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Abstract
Since their development, social media has grown as a source of information and has
a significant impact on opinion formation. Individuals interact with others and content
via social media platforms in a variety of ways but it remains unclear how decision
making and associated neural processes are impacted by the online sharing of
informational content, from factual to fabricated. Here, we use EEG to estimate
dynamic reconfigurations of brain networks and probe the neural changes underlying
opinion change (or formation) within individuals interacting with a simulated social
media platform. Our findings indicate that the individuals who changed their opinions
are characterized by less frequent network reconfigurations while those who did not
change their opinions tend to have more flexible brain networks with frequent
reconfigurations. The nature of these frequent network configurations suggests a
fundamentally different thought process between intervals in which individuals are
easily influenced by social media and those in which they are not. We also show that
these reconfigurations are distinct to the brain dynamics during an in-person
discussion with strangers on the same content. Together, these findings suggest that
brain network reconfigurations may not only be diagnostic to the informational
context but also the underlying opinion formation.

Author Summary
Distinctive neural underpinnings of opinion formation and change during in-person
and online social interactions are not well understood. Here, we analyze EEG
recordings of the participants interacting with a simulated social media platform and
during an in-person discussion using a network-based analysis approach. We show
that the structure of network reconfigurations during these interactions is diagnostic
of the opinion change and the context in which information was received.
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Introduction
Decision making is the internal process by which information is reduced to a
categorical and actionable proposition (for review, see Gold & Shadlen, 2007). In the
brain, the decision making process has been described as a non-linear,
context-dependent process that requires a variety of brain areas to receive and
interpret information (e.g., sensory), establish value of this information, and then,
based on prior experience and motivation, use a decision variable to produce the
proposition and subsequently act (Fellows, 2004). One context that is currently and
almost ubiquitously used as a source of information is social media, the suite of
interactive online technologies that have become a mainstay of not only our
everyday interactions but also current events and global happenings (Westerman et.
al., 2014). Because of the ubiquitous nature of social media, the unbridled spread of
information through it (Yoo, et. al. 2016), and the potentially negative consequences
of it (Keles et. al., 2020), it is important to understand how it shapes our thoughts,
influences our opinions, and impacts our future actions.

The neurological processes underlying the formation or changing of opinions due to
social media exposure have been studied from the perspective of the presence and
nature of biased content, and the way in which others interact with the information
(e.g, likes, comments, retweets, etc.). Prior neuroscience work has specifically
studied the effect of social influence on opinion formation and opinion change within
the social media environment, where a network of brain regions including the
striatum, orbitofrontal cortex, and temporoparietal junction appear to have a critical
role in this decision making process (Cascio et al., 2015; Casado-Aranda et al.,
2020; Sherman et al., 2016; Baek et al.,2021; Nakao et al., 2016; Falk et al., 2012;
Falk & Scholz, 2018; Kappes et al., 2020; Izuma & Adolphs, 2013; Li et al., 2019;
Klucharev et al., 2011). Specifically, the neural mechanism of opinion change due to
social media use has been shown to integrate brain areas of the valuation, social
pain/exclusion, and mentalizing systems which include the ventro-medial prefrontal
cortex (VMPFC), striatum, medial prefrontal cortex (mPFC), dorsomedial prefrontal
cortex (DMPFC), temporo-parietal junction (TPJ), posterior cingulate (PCC), medial
tegmental gyrus (MTG), and anterior cingulate (ACC) (Cascio et al., 2015; Baek et
al.,2021; Kappes et al., 2020; Falk et al., 2012). Other work has suggested that the
popularity of content (Sherman et al., 2016) and the valence of the content plays a
significant role in swaying opinion on these platforms (Baek et al., 2021). Due to the
opportunity social media affords in rapidly disseminating information throughout the
globe, it also creates an interesting glimpse into the complex human decision making
process that impacts our everyday lives (Schmälzle et. al., 2017). Indeed, with the
intensity and speed in which information spreads in this media convolved with the
global scale, the contextual impact on decisions derived from platforms like these
have had demonstrably profound impacts on society as a whole (Spinney, 2017).

Despite the understanding of the importance of these platforms in forming our
decisions, it is still unclear how brain networks composed of regions, perhaps those
associated with social media informational processing and influence, interact to
produce opinion change. Importantly, it is also unclear how this process may be
unique to brain processes underlying in-person interaction and free discussion.
Network neuroscience provides a variety of tools to understand the complex network
properties of the brain and has proven successful in describing a variety of behaviors
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(e.g., Bassett and Sporns, 2017 or Betzel and Bassett, 2017). For example, the rate
at which networks within the brain rapidly reconfigure to support cognition has been
found to be highly predictive of a variety of cognitive processes. Dynamic community
detection, a technique used to distill complex connectivity patterns into time-varying
labels of communities (i.e., clusters of nodes) has been successful in capturing
variability in a variety of behaviors in fMRI studies primarily, but has also been used
for understanding band-specific EEG connectivity patterns (e.g., Garcia et al., 2020).
Here, we have investigated the rapid fluctuations in network connectivity while
individuals are exposed to an interactive social media platform containing factual and
fake content attempting to simulate the real-world experience of social media and
relate this to changes in opinions after exposure to this content, as we hypothesize
that the flexible dynamics within the brain may be associated with complex decision
making behind opinion change. Importantly, we provide a comparison to in-person
discussion which allows us to disentangle the unique neural properties of this
process. Our results provide preliminary evidence of unique neural features marking
the cognitive processes supporting decision-making prompted by digital stimuli on a
social media platform.

Results
We have investigated the neural correlates of complex decision making during online
social media and in-person social interactions and assessed opinion change with
questionnaires that asked participants for their opinions on several topical issues.
Opinions on these topical issues were gathered before and after the interaction with
a simulated social media platform and after in-person discussion of the content
(Figure 1, see also Richard et. al., 2021). EEG was concurrently collected (see
Supplemental Material Figure S1 for electrode montage) during the social media and
in-person interactions and was analyzed to understand the rapid reconfigurations in
EEG-derived brain connectivity matrices during the complex process of information
gathering and opinion change and/or formation. Here, we used dynamic community
detection, an algorithm that has previously been shown to successfully capture brain
network reconfigurations associated with the variability in human behavior across a
variety of tasks. We extended these findings by inspecting the temporal dynamics of
node-pair community affiliations and comparing this metric between those that
changed their opinions and those that did not across these social interaction
conditions.

Characterizing individuals by opinion change after social media and in-person
interactions
Figure 1A shows the experimental timeline, where, after arriving in the laboratory,
subjects were presented with questionnaires that asked their opinions on three
particular real-world topical issues, namely: (i) travel based on social awareness and
volunteerism, (ii) punishment after a murder trial, and (iii) decisions to vaccinate from
disease before and after interaction with the social media platform as well as after
the in-person discussion segment. EEG was recorded during these two interactive
conditions, i.e., social media interaction and in-person discussion. These interactive
conditions differed in several ways. First, during the social media interaction interval,
subjects were seated in front of a monitor and were allowed to freely scroll through
the simulated social media platform and interact (e.g., “like”, “share” posts) for no
more than 2 hours. During the in-person discussion segment, subjects (3-4 at a time)
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were seated in another room where an experimenter moderated the conversation
and asked subjects to discuss the topics for no more than 20 minutes. Based on
changes of the questionnaire answers before and after each interaction we grouped
the intervals into two segments, those intervals in which subjects changed their
opinions (“change”, C) and those that did not (“no change”, NC), and, for shorthand,
we use the acronyms Cs and NCs for groups that change and did not change their
opinion after social media interaction. For in-person discussion, we similarly use the
shorthand Ci and NCi. Figure 1B-D shows the distribution of responses and the rate
of opinion change across participants (N = 132) following both conditions. First, with
the social media platform, a majority of individuals did not change their opinion from
the initial survey (N = 75); however, a total of 57 individuals changed their opinions,
with the most individuals changing their opinion in the murder trial scenario (N = 39).
A small proportion of the individuals (N = 10) changed their opinions in two scenarios
and were most likely to change their opinion on the travel and murder scenarios
(Figure 1B). Figure 1C displays a more granular visualization of responses for each
scenario, and similar to the design of the experiment which presented equally
positive and negative coverage on an issue, there was a large diversity in opinion
changes, validating the well-balanced affectual information within the platform. For
example, even with the vaccination scenario, there were some individuals who
changed their opinion toward not vaccinating after the social media interaction.
Importantly, as well, is the fact that the change in prison time in the murder trial
contributed to the largest changes, with 24 subjects changing the prison time after
the social media interaction and 24 changing from guilty to not guilty. This was
significant for both the social media interaction ( (1, N =132)=7.75, p = .005) andχ2

in-person discussion segments ( (1, N =132)=48.48, p < .0001).χ2

We observed some similarities and differences in opinion change after in-person
discussion. As shown in Figure 1D-E, the overwhelming majority of individuals
(73.5%, N = 97) did not change their opinion, suggesting that the in-person
discussion was less likely to affect one’s opinion than social media interaction;
however, the order of the questionnaires was the same across all individuals. This
limitation does not allow us to disentangle the effect questionnaire-order may have
on our effects. Similar to the social media interaction condition, though, changes in
opinion mostly occurred within the murder trial condition, accounting for 80% of the
total changes in opinion after the discussion. Very few individuals changed their
opinion in more than one scenario, accounting for only 8.6% of the total opinion
change after the discussion.

Finally, to characterize the opinion change, overall, we estimated transition
probabilities as presented in Figure 1F. These transition probabilities can give us a
glimpse into the individual subjects that did and did not change their opinions
following the social media interaction and in-person interactive conditions. As is
shown in Figure 1F, 56.8% of the subjects did not change their responses after social
media interaction, 74.7% of these individuals also kept their responses after
in-person discussion. From the 43.2% of the subjects that changed their responses
after the social media interaction, 28.1% changed their responses after in-person
discussion as well. Importantly, of all the participants, 73.5% did not change their
opinion after in-person discussion. Due to the distribution of those that did not
change their opinion and those that did, we next compared groups of subjects who
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did and did not change their opinions. Critically, if an individual changed their opinion
in any of the scenarios, they were included in the “change” (C) group and only those
who did not change their opinion in any scenario were included in the “no change”
group (NC) for all subsequent analyses.

Figure 1: Experimental setup and opinion change quantification. (A) Timeline of
the experimental design. The opinion changes of each subject were assessed
through the application of a questionnaire before and after the subject interaction
with the social media platform, in addition to in-person discussion. (B,D) Histogram
of opinion change by scenario in social media interaction and in-person discussion,
respectively. 0, 1, and 2 indicate the number of scenarios on which individuals
change their opinion. Color legend indicates the scenario. (C,E) Pie charts indicating
the direction of opinion change for all of the changes observed after the social media
platform and in-person interactions. (F) Flow chart indicating the fraction of
participants that changed their opinion from the social media platform (Cs) interaction
to in-person discussion (Ci).
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Nodal Flexibility distinguishes individuals who changed their opinion following
social media interaction

We hypothesized that complex decision making and information processing requires
the reconfiguration of underlying brain networks. To test this hypothesis, we applied
a dynamic community detection analysis to the EEG data and probed how network
reconfigurations are associated with opinion change by directly comparing the
intervals in which subjects did and did not change their opinion (Figure 2). This was
accomplished in several steps. First, the dynamic community structure requires an
estimate of the underlying statistical dependency between nodes. Here, we
estimated this statistical dependence, or functional connectivity of the EEG, using
the pairwise weighted phase lag index (wPLI) separately for commonly studied EEG
oscillations (i.e., delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta (21-30), and
gamma (25-40) bands) in non-overlapping 10 sec time windows. This data-driven
approach to functional connectivity exploits phase-based relationships within the
data, yielding connectivity matrices that are reliable and less susceptible to some
expected artifacts without requiring parameterization (Hardmeier et. al., 2014). Once
calculated, the wPLI matrices were used to determine the community structure by
modularity maximization using a Louvain algorithm (see Methods). This distilled the
connectivity time evolving matrices into an average of 315 (SD = 102) time windows
of community labels that represent the band-specific community affiliations of EEG
sensors across time.
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Figure 2: Flexibility differences between the intervals in which individuals did
and did not change their opinion. (A-E) Topographic plots of each frequency band
showing the difference of the mean flexibility between the two groups such that
positive values (in yellow) indicate an increased flexibility for those that did not
change their opinions. The black tokens (orbs, x’s) indicate sensors with statistically
significant differences in flexibility between the two groups as found via a bootstrap
procedure (see Methods). On the right, we show representative bootstrap
distributions of the mean flexibility of the sensors marked by an x for the two intervals
in purple (NC, no change) and green (C, change).

From these affiliations (i.e., distilled connectivity matrices), we estimated sensor
(node) flexibility, which is a measure of how much each node changes its affiliation
across time between the opinion change groups. Since the data is not balanced
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between the groups, we employed a bootstrap procedure to estimate the
distributions of mean flexibility for each of the EEG sensors for both groups (“change
vs no change”, see Methods), and subsequently compared the node flexibility when
individuals changed their opinion (or did not). We observed that those intervals in
which individuals did not change their opinion showed significant increases in node
flexibility in the alpha, beta, and gamma bands and a decrease in flexibility in the
theta band. Figure 2 shows the node flexibility differences, yellow (and blue) shades
indicate an increased flexibility on the group without change (and with change). An
increased node flexibility in those with no change in opinions was observed in the
higher frequency bands, with beta band flexibility showing significant differences
(bootstrap analysis, ) for sensors F8, F4, Fp1 and T5, T5 in the gamma𝑝 < 0. 05
band, and C4 in the alpha band. In contrast, the theta band presents a statistically
significant decrease in node flexibility in those that did not change their opinion
compared to those who did sensors P4 and Fp2, differing from the other frequency
bands. These results indicate that the dynamics of the
synchronization-desynchronization processes, as measured by the wPLI, plays an
important role in the underlying mechanism of opinion change whilst interacting with
social media.

Assessing dynamic changes in community structure
We found that the node flexibility is informative as a neural marker of opinion
change; however, it does not provide much information of the dynamic changes in
the community structure to further understand the underlying network
reconfigurations leading to opinion change. For example, one could ask how the
links of the flexible nodes evolve with time and which other nodes couple and
decouple with them more often during the task. In this regard, allegiance is a
commonly used metric that captures the fraction of time two nodes share the same
community affiliation, 0 for a pair of nodes that never share a community and 1 for
nodes that are always in the same community. We estimated node allegiances for
individuals with and without a change in opinion and found that they do not
differentiate the two groups (for further details, see Supplemental Materials and
Figure S2). However, it is also unclear from allegiances alone whether more
fine-grained temporal dynamics of network reconfigurations might differentiate these
groups. To more finely understand the temporal evolution of node-pair affiliation
change, we computed a new metric called intermittence.

Like allegiance, intermittence is a measure of the interaction between two nodes of
the network; however, while allegiance captures the fraction of time two nodes
belong to the same community, intermittence tracks how frequently the two nodes
change their affiliation from the same to different and vice versa. In other words,
intermittence differentiates two nodes’ affiliation changes that occur in rapid bursts
from affiliation changes that occur in longer-term after more static community
affiliation similarity. Together, we may inspect allegiance as the likelihood for two
nodes to be in the same community, and intermittence can inform us of the temporal
nature of this relationship.
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Figure 3: Comparing intermittence and allegiance in opinion change. (A)
Scatter plots of the relationship between intermittence and allegiance for each
frequency band of interest, where purple (or green) indicates channels of individuals
who did not (and did) change their opinion (C vs NC). Dashed vertical lines indicate
the middle value of allegiance, to visually anchor the plots. (B) Bootstrapped
difference (no change-change; NC-C) plots of intermittence of the intervals for
different threshold levels of allegiance for each frequency band of interest. Shaded
region is 95% confidence interval and the vertical dashed line indicates the midpoint
of allegiance to visually anchor the midpoint. (C) Allegiance thresholds that survive
statistical comparison of opinion change for each frequency band.

Intermittence differentiates changes in opinion
In exploring the intermittence metric, we first directly compare the allegiance and
intermittence metrics for both groups (Figure 3A). We observe for lower frequency
bands (e.g., delta) that intermittence is more variable, spanning a wider range of
values than higher frequency bands while the opposite is true for allegiance.
Specifically for the delta band, values of allegiance larger than 0.6 are less frequent
than observed for the other frequency bands and values of intermittence above 0.1
are more frequent than for the beta and gamma bands. On the other hand,
inspecting higher frequency oscillations, we see intermittence is rarely above 0.05
but allegiance spans the entire range of possible values. This suggests that there is
a higher propensity for more static network reconfigurations at higher frequencies
than lower frequencies (e.g., compare Figure 3A gamma and delta). Importantly, with
intermittence estimation, simply by its calculation, allegiance imposes an inherent
restriction on its range of possible values. The maximum value of intermittence for a
given pair of nodes is limited by the value of allegiance between those nodes, as the
reader should understand that there cannot be more dynamic changes between
nodes if they are rarely ever in the same community. Thus, given our observation
that higher frequency bands (beta, gamma) had higher allegiance (that could allow
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for higher intermittence) in addition to the observed lower average intermittence, the
finding that higher frequency bands show are even more striking, suggesting higher
frequencies display very static network dynamics across groups.

In Figure 3B, we show the differences between the means in intermittence of the two
groups. Critically, mean bootstrap distributions were calculated using only those
points with associated allegiance values higher than the allegiance threshold
indicated on the x-axis. The shaded area in Figure 3B represents a 95% confidence
interval and was obtained by a bootstrap procedure with 10,000 samples (see
Methods). To summarize the statistical comparison between those intervals with or
without opinion change at each of the frequency bands, Figure 3C displays those
allegiance thresholds that display the statistical difference ( ).𝑝 < 0. 05

Comparison of the mean intermittence between the two groups shows that the
intermittence metric can delineate between those in which there was or was not a
change in opinion in each frequency band, but to a highly variable extent. For
example, our results show that within the delta band, we observed statistically
significant differences for the allegiance threshold range between 0.29 and 0.43 and
a few other allegiance values accounting for more than 14% of the possible
allegiance range values. For the theta band, there were minimal differences between
groups observed, accounting for only 2.8% of the total allegiance range. Within the
alpha band, we observed, again, minimal differences between the groups accounting
for less than 5% of allegiance thresholds; importantly, they were observed mostly at
the lowest allegiance thresholds. The most robust differences between opinion
change groups were observed within the beta and gamma bands. For the beta band,
we observed significant differences between the groups in approximately 43% of the
allegiance threshold range. The lowest p-values we observed between those without
a change in opinion (M = 0.018 a.u.) and those with a change in opinion (M = 0.017
a.u.) was for the allegiance threshold of 0.12 ( ). The largest range𝑝 =  2. 7 × 10−5

of allegiance values with significant differences between the two groups were
observed in the gamma band, accounting for nearly 65% of the entire allegiance
range. The lowest p-value was observed at an allegiance threshold of 0.29 for no
opinion change (M = 0.018 a.u.) and opinion change (M = 0.016 a.u.

) intervals. Thus, it appears that intermittence successfully𝑝 =  3. 6 × 10−6

delineates those individuals with and without a change in opinion whilst interacting
with social media, but does so in a frequency band-specific manner where the beta
and gamma bands show the most robust differences as indicated by a wide range of
allegiance thresholds for which the two groups have a significant difference in
intermittence. In other words, intermittence can be used to characterize opinion
change in band-specific oscillatory schemes, but it is still unclear whether this is a
general opinion change phenomenon or if this may be specific to the context in
which information is received (i.e., social media platform). Thus, we next explored
how these findings could differ in a different context, specifically during in-person
discussion.
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Figure 4: Social Media and in-person discussion comparison. (A-E) Mean wPLI
temporal coefficient of variation (CoV) for each frequency band including (A)
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delta,(B) theta, (C) alpha, (D) beta, and (E) gamma. Each panel presents results for
the intervals with no opinion change (NC: purple-red) and with a change in opinion
(C: blue-green) interacting with the social media platform (Cs,NCs) and during
in-person discussion (Ci,NCi). Statistical differences were estimated through a
bootstrap procedure (1000 replicas with N=30 each) with significant results denoted
with asterisks and are shown both within group and across social interaction
contexts (* , ** ).𝑝 < 0. 05 𝑝 < 0. 005

Social media interaction and in-person discussion differences

To determine the specificity of our findings to the social interaction context (e.g.,
social media vs in-person discussion), we sought to determine if network dynamics
between these opinion change groups have similar structure during social media and
in-person interactions. The in-person discussion was completed after the social
media interaction and was conducted by an experimenter who acted as a moderator
and prompted individuals to discuss the topics which were probed by the surveys
(see Methods). To estimate the difference in neural dynamics between these two
social interaction contexts, we calculated the coefficient of variation (CoV) of the time
series of the wPLI during social media interaction and in-person discussion. This
procedure is a computationally inexpensive and complementary approach to capture
dynamic reconfiguration of the synchronous patterns estimated from the EEG
recordings that we expect to be similarly sensitive to the intermittence metric but on
the node-level, like flexibility.

Similar to the EEG measurements during the social media interaction, the statistical
dependencies between nodes were estimated with the wPLI metric, and then, in a
pairwise fashion, the temporal coefficient of variation (temporal CoV) was calculated
for each of the node-pairs. Finally, to aggregate the data for each subject, the mean
temporal CoV for each pair was estimated, and for each subject, we calculated the
mean across all the nodes. This procedure results in a single mean temporal CoV for
each session and finally the group distribution and statistical comparisons were
completed with a bootstrap procedure for each social context and opinion change (or
no change) and are summarized in Figure 4. We observed clear group differences in
the gamma band (p = 0.031) during the social media interaction, in accordance with
the results obtained from the intermittence analysis. For those subjects who were
more likely to change their opinion, we also observed a difference in context, where
we observed more variability (temporal CoV) in the social media interaction than in
the in-person discussion (p < 0.05). Moreover, within the delta and alpha bands, we
observed this context effect, too, where temporal CoV of connectivity in the social
media intervals was significantly higher than in the in-person interaction contexts.
Interestingly and divergent from the previous findings, we observed no significant
differences in the beta and theta bands.

Summary of Findings
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Figure 5: Summarizing the dynamics to opinion change In aggregate, we
summarize the findings along three axes; (i) one in which the network metrics
describe the spatiotemporal resolution of the network dynamics (y-axis, left), (ii) an
axis meant to describe the effects within the estimated frequency bands, interpreted
as short to long range communication within the brain (x-axis, bottom), and finally,
(iii) a proxy for flexibility that estimates the overall dynamics across the scalp as
measured with coefficient of variation (y-axis, right). Network metrics on the left
y-axis are sorted by increasing ability to resolve the nature of the spatial specificity
and temporal dynamics. On the x-axis frequencies are sorted in descending order in
terms of communication range where gamma is sensitive to changes in proximal
neural ensembles and delta to long range communication. Purple hues should be
associated with the right axis and teal hues are meant to be associated with the axis
on the left.

In aggregate, we have observed varying levels of sensitivity in the estimated metrics,
attempting to describe the neural dynamics underlying social context and opinion
change influences within the brain. Due to the complex nature of the findings, the
differences in context and the cognitive processes driving our findings, we aggregate
and visualize our results in Figure 5. We present our findings along 2 continuous
axes and 1 static axis. First, we showed results for 3 different network metrics:
flexibility, or the propensity of a node to change its affiliation across time, allegiance,
or the pairwise likelihood that two nodes are in the same community, and
intermittence, or the rate at which pair-wise affiliation change (1 = constant and
consistent change, 0 = no change). These three metrics are ordered as a function of
how spatio-temporally resolved they are. Flexibility, a node-wise metric, does not
differentiate between pairwise similarity and/or differences in community affiliation.
Allegiance, on the other hand, is a pairwise measurement of “similarity” but does not
take into account how node-pairs change their affiliation across time. So, these three
metrics are on an axis representing low spatio-temporal resolution at the origin and
high temporal and spatial resolution at the top portion of the graph. As our results
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indicate, these metrics must be interpreted within the context of the specificity in
frequency band, where each band has been associated with a variety of cognitive
phenomena, but also represents communication across long distances (e.g., delta)
or short (e.g., gamma). For the least spatially resolved metric, flexibility, the
differences between the change and no-change groups was most robust within the
beta band, a frequency band often implicated in motor behavior (e.g., Stancák &
Pfurtscheller, 1996), but also in signaling the “status quo” (Engel & Fries, 2010).
While allegiance, by itself, did not reveal significant pairwise changes (see
Supplemental Figure S2), considering intermittence at varying levels of allegiance
revealed the most robust changes across the groups at each frequency band of
interest. Interestingly, intermittence, by itself, was most robust in the highest
frequency bands. Together, these results indicate a specificity to these metrics but a
robustness of the intermittence metric, suggesting a unique importance to the nature
in which networks reconfigure in a complex decision making task, like opinion
formation and/or change.

As a final summary, we also inspected a proxy for these dynamic metrics, specifically
inspecting the mean coefficient of variation (CoV) across time of the estimated
functional connectivity (wPLI). Here, a high CoV is associated with a fluctuating
connectivity and may be associated with how often a node changes it’s affiliation
across time. Indeed, we see that this metric can capture the variance associated with
changing one’s mind after the social media interaction, but only within the gamma
band. Interestingly, this metric also captured variability in context (social media vs
in-person discussion) within the alpha and delta bands, suggesting perhaps a
different mechanism by which context shapes the way we encode information and
make decisions.

Discussion

Decision making is a complex internal process by which information is consumed
and an action is executed, requiring the support of many interacting brain networks
composed of a variety of functionally diverse regions within the brain (for review, see
Fellows, 2004; Rilling and Sanfey, 2011; Wallace and Hofmann, 2021). The present
study investigated the impact of informational context and its type on decision
processes, specifically how social media and in-person discussion influences one’s
malleability to change one’s mind on “highly shared” content in online platforms. Our
findings have shown a large portion of individuals (e.g., 5 out of 6 in vaccination
hesitancy) were susceptible to content displayed to them on a simulated social
media platform while the same individuals were not susceptible to freeform and
in-person discussions on the same topics. Using dynamic community detection (see
Garcia et al., 2018 for a review) and estimating the temporal dynamics of network
reconfigurations that occurred across several frequency bands, we found that the
flexibility of specific sensors across the scalp could discriminate between those
individuals who were and were not influenced by content presented in a simulated
social media platform (Fig. 2). Importantly, those with no change in their opinions
showed higher flexibility in sensors located within the frontal and posterior regions for
the higher frequency bands (i.e., alpha, beta, gamma) whereas, the opposite effect is
observed in theta band where higher flexibility was observed for those in which there
was a change in opinion within prefrontal and posterior sensors (Fig. 2). Our results
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extended the flexibility findings to show that the vigor in which the network changes
occurred was driving this effect with a new metric we call intermittence. Interestingly,
intermittence within the higher frequency bands was more robustly diagnostic for
different opinionators than lower frequency bands (Fig. 3). Moreover, while our
results did not show substantial change in opinion after in-person discussion (only 35
people changed their mind after in-person discussion), we also did not find any of the
observed brain network reconfiguration changes during the in-person interaction
(Fig. 4).

Network flexibility as a marker of opinion change

The so-called flexibility metric has been used to describe the rate of motor learning
(Bassett et al., 2011; Bassett et al., 2013; Gerraty et al., 2018; Li et al., 2019; Reddy
et al., 2018), has been associated with multitasking (Alavash et al., 2015; Shafiei et
al., 2020; Thomas Yeo et al., 2015), pattern recognition (Telesford et al., 2016),
language comprehension (Chai et al., 2016), thought rumination (Han et al., 2020;
Lydon-Staley et al., 2019), adaptations to new stimuli or stress (Paban et al., 2019;
Betzel et al., 2017), and working memory (Braun et al., 2015; Lauharatanahirun et al.
2020). Our findings support the increasing evidence suggesting the importance of
the rapid reconfigurations of brain networks in cognition, and specifically, here,
decision making as it pertains to opinion change and/or formation (for review, see
Shine and Poldrack, 2018). We used flexibility as the probability a particular node
(i.e. sensor) changes its affiliation across time. Previous studies show that this type
of network-defined flexibility in frontal brain regions is associated with faster motor
learning (Basset et al., 2011), psychological resilience (Paban et al., 2019), chronic
behavior change in addiction (Cooper et. al., 2019), enhanced working memory
performance (Braun et al., 2015) -- which is also moderated by sleep (see
Lauharatinahirun et al., 2020) -- and even improved adaptive problem solving skills
(Barbey et al., 2018). Given the diversity in these behavioral findings and our
extension to even social media influence, it is reasonable to attempt to understand
how this metric may be highly sensitive to a variety of complex cognitive
phenomena.

Indeed, the neuroscientific journey that has led to the importance of flexibility in
neural behavior may be understood from several different perspectives, and it is
currently thought to be the foundation to the human’s unique ability to rapidly adapt
to task demands. First, it should be noted that we have estimated network-based
flexibility via a mathematically defined dynamic network approach (see Methods) and
on its surface it should not be confused with concepts such as cognitive flexibility
(Uddin, 2020) and neural flexibility (Yin & Kaiser, 2021), but it can be complementary
to both (Mattar et al., 2016). Cognitive flexibility refers to the executive functions that
allow an individual to rapidly transition from task to task and has been found to be
associated with improved performance in a variety of tasks and also is reduced in
certain pathologies (Hanes et. al., 1995). In contrast, neural flexibility, while often
used in relation to cognitive flexibility, refers to the brain’s ability to rapidly shift
across tasks and be recruited for a variety of activities (Uddin, 2020). Dynamics in
the neural signal have previously been discarded as noise, but are now accepted as
describing valuable variability in human behavior and even psychopathology (Uddin,
2020). Our findings not only add to this growing literature and support the network
science approaches that can successfully capture this variability, but specifically, we
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have used dynamic community detection, an extension of the network science
approach of functional modularity, that is a theoretically derived (but individualistic)
technique to probe dynamic network changes via a distillation of dynamic
connectivity matrices (Garcia et al., 2018). Our research adds to the general nature
of this technique to capture the broadly cognitive, distributed and adaptive nature of
the brain, the primary criteria for flexible brain regions and networks (Yin & Kaiser
2021). Here, we speculate that the process in which we are rigid in our opinions
shows faster network reorganizations due to an effort to accommodate conflicting
information with previously held beliefs. Another possible explanation can be
different social media browsing strategies that led them to be exposed to more
content for a smaller amount of time, being less prone to reevaluate previous beliefs,
while increasing the sensory input. Future studies may be designed to evaluate
these options.

Intermittent and persistent network reconfigurations are diagnostic of opinion
change

Our results expand on the pervasiveness of the flexibility results. We show that, at
least for complex, high-level decision making, not only the rapidly evolving network
reconfigurations (as measured by flexibility) are important but also the fast dynamics
of intermittent linking (same nodes linking in an on-off fashion, a.k.a. intermittence)
between modules are more diagnostic of social media influence on one's opinion.
Dynamic community detection has proved to be an effective tool to explore temporal
patterns in systems represented by complex networks and a key aspect for this
framework is the determination of the temporal resolution of the dynamic
communities (Telesford et. al. 2016). A systematic way to determine a temporal
resolution which leads to behaviorally relevant network description of the brain can
be achieved by modularity maximization (Newman, M E J, 2006). Based on the
dynamic communities obtained through the modularity maximization algorithm, we
explore the temporal patterns of network links and how community allegiances of the
network nodes change across time.

A critical feature of our findings is the fact that the temporal profiles of the estimated
community structure is more diagnostic (e.g., intermittence) than simply the fact that
dynamic network reconfigurations occur (Fig. 3). The temporal profile of interactions
has a fundamental importance on a wide range of phenomena such as the dynamics
of neuron populations that lead to seizures (Jirsa et. al. 2014,
Rungratsameetaweemana et al, 2021), weather models and turbulent systems such
as the Lorenz attractor (Ruelle 1976) and the many synchronization phenomena in
which many units share the same temporal profile (Pikovsky et. al. 2001; Strogatz,
2000). From the point of view of dynamical systems, processes of opinion spreading
have been extensively studied using models such as the Voter (Holley and Liggett,
1975) and Majority rule models (Krapivsky & Redner, 2003), suggesting a complex
interactive scheme that gives rise to opinion formation and change. Interestingly,
recent findings suggest that information sharing and spreading occurs at a faster
pace in social media platforms than in-person social contacts and explores the
effects of these two time scales in a consensus formation model (Ding et. al., 2018).
With our approach, we explore this opinion change phenomenon at an individual
level using the complex networks framework to identify connectivity patterns of EEG
data that are diagnostic to an opinion change process during a social media
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interaction. In aggregate, these findings coupled with our current results, suggest
similar operations at both the neural level and population level. Recent findings
suggest the brain (as well as other complex systems) operate outside of the
boundaries of a particular spatial scale (Cocchi et. al., 2017). Perhaps, our results
are the consequence of information spread, whether within a single brain or across
human interactions and are suggestive of a scale-free phenomenon (Mahmoodi et.
al., 2017). Indeed, there are many complex systems that express this scale-free
behavior; however, it should be noted that recent findings have even shown that this
universal principle is flexible (Bansal et. al. 2021).

Network reconfigurations and oscillatory specificity suggest a complex
operation within the brain in opinion change

Despite the increasing efforts to understand the neural processes that underlie
deliberation and decision making, much on this subject remains unclear; however,
important findings from the literature in EEG oscillations, evidence accumulation,
valuation and identity may play critical roles in understanding our results. First, we
have shown that intermittence effects are more robust at higher frequencies than
lower frequencies in the observable EEG oscillatory scheme (e.g., gamma vs theta).
We also show that the delta band is most diagnostic for social interaction context.
Oscillations emanating from the brain, as measured with EEG, are a consequence of
short- and long-range connections within the brain that interact to give rise to
cognitive capabilities (Buzsáki 2006). Importantly, the slower oscillations mostly
represent the coordination of distal regions within cortex and sometimes even
modulate higher frequency oscillations within the brain (e.g., Bragin et al., 1995;
Chrobak and Buzsaki, 1998; Leopold et al., 2003; Schroeder and Lakatos, 2009;
Canolty et al., 2006; Buzsáki and Wang, 2012; more recent ones). In other words,
oscillatory activity and the associated cognitive functions rely on the global
coordination of local processes (Cavanaugh & Frank, 2014;
Rungratsameetaweemana et al., 2018). Within this context, it would suggest that
our results could be a consequence of both, where the most critical “intermittence”
effects were observed within the delta and gamma bands, “flexibility” effects were
most critical in the beta band, and social interaction context was most observed
within the delta band.

This broad coordination of neural communication in the brain gives rise to specific
cognitive functions, and our results could reflect several different operations at play.
First, our findings show the most significant results in flexibility within the beta band.
The beta band is often associated with motor behavior (Khanna & Carmena, 2015),
but has also been proposed to carry a more prominent role in maintaining motor or
cognitive states (Engel & Fries, 2010); interestingly, beta band dynamics have even
been associated with the accumulation of evidence in the sensorimotor network in a
vibrotactile decision task (Haegens et. al. 2011). Moreover, fMRI and transcranial
magnetic stimulation (TMS) studies have extensively implicated the so-called value
system in decision making, a system that is engaged when weighing the potential
benefits of a particular decision route. Critical components of this system are thought
to include the ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS).
These regions, within social contexts, have been linked to susceptibility to social
influence from peers (for a comprehensive review see Falk & Scholz, 2018). More
broadly in EEG, several frequency bands have been implicated in decision making
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(e.g., Nakao et. al. 2019), but often show some specificity in frontal and parietal
regions (e.g., Golnar-Nik et. al. 2019). Interestingly, a recent study inspecting long
range temporal correlations (LRTC) in EEG recordings has shown a relationship
between theta to alpha bands and the abstract concept of self identity and identity
confusion (Sugimura et. al. 2021). Due to the highly complex decision, speculation,
and potential action, our results most likely indicate a complex coordination and
reconfiguration of networks within the brain, across several frequency bands and
reflect coordination of these processes including evidence accumulation, valuation
and even internal reflection on identity. Future research is needed to disentangle
these processes and influences on decision making context, especially within the
social media and in-person social contexts studied here.

General properties of network reconfigurations within the brain

A somewhat unintuitive result is the finding that those individuals with more rapid
network reconfigurations are associated with a lack of change in opinion. We
previously speculated that this may be due to an effort to accommodate conflicting
information with previously held beliefs or mark different social media browsing
strategies that led them to be exposed to more content for a smaller amount of time.
We hope that future research can differentiate between these potential mechanisms,
but when considering our findings within the ubiquitous nature of these network
reconfigurations and associations with behavior, we believe it may be a more
generalized process than previously understood. For example, let us consider a
recent theory of general intelligence based on how we navigate spatially through the
world (Hawkins et al., 2019). This theory is consistent with several principles that
include generalized machinery of the brain (Mountcastle, V., 1978) to navigate
throughout whatever real (or abstract) space, prepare predictions (Rao & Ballard,
1999), and compare to some reference frame built from previous experiences (Lewis
et al., 2019). It could be the case that metrics derived to estimate the dynamic
reconfigurations within the brain are targeting this rapid navigation through possible
“observational” (sensorial) interpretations and possible actions, a foundational
element to not only critically think about a topic but also is fundamental to general
intelligence. Given that, we hypothesize that those that are highly flexible are also
navigating through this abstract sensory, perception, decision, and/or action space
more rigorously than those that are not.

Methodological considerations and future directions

Within this manuscript, we prioritized the ecological validity of the experimentation
rather than distinct cognitive constructs. While the latter presents a very interesting
avenue of scientific pursuit, introducing controlled conditions or other contrived
experimental manipulations could potentially modify behavior in unexpected ways.
Indeed, often with ecologically valid research, there is a limitation in understanding
all elements that have contributed to our findings. For example, each subject was
able to navigate freely through the social media content, and there was no control on
how much time was spent with the content, so variable input may be a potential
confound; however, traditional laboratory-based experiments are not only defined by
their highly precise neural findings, they could also shape the responses in
unnaturalistic ways. Similar to the trends in social (and general) neuroscience
studies (Osborne-Crowley, 2020; Pawel et. al. 2019), we believe that our results
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should be complimented by more laboratory-specific effects. In other words, our
results don't take into account any content-specific processes or differences on
individual social media interaction, nor do they consider the controversial and
emotional aspects of the different scenarios presented for the subjects.

Within this experiment and the design that prioritized ecological validity, there are
also several considerations in the experimental measurements (e.g. EEG) and the
specific type of opinion change that was observed of note for future experimentation.
For example, the type of EEG connectivity that was deployed in this analysis,
prioritized the phase-based statistical dependencies (for an additional related results,
see Figure S5 in Supplemental Materials) within a priori and somewhat narrowly
defined bands of interest, following traditional techniques and to compare to the wide
literature in oscillatory action as measured with EEG. Moreover, as is common with
EEG analyses, there is a potential that multiple sources may contribute to the
effects, as the spatial information from EEG is known to suffer from volume
conduction. The high temporal resolution of EEG, however, creates an opportunity to
extend dynamic network measurements to more rapidly evolving network
reconfigurations (as compared with fMRI) and in a less constrained manner (e.g., at
a desk, in a group discussion rather than scanner), the inherent limitations in the
spatial resolution and the potential contributions to the signal should be considered
in future studies. While the combination of flexibility, intermittence, and coefficient of
variation analyses converge to a clear importance of the dynamic network
reconfigurations within the brain and their relationship with opinion change, different
modules within the brain may be sensitive to different cognitive phenomena. Future
research may extend these findings to other cognitive actions that contribute to this
complex decision, perhaps even further disentangling the sub-elements of this
process including perception, weighing alternatives, belief consistency, social
influence, etc. Moreover, within our study, the overwhelming contribution to the type
of opinion change involves determining the consequences of a murder trial, of which,
little information is directly known to the subject and created a wide range of
responses (see also Figure S4 in Supplemental Materials). The generalizability of
these findings is yet to be known; perhaps, even, the non-personal nature of these
results have a substantial impact on the findings. This might be an aspect of the
findings to be assessed with further experimentation.

Within this context, our results are merely the first step toward understanding the
dynamic reconfigurations within the brain and how different context and content
interact to give rise to opinion change, highlighting the difference between in-person
discussion and social media interaction. Future studies will investigate the unique
aspects of opinion change that are generalizable beyond the scenarios presented
here, include within-subject condition comparisons to inspect general properties of
opinion change within these two social contexts, and perhaps even understand the
interaction of human biases in their interaction. For example, self-referential opinion
changes may suffer from the interesting optimism bias (e.g., Sharot, 2011), thus
requiring different neural resources than non-self-referential.

Other methodological limitations are related not to experimental design but to the
analytical technique in which we estimated the dynamic network reconfigurations.
Here, we use dynamic community detection (for review, Garcia et al., 2018) to distill
connectivity patterns derived from phase-based statistical dependencies into
communities, or clusters of electrodes and then estimated shifts in communities
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across time. We have previously extended this method to EEG on a limited number
of channels (Garcia et al., 2020), but there are lingering questions on robustness of
the method to varying number of channels, the cognitive aspects the chosen
temporal window might capture, and the parameter search. Future studies may
explore other techniques to capture the processes underlying opinion formation,
change, and generally complex decision making. Moreover, future studies are
needed to understand full contributions to session and subject level variability as well
as disentangle the “intermittence” results as potentially marking different internal
processes while interacting with social media or different strategies deployed for
social media interaction.

Conclusion

The current study used a complex network based framework (dynamic community
detection) to investigate the relationship of brain dynamics during social media
interaction with the opinion change and/or formation processes. Our results indicate
that the rapidly evolving network dynamics in delta, beta and gamma bands are the
markers of influence of social media platform interaction on opinions in a range of
scenarios, such that the slower dynamics is associated with individuals who are
more likely to change their opinion. We also introduced a new metric called
intermittence to assess differences in the observed faster or slower network
dynamics. Estimating the intermittent and persistent network changes (as measured
via intermittence), our results suggest that the functional brain network structure for
opinionators with opinion change also show differences when interacting with social
media platforms compared to in-person discussions. Together, our results suggest
unique decision making operations during social media interaction and represent
trait-like dynamics in individuals that change or not in their opinions.

Methods
Participants

The data was collected from a cohort of 123 healthy participants between the ages
of 18-40 years. Subjects were screened and the ones diagnosed with sleep,
psychiatric, neurological, eating, behavioral (including Attention Deficit Disorder), or
cardio-pulmonary/vascular disorders, uncontrolled blood pressure, heart disease,
HIV+/AIDS, head trauma within the past 5 years, regular use of prescription drugs
that can alter EEG or impair their ability to participate, use of illegal drugs
(recreational and medical marijuana users were not excluded), excessive use of
nicotine, alcohol and/or caffeine, untreated vision or hearing issues, pregnant or
nursing, and inadequate familiarity with the English language were not included. For
more information on the recruiting procedure we refer the reader to (Richard et. al.,
2021). The data acquisition for this study using human participants was reviewed
and approved by Alpha IRB and Air Force Research Laboratory (AFRL). The
participants provided their written informed consent to participate in this study.

The Social Media Platform
This study used an innovative platform known as the Social Media Analytic
Replication Toolkit (SMART). SMART, which was developed by The Intific Division of
Cubic Defense Applications Inc., (CDAI), and allowed users to interact within a
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closed social media environment for experimentation and real-time exercises that
was inspired by Facebook and Twitter. Social media accounts were created for each
of the group participants which allowed the participant to like, share, or retweet posts
as they normally would do on their personal social media accounts. Participant
interactions with SMART were not broadcasted to other group participants’ accounts,
but all other aspects of the platform were meant to make the “feel” of the platform as
realistic as possible. For screen shots of the platform, please see Supplemental
Figure S7.

Procedures
For the experimental timeline and descriptive analysis of behavioral results (e.g.,
opinion change), see Figure 1. Briefly, after arriving in the laboratory, subjects were
presented with questionnaires that asked their opinions on particular real-world
scenarios found commonly on social media platforms. Questionnaires were
presented before and after interaction with the simulated social media platform as
well as after the in-person discussion segment. EEG was recorded during these two
interactive contexts, i.e., social media interaction and in-person discussion. To briefly
describe the procedures, participants were seated in front of a computer after
instrumented with EEG and allowed to freely browse through the 3 scenarios and
interact (e.g., like, share, etc) with the content freely. While the platform contained
4-5 articles that could either skew the opinion of the individual in two different
directions (e.g., to vaccinate or to not vaccinate), there were no restrictions or trials;
however, the social media interaction was limited to 2 hours and the in-person
discussion segment was limited to 20 minutes. The in-person discussion was
administered directly following the completion of the second questionnaire and
participants were directed to a room to discuss each scenario. A research technician
was present and acted as a moderator to ensure that the discussion was efficient
and appropriate and all topics were discussed for approximately 5 minutes. Each
scenario was addressed in the same order for all groups during the discussion
period. Participants were asked the same two questions for each scenario by the
moderator: “What did you decide and why?” and “What, if any, social media posts
influenced your decision?”. When the discussion ended, the participants were
instructed to complete scenario-specific questionnaires one last time before
completing their participation in the study.

Scenarios
Three hypothetical scenarios were presented to the subjects. During each session,
subjects were exposed to the contents of three scenarios. The opinions of each
subject in the scenarios were accessed through questionnaires that were delivered
before and after interaction with a social media simulation software. The following
details the three scenarios analyzed in this study.
Free travel destinations. Within this scenario, subjects could choose between two
locations (Paris, France, or Sulawesi Island, Indonesia) for an all-paid one-week
vacation where each location was vulnerable to different dangers; Paris could have
large protests and sporadic violence and Sulawesi Island had the potential for a
destructive tsunami. Articles presented to the subjects mentioned these dangers and
mentioned how nice the locations were to visit, with equal representation. The
subjects were also given the opportunity to volunteer, in support of the rebuilding
effort following the catastrophic damage; they were also asked how much time they
were willing to dedicate to the rebuilding effort.
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Murder trial. In this scenario, subjects were asked to imagine themselves in the jury
of a trial, which was based on a true story. After receiving information about a case in
which a young female college student was murdered, they were asked whether the
young man accused of murder should be considered guilty or not, and if guilty, the
length of the sentence or death.
Vaccinations. In this scenario the subjects were asked about vaccinating one of two
hypothetical children after the older one started to show development impairments
after being vaccinated. The questionnaire presented only the binary question if the
subject would vaccinate or not their second child, and the online content was equally
for or against vaccinations.

Behavioral metrics
The subjects answered questions about each of the hypothetical scenarios and
opinion changes on the topics of the three scenarios were evaluated to determine
the likelihood of opinion change. Of the three scenarios, the vaccination scenario
was the only completely binary response as the travel and murder scenarios
included followup questions that were not binary. Thus, several steps were
completed to include all three scenarios in the analysis and construct a behavioral
metric of opinion change.

For the three scenarios analyzed in this study, the social media opinion change was
coded as either a 0 (no change) or a 1 (change), indicating a change in opinion
relative to the previously answered questionnaire. In other words, for the social
media interaction, change was measured relative to the first questionnaire and for
the in-person discussion condition, opinion change was assessed relative to the
second questionnaire (completed after social media interaction). Change was coded
as follows: for the travel scenario, a response was considered a change (1) in
opinion if any of the following were true: (i) the subject changed the destination
choice from France to Indonesia or vice versa or (ii) the subject modified their
decision to volunteer. For the murder scenario, a response was considered a change
if any of the following were true, (i) the subject changed their opinion from guilty to
not guilty and vice versa, (ii) the subject changed their opinion on prison time or
punishment. For the vaccination scenario, the responses were either yes or no, so a
response was considered a change if it did not match the previous response. If the
answers are all identical to the previous survey, then the response was coded as a 0,
or no change. The social media opinion change score for each subject was
estimated as the sum of the social media opinion change scores of each individual
scenario and could be 0,1,2, or 3, where a 3 represents a change in every scenario
and 0 in none. Critically, groups were defined as those that did not change their
opinion in any scenario (no change) and those that changed their opinion in at least
1 scenario.

EEG Analysis

Preprocessing
EEG was acquired using the B-Alert R X24 wireless sensor headset (Advanced
Brain Monitoring, Inc., Carlsbad, CA, United States) placed on the subjects before
the subjects interacted with the social media platform. The headset is composed of
20 EEG sensors located according to the International 10–20 montage at Fz, Fp1,
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Fp2, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, O1, O2, Pz, POz, P3, and P4.
Reference sensors were linked and located behind each ear along the mastoid bone
region. The sampling rate was 256 Hz and the signal was filtered through a high
band pass filter at 0.1 Hz and a low band bass, fifth order filter, at 100 Hz. To insure
high quality data was collected, a maximum allowable impedance was set to 40 k .
Next, the data was band-pass filtered within common frequency bands including
delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta (21-30) and gamma (25-40)
using a low order (3) zero-phase forward and reverse digital IIR filter in Matlab
(Mathworks, Inc.).

Temporal Windowing
Temporal windowing is a common procedure in studies of EEG, where it may
capture (1) the temporal scale of a variety of phenomena, (2) may indicate the
specificity and robustness of the chosen temporal window (10s) in relation to the
cognitive phenomenon in question, and (3) lies at the intersection of measurement
sensitivity, environmental noise, and the covert mental events we study.

First, when considering functional connectivity, EEG has been shown to be sensitive
to a variety of task effects (e.g., Nidal & Malik, 2014) but it is also well established
that its feature capture more rapid changes in the brain (Garcia et al., 2020) and
even more stable effects as may be understood with disease models and genetics
(e.g., Smit et al., 2008), spanning a large variety of temporal scales and a variety of
behavior.

Second, in relation to the chosen time window (10s), there’s a large literature that
has sought to understand how temporal windowing choice can affect the ability to
capture differences in relation to trait-based information (or individual differences) as
measured with EEG. For example, previous studies have suggested that graph
metrics, as estimated via connectivity patterns derived from EEG, are susceptible to
bias in the actual value, showing for example, shorter path lengths for shorter
windows (see Fraschini et. al. 2016, compare 2s vs 10s) but more stability above
10s window sizes. More critical to the analyses within this manuscript, however, is
the relative nature of our connectivity matrices as they inform the dynamic
communities that are estimated across time. In comparing the connectivity matrices
of the individuals associated with each behavioral outcome (i.e., change, no
change), there is no reason to believe differential noise or bias in the estimated
connectivity as we are comparing them rather than interpreting, say, the value of the
metric. Moreover, some research has shown an increase in robustness to noise of
connectivity above 5s or so (see Bonita et. al. 2014). Importantly, as well, is that we
use the genLouvain algorithm to estimate communities which has been shown to be
more robust to noise, number of clusters, and number of layers than other algorithms
(Bonita et. al. 2014). Thus, here we have sampled the functional connectivity over a
robust time period with robust methodology.

Despite the evidence supporting our windowed approach, our general philosophy
lies in a narrow interpretation of our results that accounts for the nuances of our
measurement technique, our methodology, the environment (or context), and the
phenomenon in question. For example, often the aforementioned robustness studies
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are either simulated or constructed from resting state data, often trying to understand
the stability of these metrics within an individual or across a population. While this
approach is sound, it should really only be considered within the context of the
resting state events, which are associated with mentalizing (Hein & Singer, 2008).
Critically, as well, we interpret our results with specific frequency bands, where we
assume low frequency band phenomena to be sensitive to long range
communication within the brain and high frequency band effects are capturing
localized and rapid communication within the brain. This has large impacts when
interpreting the window size and the frequency bands that show these effects. For an
extended analysis of different window size, please see Figure S3 in Supplemental.
Importantly, the dynamics in connectivity, overall, can differentiate those that change
and do not change their opinions within the gamma band at windows at 10s and
above.

Functional Connectivity Analysis
To estimate the functional connectivity of the EEG recordings we calculated the
pairwise weighted Phase Lag Index (wPLI) within each frequency band of interest,
which is known to be highly sensitive to linear and nonlinear interactions (Imperatori
et al. 2019). For each sensor, the EEG (already band-wise filtered) was partitioned in

windows with duration 10s. The dynamic changes of this 10 second window𝐿
highlight differences between the two intervals in which subjects did and did not
change their opinion. As has been observed Each time window was used to
calculate a matrix in which each entry accounts for the weighted Phase Lag Index𝐴

𝑖𝑗
(wPLI) (Vinck et al., 2011) for the pair of sensors and , calculated as:𝑖 𝑗

,𝛷 ≡ 𝐸 {ℑ{𝑋}}| |
𝐸 { ℑ{𝑋}| |}

where denotes the expected value and is the imaginary part of the𝐸{.} ℑ{𝑋}
cross-spectrum of the EEG recordings of sensors and . The temporal layers𝑖 𝑗
obtained by the described procedure were then used for the dynamic community
detection analysis described in the next section. Importantly, though, the number of
windows ( ) were variable across subjects, with a mean across subjects of 372𝐿 𝐿
(SD = 100).

Community Detection and Network Dynamics Metrics
While human brain mapping efforts have demonstrated a relationship between
spatial specificity and cognitive functions, techniques rooted in network science
provide a useful framework for characterizing and understanding the spatiotemporal
dynamics of the functional systems subserving cognition (Bassett & Sporns, 2017).
One of the core concepts at the basis of network science is network modularity,
which is the idea that neural units are structurally or functionally connected forming
modules or clusters (Garcia et al., 2018). This organization allows for the system to
perform both local-level exchanges of information, while maintaining system-level
performance. Here, we examine whether a particular node’s propensity to change
communities (i.e., flexibility) was related to change in opinions after interaction with a
social network platform. To measure such changes in network communities during
the interaction with the social media platform, a multilayer community detection
analysis was employed (Bassett et al., 2011; Mucha et al., 2010) on the
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aforementioned wPLI estimates calculated for 10 s non overlapping windows (see
Temporal Windows section above), with each social media interaction session
accounting for 372±100 temporal layers. This method uses a Louvain algorithm to
maximize modularity (Blondel et al., 2008) to define functional communities and is
completed in several steps. First, it relies on two parameters, ɣ and ⍵, so called
structural and temporal parameters of the analysis. We swept the parameter space
from .5-4 for each parameter, subject, and segment and compared the mean
estimated modularity value Q to a shuffled null dataset. We chose a parameter set
that on average produced more than 1 community and was the highest difference in
modularity from the estimated modularity from the shuffled null dataset (see Garcia
et al., 2020; Garcia et al., 2020 for a similar procedure). This resulted in ɣ = 1.1364
and ⍵ = 0.5. Due to the non-deterministic nature of the analysis, the chosen
optimization procedure was repeated 100 times, since the algorithm is susceptible to
multiple solutions (Good et al., 2010). From these multiple iterations, the following
community metrics were computed: (i) flexibility, or proportion of time during which
each node switches to a different community assignment; (ii) allegiance, related to
how long two nodes are connected to each other during the task, and a new
proposed metric (iii) intermittence, defined as how rapidly two nodes connect and
disconnect through communities. Those metrics were calculated for each of the 100
iterations, and our results used the mean value for all the iterations. In more concrete
terms, the flexibility of each node corresponds to the number of instances in which a
node changes community affiliation, , normalized by the total possible number of𝑔
changes that could occur across the layers . In other words, the flexibility of a single𝐿
node , , may be estimated by𝑖 ξ

𝑖

.ξ
𝑖
 =  

𝑔
𝑖

𝐿 − 1

Allegiance is a metric calculated for each pair of nodes and accounts for the
proportion of the total time a pair of nodes belongs to the same community, and is
defined as:

,𝐴𝑙𝑙𝑒𝑔𝑖𝑎𝑛𝑐𝑒
𝑗𝑘

 =  1
𝐿  

𝑡=1

𝐿

∑ δ
𝐶

𝑗
(𝑡)𝐶

𝑘
(𝑡)

where denotes the Kronecker delta and denotes the community whichδ 𝐶
𝑙
(𝑡)

contains the node at time Therefore, equals 1 if the nodes j and k are in𝑙 𝑡.  δ
𝐶

𝑗
(𝑡)𝐶

𝑘
(𝑡)

the same community at time layer t and equals 0 otherwise.

Further, to account for the temporal dynamics of allegiance, we proposed a new
metric, intermittence, which tracks how frequently the two nodes change their
affiliation from the same to different and vice versa. Intermittence is defined as:

𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑐𝑒
𝑗𝑘

 =  1
𝐿−1  

𝑡=1

𝐿−1

∑ δ
𝐶

𝑗
(𝑡)𝐶

𝑘
(𝑡)

[1 −  δ
𝐶

𝑗
(𝑡+1)𝐶

𝑘
(𝑡+1)

] +  δ
𝐶

𝑗
(𝑡+1)𝐶

𝑘
(𝑡+1)

[1 −  δ
𝐶

𝑗
(𝑡)𝐶

𝑘
(𝑡)

].

25

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.12.07.471625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Flexibility, Allegiance, and Intermittence. (A) Example of a community
structure assignment for 8 time layers. (B) Representation for each time layer of the
community structure on (A).

To visualize the concept of intermittence consider the example in Figure 5. First
observe that the allegiance between nodes 1 and 4 is equal to the allegiance of
nodes 2 and 3, however the link between nodes 1 and 4 is present for two large
continuous epochs while the link between nodes 2 and 3 is connected for many short
epochs, this characterizes the intermittence between nodes 2 and 3 as larger than
the intermittence between nodes 1 and 4. Consider now the nodes 5 and 6, both
have the same allegiance with node 1, however since node 6 changes its community
assignment more often, its flexibility is higher than the flexibility of node 5. Observe
that unlike intermittence, flexibility is a property of the node and is not calculated for
individual links of the nodes.
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Statistical comparisons

Two types of statistical comparisons were completed within the manuscript. Primary
comparisons were between two groups, of unequal sizes, individuals who did and
did not change their opinions. Due to the unequal sizes, bootstrap distributions
(Wehrens et. al., 2000) were estimated and used to estimate p-value and 95%
confidence intervals (Figures 2 and 3). For this method, 10,000 drawings (with
replacement) were made within each group (change and no change) for each node
(Figure 2) or across nodes (Figure 3) and means for each 10,000 replicas were
calculated resulting in a distributions of the mean value (e.g., flexibility in Figure 2) or
distributions of differences between groups (e.g., Figure 3B) were estimated. This
process generated bootstrap distributions, from which 95% confidence intervals
were then estimated. For the analysis in Figure 4, we carried out the bootstrap
procedure with the random sorting on the individual level, calculating the CoV for
each of the 1000 replicas with 30 randomly selected individuals each, and estimated
the probability of the differences observed between the two groups for each
condition, and for each group in the two conditions.

Data availability
The raw data supporting the conclusions of this article and code will be made
available by the authors upon request, without undue reservation. Neural metrics
and behavioral change and scripts to reproduce the figures and analyses may be
found in the Supplemental Materials.
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Supplemental Material

EEG sensor position
The EEG recordings were obtained using the B-Alert R X24 wireless sensor headset
(Advanced Brain Monitoring, Inc., Carlsbad, CA, United States), the system has 20
channels and the montage layout is presented in (Figure S1). The reference sensors
were located behind each ear on the mastoid bone. The sample rate was 256 Hz
with a high band pass at 0.1 Hz and a low band bass at 100 Hz.

Figure S1: EEG sensor position. The topo plot shows the sensor montage. The
EEG recording system model used was B-Alert R X24 wireless sensor headset
(Advanced Brain Monitoring, Inc., Carlsbad, CA, United States) with 20 channels.

Node allegiance
To further understand the differences between those that did and did not change
their opinion in terms of network reconfigurations, we explored how the network
nodes, particularly the nodes that showed significant difference in flexibility between
two groups, (significant nodes, Figure 2) changed their functional allegiances.
Allegiance is defined as the fraction of the total time two nodes are in the same
community. First, we calculated the allegiance metric between all the node pairs and
then compared them between two groups. None of the node pairs (including or

37

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.12.07.471625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/


excluding the significant nodes) showed a significant difference between groups.
Moreover, on average, some of the node-pairs showed higher allegiances for those
without a change in opinion while some showed higher allegiances for those who
changed their opinion. In Figure S2, we show average allegiance differences
between two groups. Yellow entries in the matrices represent higher allegiances for
those with no change. In topographical plots we show these differences only for the
significant nodes.

38

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.12.07.471625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/


Figure S2: Node allegiance differences. The matrices show average allegiance
differences between the two groups (no change and change). The topographic plots
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show the mean allegiance differences for sensors which showed significant flexibility
changes between the two groups (as discussed in Figure 2). The links in yellow
(blue) indicate a  higher (lower) allegiance value for the no change(change) group.

Effects of temporal window sizes
To explore the effects of different temporal window sizes we compared the mean
wPLI temporal coefficient of variation (CoV) for the opinionators with and without
opinion change during the social media platform interaction, the results are
summarized in Fig. S3. As a general effect of the increase in the window size we
observe higher values and broader distributions of the mean temporal CoV. The
differences between the two groups captured on the gamma band are present for
temporal windows larger than 10s, indicating that smaller temporal windows do not
capture the temporal scale of the dynamics that reflect the different processes
occurring in the two groups.

40

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.12.07.471625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/


Fig S3: Effects of temporal window sizes. (A-E) Mean wPLI temporal CV for the
those who do not change (purple) opinions and those who do (green) calculated for
different temporal windows (2s, 5s, 10s, 20s, 30s) and bands (A) delta,(B) theta, (C)
alpha, (D) beta, and (E) gamma. Statistical differences were estimated through a
bootstrap procedure and significant results are denoted with an asterisk.

Opinion changes on Scenario 2 time in jail

A considerable amount of subjects (24 subjects) that changed opinions on scenario
2 changed only the time in jail. Since our group division on opinion change binarizes
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this response, a concern that might arise is if just a small change on the time in jail
would classify a subject as having a change in opinion when there actually very little
change (<1 year sentencing change, for example). To address this concern we plot
the distribution of differences of time in jail between questionnaire 1 and 2, this is
shown in Figure S4. All differences observed accounts for at least 10 years which is
a substantial time and was subsequently considered  an opinion change.

Figure S4: Histogram of time in jail changes in scenario 2. Occurrences of
changes on time in jail question after interaction with the social media platform, the
minimum change on time observed was 10 years. For this question, 9 subjects that
changed their answers opted for either ‘death penalty’ or ‘life sentence’ as an answer
in at least one of the two compared questionnaires.

Besides the changes in years in prison for a convicted murder, we also observed 9
subjects that showed opinion changes involving non-numerical values (death penalty
and life sentence), the labels for those options were standardized to avoid
identification of false differences due to typos and differences on capital letters.

Example articles presented to subjects:

As the posts presented to participants were inspired by real articles, below is a
non-exhaustive list of some of content that was linked from the posts, from the travel
scenario:

https://electrek.co/2019/04/09/paris-800-electric-buses/

https://www.audleytravel.com/indonesia/country-guides/sulawesi

https://www.bloomberg.com/news/articles/2019-04-06/yellow-vest-protesters-shift-foc
us-to-paris-business-district

https://www.npr.org/2018/09/28/652489085/strong-quake-hits-along-indonesias-west
ern-sulawesi-island

https://www.express.co.uk/news/world/1110802/france-yellow-vest-protest-paris-riot-
emmanuel-macron
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https://www.nomadicmatt.com/travel-blogs/how-to-spend-5-days-in-paris/

https://www.youtube.com/watch?v=ErFP51JFUX8

https://www.nytimes.com/2019/03/16/world/europe/france-yellow-vests-protest.html

https://www.nytimes.com/2018/10/02/reader-center/donate-indonesia-tsunami-earthq
uake-victims.html

Comparison of link weights using wPLI and PLV

To disentangle the effects of PLV and wPLI, we first inspect the proportion of overlap
at a variety of thresholds across wPLI and PLV. Figure S5 below visually depicts the
proportion of edges that are overlapping after a binarization of the connectivity matrix
for PLV and wPLI. Interestingly, within this dataset, at the extremes of connectivity,
where t is the threshold of PLV and wPLI (t < 0.1 || t > 0.8), PLV and wPLI show very
similar connectivity patterns; however, at the lower range (t > 0.15 && t < 0.6) there
is substantial uniqueness of these connectivity patterns. We conclude that only the
mid-range connectivity values have variable amounts of contribution from the
common source problem, or volume conduction. In the figure below, we plot the
mean, standard deviation, and coefficient of variation across time. For the mean, as
the frequency increases, the overall mean decreases relative to the lower
frequencies, suggesting that higher frequencies are less likely to be ambiguous in
volume conduction effects or the “common sources problem”; however, the mean
wPLI of the lower frequencies (e.g., delta, theta, alpha) is within the range of
ambiguous sources.
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Figure S5: wPLI and PLV differences on the link weights. A Shows the comparison
of wPLI and PLV edges present as we increase the threshold for considering an
edge as present. B-D show, respectively the mean, standard deviation and
coefficient of variation of the wPLI weights for both groups (opinion change and no
change). Albeit the fact that the region of the minima is contained in the mean wPLI
distribution range, the wPLI coefficient of variation shows that the distribution has a
high variance.
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Figure S6: A-C show, respectively the mean, standard deviation and coefficient of
variation of the PLV weights for both groups.

The statistics of the weight distributions calculated based on PLV are presented in
Figure S6, the distributions cover a larger range of values when compared with wPLI
with mean PLV distributed in a range of higher values than wPLI especially for the
higher frequency bands. From these two figures, considering the high overlap
between metrics at the extreme values and the high variability in PLV that, it is
unlikely that volume conduction significantly contributes to our results.
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Figure S7: The platform and general setup. Subjects were presented with curated
online content to elicit decision making processes (left) whilst instrumented with EEG
(middle) and allowed to freely scroll through the content. High level alpha differences
between rest and platform engagement are shown (right).
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