
the DALI search for the domain in the middle of the structure model separately, results in the
S. aureus SdrD adhesive protein (PDB:4jdz:A), where the structure model superposes with the
SdrD_B stalk domain (Pfam:PF17210). The cluster 3 includes one Streptococcus merionis pro-
tein (UniProtKB:A0A239SMH4), which is encoded by the bca gene. The bca gene has been
shown to be involved in the initial stage of Group B Streptococcus infection [33], suggesting
adhesion function.
The best DALI match for cluster 13 is the human integrin alpha-5 protein (PDB:7nxd:A), followed
by the best bacterial match being the N-termini of the S. gordonii adhesin Sgo0707 (PDB:4igb:B)
(Figure 7b, S5c). Here, the structure model aligns to the Sgo0707_N2 domain. The cluster in-
cludes a E. faecalis protein (UniProtKB:Q82YW8) encoded by the EF3314 gene, which was
described to contribute to the virulence properties of this pathogen [34].
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very low (pLDDT < 50) low (70 > pLDDT >= 50)

confident (90 > pLDDT >= 70) very high (pLDDT > 90)

B) C)

Figure 7: Clusters with AlphaFold structures showing ambiguous adhesion function: (a)
Colour legend representing the quality of the AlphaFold models. Structure models for (b) cluster
3 (UniProtKB:A0A1Q8E8C7/76-420) and (c) cluster 13 (UniProtKB:A0A069CUH0/64-357). The
figures were produced using Pymol [26].

We created new putative adhesive Pfam domain families for the clusters 1, 4, 5, 10, 12, 13 and
24. Clusters 1 and 12 were combined into a single cluster. The Pfam identifiers can be found
in supplementary table S4. The common domain architectures of proteins with these potential
novel members of adhesive domain families are shown in figure 8.
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Figure 8: Examples of protein architectures in which the potential novel adhesive do-
mains can be found: The potential novel adhesive domains are annotated in red, labelled
with the cluster number. The white domains (‘AlphaFold domains’) are domains found in the
AlphaFold structure model of each protein, which do not correspond to existing Pfam domain
families.

Clusters with stalk-like domains

The Jackhmmer search for clusters 11, 14, 20 and 22 indicated known stalk domains (Table
6). The structure predictions support these results (Figure 9 and figure S6), suggesting the
N-terminal region to be composed of stalk domains without a functional N-terminal adhesive
domain. As discussed in our previous work, the boundary between adhesive and stalk domains
is not always clear, opening the question whether stalk domains can develop binding functions
[7]. Additionally, we can find stalk domain structures with similarities to adhesive domains, for
example the DUF11 domain family (Pfam:PF01345) has similarities to the Collagen_bind adhe-
sive domain structure (Pfam:PF05737).
A second possible function of these proteins is to act as steric regulators altering the access of
other adhesive proteins to binding partners. One example is the S. aureus periscope protein
SasG, which is suggested to block the binding of proteins located closer to the cell surface from
interacting with host cell fibrinogen [9].
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Table 6: Information about stalk-like domain clusters: The table contains the cluster number,
average prediction score and number of sequences per cluster (‘Seqs #’). The Pfam stalk do-
mains found with Jackhmmer are indicated under ‘Domain overlap’. Information is also included
about the number homologous sequence hits per cluster in the UniProtKB, UniProt Reference
Proteomes and MGnify database.

Nr. Avg. Score Seqs.
# Domain overlap UniProtKB UniProt Ref.

Proteomes MGnify

11 0.82 ± 0.05 10 DUF11 (PF01345) 476* 87* 1,237*

14 0.8 ± 0.04 22 TIG (PF01833) 988* 207* 2,190*

20 0.75 ± 0.03 10 Big_2 (PF02368) 915* 228* 9,914*

22 0.73 ± 0.02 6 Big_2 (PF02368) 109* 35* 3,285*

* N-terminal domain

The Jackhmmer search for cluster 11 resulted in the known DUF11 (Pfam:PF01345) stalk do-
mains. The predicted structure shows two distinct domains (Figure 9b). The DALI search in-
dicated for the N-terminal domain a similarity to the stalk-like structure of an Integrin alpha-X
protein (PDB:4nen:A) (Figure S6b) and for the C-terminal domain a similarity to the BcpA major
pilin subunit (PDB:3rkp:A).
The sequence as well as the structure resemble a TIG stalk domain for the C-terminal domain
of cluster 14, indicated by Jackhmmer and the DALI search (PDB:5l5g:D) (Figure 9c, S6c). The
N-terminal part is composed out of two subdomains, which seem to mirror each other. This
symmetry could be based on an internal duplication event. The best DALI hit with a Z-score of
8.1 for the N-terminal part was a plexin-C1 protein (PDB: 6vxk:D), where the cluster aligns to the
two TIG domains in the protein, whereby only the N-terminal subdomain superposes well (Fig-
ure S6C). But separately, both subdomains of the N-terminal part superpose reliably to a TIG
domain, suggesting the N-terminal part to be related to a combination out of two TIG domains,
which might have developed further. A groove on the surface of the structure model indicates
that the N-terminal part might have developed a binding function (Figure 9c).
The structure model for cluster 20 presents three domains (Figure 9d). The Jackhmmer search
already indicated a Big_2 stalk domain, which is supported for the N-terminal domain within the
top DALI results (PDB:2l04-A) (Figure S6d). The middle domain resembles a stalk-like structure
in Intimin_C (PDB:1f00:I) and the best DALI hit for the C-terminal domain was the CfA/I fimbrial
subunit A (PDB:6k73:B).
The sequence of cluster 22 also indicated a Big_2 stalk domain. The predicted structure again
represents three domains, of which the N-terminal and C-terminal domain are most similar to
the stalk domains PKD_4 (PDB:4u7k:G) and Big_2 (PDB:4hu8-C) respectively (Figure 9e, S6e).
The best DALI hit for the domain in the middle is a monooxygenase (PDB:1yew:E) closely fol-
lowed by the I-set immunoglobulin-like stalk domain (PDB:5aea:A).
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D) E)

Figure 9: Cluster with AlphaFold structure models with stalk characteristics: (a)
Confidence of AlphaFold models colour legend. Structure models for b) cluster 11
(UniProtKB:A0A2V5K856/38-347), c) cluster 14 (UniProtKB:A8MK03/34-337), d) cluster 20
(UniProtKB:A0A1I6IKX0/39-366) and e) cluster 22 (UniProtKB:R7HBU9/38-352).

Clusters with ambiguous function

The Jackhmmer and DALI search could not indicate explicit binding function for cluster group 7,
9, 16, 18 and 23 (Table 7, Suppl. figure S7).
The Jackhmmer search indicated a Beta_helix (Pfam:PF13229) for cluster 7 and a Peptidase_
M26_N (Pfam:PF05342) domain for cluster 18. The structure models of both domains resemble
carbohydrate binding pectate lyase adhesive domains. But the top DALI hit for cluster 7 is a lacto-
N-biosidase (PDB:6kqs:A) and for cluster 18 a putative immunoglobulin protease (PDB:3n6z:A),
suggesting potential catalytic functions [35].
Jackhmmer indicated a BNR_4 (Pfam:PF15892) domain for cluster 16 and the top DALI hit for
this cluster is a human integrin alpha-IIb protein, which binds among others to fibrinogen. The
InterPro database has a Fucose_binding_lectin domain annotated (PDB:1iub), suggesting clus-
ter 16 to have adhesion function [36, 37]. The structure model of cluster 9 resembles cluster
16, whereby the top DALI hit is a virginiamycin B lyase (PFB:2z2o:B), again suggesting catalytic
function [38].
The best DALI hit for cluster 23 was the P_proprotein domain (Pfam:PF01483) of a protease,
which is common to be located downstream of a catalytic domain (PDB:3hjr:A) [39].
The results of the above described clusters suggest the clusters to play a catalytic role, not rul-
ing out binding abilities. Given that catalytic domains often also have adhesive function to bind
to their substrate, it is challenging to differentiate between catalytic and adhesive domains and
also between fibrillar adhesins and as we call them ’fibrillar enzymes’. Fibrillar enzymes are
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also composed out of repeating domains, but have an enzymatic related domain instead of an
explicit adhesive domain (Figure 10). Nevertheless, the enzymatic region can be able to have
binding functions, as described above.

Table 7: Information about clusters of ambiguous function: Information regarding overlap-
ping knownPfam domain families foundwith Jackhmmer (Domain overlap) and the abundance in
the UniProtKB, UniProt Reference Proteomes and MGnify database are listed for the N-terminal
sequence clusters. The ‘Seqs #’ column represents the cluster size and the ‘Avg. Score’ column
the average prediction score of the proteins per cluster.

Nr. Avg. Score Seqs.
# Domain overlap UniProtKB UniProt Ref.

Proteomes MGnify

7 0.84 ± 0.1 8 Beta_helix
(PF13229) 6,056 1,463 66,262

9 0.83 ± 0.07 7 PSII_BNR
(PF14870) 15,047 2,460 86,845

16 0.78 ± 0.08 11 BNR_4
(PF15892) 7,916 1,148 37,575

18 0.77 ± 0.09 11 Peptidase_M26_N
(PF05342) 10,570 2,857 350,932

23 0.71 ± 0.06 17 DUF3344
(PF11824) 3,408 755 9,724

Figure 10: Example of a potential fibrillar enzyme: Predicted structure of a potential fibrillar
enzyme (UniProtKB:C6CUY3). The structure was predicted using the AlphaFold colab note-
book, where three sequence chunks (residues 1-600, 401-1000 and 901-1500) were predicted
separately with overlapping regions, which were combined using pymol. The potential sorting
signal region is coloured in yellow, the potential catalytic domain in violet, the Flg_new stalk
domains in blue and the anchor region in green. This protein belongs to the sequence cluster
9. This figure were produced using Pymol [26].

Discussion
Novel pathogens are emerging constantly with uncharacterized host cell interaction mecha-
nisms. Homologous virulence associated proteins with known adhesive domains are the first
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step towards an understanding of the pathogenicity of these bacteria. But adhesive domains
evolve quickly and are highly variable. Hence, detection mechanisms independent from known
adhesive domains are important. In this study we developed a random forest based discovery
approach to detect FA-like proteins. We applied the approach on the Firmicute and Actinobac-
teria UniProt Reference Proteomes, yielding over 6,500 confidently predicted FA-like proteins.
With the characterization of FA-like proteins we could identify a variety of notable features which
we could use for machine learning. The known stalk and adhesive domains are the strongest
feature in the classification decision approach. This bias is due to the positive training data,
which was selected from the prior domain-based discovery approach [7]. Other strong fea-
tures were the protein length, which is required to overcome the bacterial cell surface, and the
amino acid composition of the protein sequences. Here, particularly threonine was strongly
over-represented in the positive training data set compared to the negative training data set,
raising the question about what role it plays in bacteria-host interactions. One explanation could
be that despite the most commonly phosphorylated amino acids being histidine and aspartate,
serine/threonine/tyrosine phosphorylation in bacteria was shown [40, 41]. Additionally, phospho-
rylation during the adherence step was described, connecting it to the regulation of the bacterial
virulence [41, 42]. Fibrillar adhesins are cell surface proteins and so we selected the existence
of a cell wall anchor motif or domain as an additional feature. Although an anchor was found in
only around half of the proteins of the positive training data. One reason could be that there are
many unknown anchor motifs or domains, which still need to be investigated, or non-classical
secretion mechanisms [43]. We also found many examples of potential fibrillar adhesins where
the stalk region ranges to the C-terminus. These proteins might be able to interact with other
cell surface proteins in order to be projected away from the cell wall. Implementing the selected
identification properties in the random forest classification approach and applying it to the Fir-
micute and Actinobacteria UniProt Reference Proteomes led to over 6,500 confidently detected
FA-like proteins. This indicates that more than 5,000 of them were missed by the domain based
discovery approach detected in our previous study [7]. More importantly, with our new machine
learning discovery approach FA-like proteins are predicted that lack known adhesive or stalk
domains enabling us to discover novel protein domain families.
To verify the random forest prediction approach we further studied the predicted FA-like proteins
lacking a known adhesive domain, but with known stalk domains. When investigating the se-
quence clusters representing an annotation gap N-terminal to known stalk domains, similar Pfam
domain sequence matches could be found for many of the described clusters using Jackhmmer.
This suggests that the Pfam domain families could be expanded to include these sequences or
novel domain families related to the overlapping domain families can be created. We have
taken advantage of the recent release of the AlphaFold2 software to validate our machine learn-
ing approach as well as use it to refine predictions of adhesive domains in our predicted fibrillar
adhesins. Given that the predicted structures confirm the Jackhmmer results, highlights the high
accuracy of the structure prediction method AlphaFold2. We see many new opportunities to use
large scale structure predictions to identify and investigate the components of the bacterial cell
surface that are likely to interact with the host.
While further investigating the described N-terminal sequence clusters the difficulty to differen-
tiate between fibrillar adhesins and the newly discovered class of fibrillar enzymes was shown.
Given that fibrillar enzymes can play an important role in the bacterial pathogenesis as well,
they have comparable characteristics to fibrillar adhesins in terms of being long surface proteins
with a stalk and that several of the enzymes can have binding functions. This impedes the dif-
ferentiation of these two protein classes by our identification features and so far we have not
included any property to differentiate between adhesive and enzymatic domains. Nevertheless,
the prediction score and the cluster size can together give an assessment about the reliability.
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The analysed clusters with the higher sequence number or higher prediction score are mostly
potential adhesive domains.
Except for cluster 3 and 13, the sequences or predicted structures of the other potential adhesive
domain clusters are similar to known adhesive domains. Additionally, the potential novel adhe-
sive domains as well as the clusters related to known adhesive domains found with Jackhmmer
verify the random forest based discovery approach. The high number of homologous sequences
of these domains in the metagenomic MGnify database and in known pathogenic genera in the
UniProt database underline their relevance. For the potential novel members of adhesive do-
main families discovered in the course of this study the predicted structure models and the
DALI search results give a first understanding of their function and potential binding partners.
AlphaFold2 and AlphaFold-Multimer opens up further ways to predict the structures of fibrillar
adhesins-target protein complexes [44]. We believe that we are at the beginning of a new age
of discovery where computational analyses will lead to fundamental improvements in our under-
standing of microbial host interactions.

Materials and Methods

Training data selection
We selected as positive training data the FA-like proteins of Actinobacteria and Firmicutes dis-
covered with the domain-based detection approach in our previous study [7]. Additionally, we
included 25 additional FA-like proteins, which don’t have either a known adhesive and stalk do-
main, which were found in the literature or manually investigated. As negative training data we
selected randomly non FA-like proteins in reference proteomes, in which FA-like proteins could
be detected with the domain-based discovery approach. These are from the following nine or-
ganisms: Bifidiobacterium subtile, Olsenella sp. oral, Slackia exigua, Streptomyces coelicolor,
Staphylococcus aureus, Lactococcus lactis, Streptococcus gordonii, Listeria monocytogenes
and Enterococcus faecalis. The training set consists of a total of 3,332 proteins, of which half
belong to the positive and the other half to the negative training data set. The training data can
be found in the GitHub repository (see below).

Identification features calculation and random forests classification
To search in the protein sequences for known adhesive, stalk and anchor domains, the col-
lection of Pfam domain HMMs from our previous study was used [7]. Additional, the adhesive
domain GspA_SrpA_N (Pfam:PF20164) and the stalk domains aRib (Pfam:PF18938), RibLong
(Pfam:PF18957), SasG_E (Pfam:PF17041), GA-like (Pfam:PF17573), YDG (Pfam:PF18657),
Lipoprotein_17 (Pfam:PF04200) and IgG_binding_B (Pfam:PF01378) were used. These HMMs
were run against the protein sequences using the HMMER tool (version 3.1b2) with the gath-
ering (GA) threshold option. Using regular expression, we searched within the C-terminal 50
residues of the protein sequences for the following sortase anchor motifs: ‘LPxTG’, ‘LPxTA’,
‘LPxTN’, ‘LPxTD’, ‘LPxGA’, ‘LAxTG’, ‘IPxTG’, ‘NPxTG’, ‘NPQTM’ (‘x’ can be any amino acid).
To identify highly similar tandem sequence repeats that may represent potential unknown stalk
domains we applied the T-REKS software on the sequences using as parameters a minimum of
70% sequence identity, 50 residues as minimum length of the repeat region and 5 residues as
minimum seed length [12].
Disordered regions were predicted using IUPred (IUPred2a) with the IUPred2 type ‘long’ for pre-
dicting long disordered regions [13]. Each residue with an IUPred score above 0.5 was counted
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as predicted disordered. The predicted disordered fraction was calculated using the percentage
of predicted disordered residues from the total protein length.
The proportion of charged or hydrophobic amino acids per protein sequence was calculated us-
ing as charged amino acids glutamic acid (E), aspartic acid (D), lysine (K), arginine (R) and as
hydrophobic amino acids alanine (A), isoleucine (I), leucine (L), methionine (M), phenylalanine
(F), tryptophan (W), tyrosine (Y), valine (V).
The residue length was counted per the complete UniProt protein sequence.
The proportion for each amino acid per protein sequence was calculated and to evaluate the
amino acid composition bias the relative entropy (Kullback-Leibler (KL) divergence) was calcu-
lated per protein sequence (S). Here, we quantify the difference between the observed frequency
(P) per amino acid (i) compared to equally frequent amino acids, being 0.05 for 20 amino acids.

KL(S) =
∑20

i P(i)logP (i)
0.05

We calculated the identification features for the protein sequences of the training data. With the
calculated feature data we trained a random forest classifier from sklearn ensemble methods
with 50 trees with maximum 3 features per tree and random state 2 [45]. The Random Forest
method takes the 30 features as input and outputs a score per protein between 0 and 1 with
FA-like proteins scoring closer to 1.
The reliability curve was calculated for the applied random forest model on the training data
set using calibration_curve from the sklearn calibration module and a 10-fold cross-validation
approach.
For calculating the precision and recall of the model and generating the precision-recall curve,
we generated a testing data set of 258 proteins, composed of 128 FA-like proteins and 130 non
FA-like proteins. We artificially adapt the features of the testing set to have no adhesive or stalk
domains, whereby all other features are retained. For these calculations the proteins of the
testing set were excluded from the training data set. The precision and recall of the model as
well as the precision-recall curve was calculated using the macro-average method to determine
how the random forest model performs overall across the two classes: FA-like, non FA-like
proteins. The precision-recall curve was also calculated using a cross-validation approach with
the training set.
To use the random forest discovery approach, we provide the code in our GitHub repository (see
below).

FA-like proteins prediction for Firmicute and Actinobacteria UniProt Ref-
erence Proteomes
To apply our machine learning method against known Firmicute and Actinobacterial proteins we
first gathered available sequences. The UniProt proteome identifier for all Firmicute and Acti-
nobacteria Reference Proteomes were searched for in the UniProt website (release 2020_04).
We collected the relevant sequences for these identifiers by searching in the knowledgebase
under the bacterial reference proteomes (release 2020_03) for the identifier.
As described in the subsection ‘Identification features calculation and random forest classifi-
cation’ we calculated the identification features for the Firmicute and Actinobacteria reference
protein sequences and applied the trained random forest classification approach to score each
protein.
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Analysing predicted FA-like proteins
We further analysed the predicted FA-like proteins by differentiating the prediction scores. The
subcellular localizations of the predicted FA-like proteins were predicted using singularity (ver-
sion 3.5.3) to run the PSORTb (version 3) Docker image (psortb_commandline_1.0.2.sif).
To find distantly related adhesive domains, a profile HMM-search with the known adhesive do-
mains were conducted using an E-value threshold of 1.0.
Using profile HMM-search (version 3.1b2) with the gathering (GA) threshold option the Pfam
database (version 33.1) was run against the sequences of the predicted FA-like proteins.

Selecting potential functional sequences
To verify the machine learning approach, we were particularly interested in the predicted proteins
with an annotation gap at the N-terminus, which might contain a missing functional domain. We
focused on the N-terminus, because we showed in our previous study that the adhesive domain
in FA-like proteins in Firmicutes and Actinobacteria is mostly found at the N-terminus [7]. We
selected proteins with at least four known stalk domains, which lack a known adhesive domain
and with no Pfam domain annotations within the first 20% of the protein length. Before find-
ing homologous sequence groups, we deleted the selected protein’s first 20 residues to avoid
clustering based on a potential signal peptide. We cut these sequences N-terminal to the first
domain annotation, but no longer than 400 residues in order to try to avoid clustering based
on potential stalk domains. We clustered those excised sequences into homologous sequence
cluster groups using blastp all against all with an E-value threshold of 0.001, requiring a cov-
erage threshold of 85% and an identity threshold of 25% [16]. For each cluster we calculated
the reliability by averaging the random forest prediction scores of the proteins per cluster. We
sorted the resulting clusters by average prediction score as well as sequences per cluster. We
further investigated the 24 cluster groups with at least 5 homologous sequences.
To investigate the potential function of these sequence clusters, we chose one representative
protein per cluster. To do so we aligned the N-terminal sequences per cluster and manually se-
lected one representative sequence per cluster, which was used for the following investigations.
For each representative sequence we searched the whole UniProtKB with Jackhmmer using the
HMMER website (https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer) to find domain fami-
lies related to the sequence clusters [17]. For cluster 5 we found a distant related stalk domain
overlapping with the C-terminus of the representatives sequences, we trimmed off the sequence
with the domain annotation and continued with the N-terminal sequence.
The structure for each representative sequence was predicted with AlphaFold2 using the Google
colab repository provided by DeepMind (https://colab.research.google.com/github/deepmind/
alphafold/blob/main/notebooks/AlphaFold.ipynb) [11]. Based on the predicted structure we
selected the domain boundaries and cut the structure as well as sequence of each cluster ac-
cordingly (Suppl. Table S2). In most cases, we cut off disordered regions. In single cases, for
cluster 4, we optimized the structure by cutting off a stalk domain-like C-terminal to focus on the
potential adhesive domain and rerun the AlphaFold structure prediction. For cluster 1 and 17,
we extended the sequence to include the whole domain.
To assess the quality of the models, AlphaFold stores the pLDDT confidence in the B-factor field
of the output PDB files, which were used to colour the structure models by quality using Pymol
[26]. To find out more about the function of the clusters, we searched with the predicted structure
models, optimizised to the domain boundaries, for similar structures in the PDB database using
DALI [46].
We created a HMM from the sequences per cluster based on the detected domains using hmm-
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build [17]. With these HMMs we searched against the metagenomic MGnify (release 2019_05),
UniProt Reference Proteomes and UniProtKB (release 2021_01) databases for homologous se-
quences using an domain E-value threshold of 0.01 [19, 20]. From the UniProt website the Re-
trieve ID/Mapping tool was used to collect the organisms information to the UniProtKB matches.

Data availability
The AlphaFold structure model as well as the Random Forest prediction results for the Firmi-
cutes and Actinobacteria Reference Proteomes can be found in an institutional repository of the
University of Cambridge (https://doi.org/10.17863/CAM.82322) [47]. We provide a GitHub
repository (https://github.com/VivianMonzon/FAL_prediction), which includes the training data
set and the code to run the Random Forest based FA-like protein prediction on a sequence of
interest as well as a colab notebook (https://colab.research.google.com/github/VivianMonzon/
FAL_prediction/blob/main/Colab/ML_FA_prediction.ipynb).
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