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Abstract9

10

Neural networks of the brain that process visual information have structural properties that differ11

significantly from those of neural networks which are commonly used for visual processing in AI,12

such as Convolutional Neural Networks (CNNs). But it has remained unknown how these structural13

differences are related to network function. We analyze visual processing capabilities of a large-scale14

model for area V1 that arguably provides the most comprehensive accumulation of anatomical and15

neurophysiological data that is currently available. Its network structure turns out to induce a number16

of characteristic visual processing capabilities of the brain, in particular the capability to multiplex17

different visual processing tasks, also on temporally dispersed visual information, with remarkable18

robustness to noise. This V1 model also exhibits a number of characteristic neural coding properties19

of the brain, which provide explanations for its superior noise robustness. Since visual processing in20

the brain is substantially more energy-efficient than implementations of CNNs in common computer21

hardware, such brain-like neural network models are likely to have also an impact on technology: As22

blueprints for visual processing in more energy-efficient neuromorphic hardware.23

Teaser24

A new generation of neural network models based on neurophysiological data can achieve robust multi-25

plexing capabilities.26

1 Introduction27

The comprehensive model (1) for a patch of cortical area V1 in mouse provides an unprecedented window28

into the dynamics of this brain area. We show that it also provides a unique tool for studying brain-29

style visual processing and neural coding. The architecture of V1 exhibits an interesting combination of30
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feedforward and recurrent connectivity: Neurons are distributed over several parallel 2D sheets, commonly31

referred to as layers or laminae in neuroscience. The neurons are recurrently connected, but not randomly32

or in an all-to-all manner. Rather, synaptic connections exist primarily between nearby neurons, both33

within a layer and between layers. Connectivity between layers supports a strong feedforward stream of34

visual information from L4 to L2/3 to L5/6, that is complemented by a host of recurrent loops. The35

dominance of short connections makes it possible to combine in V1 extensive recurrent connectivity with36

a really small total wire length, which is essential for its physical realization.37

The model of (1) integrates besides these anatomical details also a host of neurophysiological data about38

area V1. The point neuron version of this model that we are considering employs generalized leaky39

integrate-and-fire neurons, more precisely GLIF3 neurons. These have in addition to the membrane40

potential two further hidden variables that model slower processes in biological neurons. The large41

diversity of neurons in the brain is reflected in the model of Billeh et al. through the use of 111 different42

types of GLIF3 neuron models that have each been fitted to experimental data in the Allen Brain Atlas (2).43

The original model of (1) is not able to solve nontrivial computing tasks, since its synaptic weights were44

chosen on the basis of sparse experimental data about the mean and variance of synaptic weights. In45

contrast, synaptic weights in the living brain are individually tuned through a host of synaptic plastic-46

ity processes, and these processes induce higher-order correlations between weights that are crucial for47

computing capabilities of the network. At present we do not have enough data about these plasticity48

processes to reproduce them in a model. But we can address the question of what visual processing ca-49

pabilities are supported by the model if synaptic weights are aligned for visual processing tasks through50

stochastic gradient descent. We applied this strategy to 5 different visual processing tasks that have com-51

monly been considered in biological experiments (3, 4, 5, 6, 7, 8). Afterward, our model achieved high52

accuracy simultaneously for all 5 tasks, while working in a biologically realistic sparse firing regime close53

to criticality (9, 10). Surprisingly, its performance level remained in the same high-performance regime54

as the brain, even when we subjected the V1 model to noise in the images and in the network that it55

had not encountered during training. We demonstrate that this out-of-distribution (OOD) generalization56

capability of the V1 model with regard to new perturbations is far superior to that of CNNs. We provide57

an explanation for that through an analysis of neural coding properties of these two types of models:58

Both use high-dimensional neural codes for images. But the neural representation in the model of Billeh59

et al. is more robust because it employs, like the brain (11), a power law for the explained variance in60

higher PCA components that is close to a theoretically optimal compromise between the opposing goals61

to create noise-robust neural codes and to capture many details of visual inputs. In contrast, neural codes62

in CNNs have a different power law which reveals a focus on the latter (12). In addition, we demonstrate63

that the model of Billeh et al. uses preferentially those dimensions of population activity for coding that64

are orthogonal to the largest noise dimensions, like the brain does (3).65

Altogether our results show that the currently available anatomical and neurophysiological data, as66

compiled in (1), provide the basis for a new generation of neural network models for visual processing that67

can multiplex diverse visual processing capabilities in a highly robust manner. Furthermore, these neural68

network models provide new paradigms for neuromorphic computing since they combine multiplexing69

capability and robustness to noise with small total wire length and highly energy-efficient sparse activity.70
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Figure 1 (previous page): V1 model of (1). (A) The model consists of 4 classes of neurons on 5 layers.
It comes together with a model for LGN, that transforms visual inputs into input currents to neurons in the V1
model. The LGN model receives visual input from an oval in the central part of an image (1). (B) The model
contains one excitatory and three inhibitory neuron classes. Each dot denotes the position of a neuron. (C) The
data-based base connection probabilities of (1) depend on the cell class to which the presynaptic (row labels) and
postsynaptic neuron (column labels) belongs. White grid cells denote unknown values. (D) The base connection
probability from (C) is multiplied according to (1)) for any given pair of neurons by an exponentially decaying
factor that depends on the lateral distance between them. Panels A, C, D are reproduced from (1). (E) Spike
outputs of 2 randomly selected neurons from the Billeh et al. model for 10 trials with the same input (a trial of
visual change detection task for natural images), using the noise model of Billeh et al. (F) Same as in (E) but
for the version of the data-based noise model with s = q = 2 that we used as default-noise model during testing.
It causes substantially larger trial-to-trial variability.

2 Results71

2.1 Integration of anatomical and neurophysiological data, as well as data on72

noise in the brain, into a neural network model of area V173

Several decades of intense research efforts have accumulated a large body of knowledge about the anatomy74

and neurophysiology of the visual cortex, especially for primary visual cortex, i.e., for area V1. But it75

has remained unknown to what extent this insight into the structure of V1 can be related to its function.76

We have examined this question for the case of the large-scale model for a patch of V1 in mouse from (1),77

which is arguably the most comprehensive integration of anatomical and neurophysiological data on area78

V1 that is currently available. We will refer to the point neuron version of this model, also in combination79

with our data-based noise model that we discuss below, as the Billeh et al. model.80

The Billeh et al. model is a spatially structured model for a patch of V1 that consists of 51,978 neurons81

from four main classes: One class of excitatory neurons and three classes of inhibitory neurons (Fig. 1B)82

that are distributed over 5 horizontal layers of neurons, labeled as L1, L2/3, L4, L5, and L6. Synaptic83

connections between these neurons are generated from data-based connection probabilities. These are84

defined in terms of base connection probabilities (Fig. 1C) that depend on the class and layer of the85

pre- and postsynaptic neuron. These base connection probabilities are scaled for each concrete pair of86

neurons by an exponentially decaying function of the lateral distance between their somata (Fig. 1D).87

This distance-dependent scaling entails that the vast majority of synaptic connections are between nearby88

neurons, and hence that the total wire length is small. But it also impacts the specific style of computa-89

tional processing in the V1 model: Information is not continuously spread out all over the network as in90

randomly connected recurrent neural networks, that are frequently used as models for neural networks of91

the brain. To transform images and movies into input currents to neurons in this V1 model, we employed92

the preprocessing module (LGN model) of (1), see Fig. 1A. It consists of 17,400 filters that model in a93

qualitative manner the responses of four classes of experimentally observed LGN neurons (sustained ON,94

sustained OFF, transient ON/OFF, and transient OFF/ON), that are further subdivided according to95

preferred temporal frequencies.96

Individual neurons are modeled as point neurons. But in contrast to the customary leaky integrate-and-97

fire (LIF) neuron models, the Billeh model employs 111 different variations of the LIF model, which are98

referred to as generalized leaky integrate-and-fire (GLIF3) neuron models because they have in addition99

to the membrane potential two other internal variables that model after-spike currents in the neuron100

on slower time scales. These 111 different neuron types have been fitted to experimental data for 111101

selected neurons from the neocortex according to the cell database of the Allen Brain Atlas (2).102
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Figure 2: Illustration of the readout convention and the 5 visual processing tasks for which the V1
model was trained. (A) The visual stimuli for all 5 tasks were presented to the LGN model. Separate competing
pools of pyramidal cells on L5 were chosen as readout neurons for each task. (B-E) Schematic diagrams and
timings of 5 visual tasks (Materials and Methods). (B) In the fine orientation discrimination task, the network
received a drifting grating with an orientation very close to 45°, and neurons in the corresponding readout pool
had to fire if the orientation was larger than 45◦. (C) For the image classification task, the network received
a handwritten sample of a digit from 0 to 9 from the MNIST data set, and the corresponding one of the 10
readout pools for this task had to fire stronger than the others (two samples for digits 7 and 6 are shown). (D)
For the visual change detection task, a long sequence of images was presented, with gray screens in between. A
corresponding readout pool had to become active during the response window if the most recent image differed
from the preceding one. Both natural images and static gratings were used. (E) In the evidence accumulation
task, 7 cues were presented sequentially, and after a delay, a corresponding readout pool had to indicate through
stronger firing whether the majority of the cues had been presented on the left or the right.
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Figure 3 (previous page): Analysis of the V1 model after training. (A) Distributions of excitatory
weights (left) and inhibitory weights (right) before and after training. (B) Average distributions of firing rates
for the 5 task before and after training. The distribution is moved through training closer to the one recorded
in V1 (6). (C) Criticality of the Billeh model is analyzed and compared with experimental data. The y-axis
shows estimates of ϵ̂ = 1− m̂, where m̂ is the estimated branching ratio. Estimates of this value in the rat brain
from (13) are reproduced on the left. The Billeh et al. model produces almost the same branching ratio as the
brain, especially after training. Error bars on the left represent 16 to 84% confidence intervals. Error bars on
the right represent SEM over 10 trials. (D) The average accuracy of the V1 model on test data for the 5 tasks,
as function of the amplitude q of quick and the amplitude s of slow noise. The model had been trained just
with the default noise of the Billeh model, which has much less impact on neural activity according to Fig. 1
E, F. The arrow in the back points to the accuracy for the default values s = q = 2 for the data-based noise
model. One sees that the average accuracy for the 5 tasks is also robust to much larger noise amplitudes, e.g. for
s = q = 20, see arrow in front, it still has an average accuracy of 83.07%. The resulting trial-to-trial variability of
neural firing is substantial for this noise level, see (E) for samples of spiking activity of the same 2 neurons as in
Fig. 1E, F for 10 trials with the same network input (image). (F) Average test accuracy across 5 tasks of the V1
model and of control models that lacked salient structural features of the V1 model; plotted as a function of the
number of training epochs (Materials and Methods). Deleting salient structural features of the V1 model caused
substantially slower progress of stochastic gradient descent training.

The neurons in the model of (1) received besides inputs from the LGN model and inputs from other103

neurons also a small noise current. This noise was generated by a single Poisson source for all neurons.104

Hence this noise is highly correlated, but its amplitude is so small that it has only little impact on neural105

firing (Fig. 1E). We used this noise model during training, but instead used a data-based noise model106

during testing. This noise model is based on experimental data from area V1 of the awake mouse (11).107

More precisely, we employed the heavy-tailed distribution of noise amplitudes that arises from their108

experimental data (Fig. S1). Furthermore, we superimposed two forms of noise: A quick form noise with109

scaling factor q where a new value is drawn every ms from this distribution, mimicking for example noise110

that arises from stochastic synaptic release, and a slow form of noise with scaling factor s, where a new111

value is drawn from this heavy-tailed distribution once at the beginning of each trial. The latter mimics112

the well-known dependence of neural responses to the state of the network at the beginning of a trial, see113

e.g. (14). We use the default values s = q = 2 for scaling these two forms of noise. The resulting noise114

model causes a qualitatively similar trial-to-trial variability of network responses in the V1 model as in115

the brain (compare Fig. S2B with Extended Data Fig. 5 of (11)). This trial-to-trial variability is shown116

for 2 sample neurons from the V1 model in Fig. 1F. The resulting Fano factor of spike counts in 10ms117

windows has then a value of 1.46 in the V1 model, which is close to the measured value of 1.39 in mouse118

V1 (15). To get a clearer picture of the noise robustness of the V1 model, we tested its computational119

performance also for substantially larger values of the scaling factors q and s (Fig. 3E).120

2.2 The V1 model can multiplex diverse computations on visual input streams121

Classification of static images is a very popular test for neural networks. But brains have visual processing122

capabilities that go far beyond that, since visual information arrives in natural environments, especially in123

the presence of active vision, in a piecemeal manner. Hence brains need to be able to integrate temporally124

dispersed information, which can in general not be carried out by a feedforward neural network. Therefore125

we tested our model not only on a standard image classification task (handwritten digits from the MNIST126

dataset), but also on 4 tasks that require temporal integration of visual information. The latter ones127

have all been used in mouse experiments, and data on their behavioral performance are available. The 5128

selected tasks are illustrated in Fig. 2: Discrimination of subtle differences in the orientation of drifting129

gratings (Fig. 2B), as in the experiments of (3, 4), a generic image classification task (Fig. 2C), visual130
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change detection tasks for natural images and static gratings (Fig. 2D), as considered in (5, 6), and131

accumulation of temporally dispersed cues on the left and right (Fig. 2E), as considered in (7, 8), some132

of them with slightly longer delay periods.133

In order to test the performance of the V1 model on these tasks, one has to specify a convention for134

extracting the network decision. One frequently used convention, see e.g. (16), is to let an external135

“readout neuron” that receives synaptic input from all neurons in the network produce the network136

decision (Fig. S3C). Obviously, there are no such readout neurons in the brain that receive synaptic137

inputs from all neurons in a patch of the neocortex. Furthermore, this convention is not suitable for138

probing the computational capability of such a network model. Theoretical results ( (17)) imply that139

if the network model is sufficiently large and has diverse units, such readout neurons tend to become140

computationally quite powerful when its weights have been properly trained, and is likely to mask the141

computational contribution of the neural network model itself. Therefore we demanded that in V1142

model, like in the brain (18), projection neurons within the network extract computational results from143

the model, and project them to downstream networks. In particular, a large fraction of pyramidal cells on144

L5 projects to subcortical areas, and can therefore use the computational result of the network to trigger145

a behavioral response. Therefore we selected for each computational task and each possible outcome of146

a network decision a population of 30 excitatory neurons on L5 (Fig. 2A). If this population produced147

more spikes during the response window than competing populations that voted for other outcomes,148

then the outcome for which it “voted” was viewed as the network decision. One important difference to149

the convention of using global readout neurons is that the set of neurons in the network that provides150

synaptic inputs to a neuron within the network is substantially smaller and spatially constrained.151

With the values of synaptic weights provided by (1), the V1 model is incapable of performing any of the152

5 tasks; the accuracy is close to chance level. We then applied stochastic gradient descent, like in (19),153

to the synaptic weights of connections within the V1 model of Billeh et al., and to connections from the154

LGN model to the V1 model. No synaptic connections were added during this process. We also made155

sure that the signs of synaptic weights could not change, i.e., we maintained the validity of Dale’s law. We156

used a loss function for gradient descent that penalized inaccurate decisions by the chosen populations of157

readout neurons, see Materials and Methods. The loss function also penalized biologically unrealistic high158

firing rates. Stochastic gradient descent was implemented through a variation of BPTT, with the help159

of a suitable pseudo derivative for handling the discontinuous dynamics of spiking neurons, as suggested160

by (20). To avoid artifacts arising from gradient descent caused by the hard reset of GLIF3 neurons161

after a spike, we subtracted instead a fixed value from the membrane potential after each spike. Control162

experiments show that this modification causes no significant difference in the spike output of a neuron163

(Fig. S4). We trained the model of Billeh et al. with its original noise model (Fig. 1E), and tested its164

performance with the biologically more realistic noise model of Fig. 1F, and also in the presence of even165

more noise.166

After training, the Billeh et al. model achieved on all 5 tasks a performance that was in the same range167

as reported behavioral data (Table 1), with an average accuracy of 89.10%. This performance did not168

depend on our particular choice of readout neurons in L5: Choosing randomly distributed instead of169

co-located pyramidal cells yielded an average accuracy of 91.56%. As expected, choosing instead global170

linear readout neurons for each task led to a substantially higher accuracy of 97.73%. The differences171

of readout scenarios can explain why behavioral performance lags behind neural coding fidelity in area172

V1 (4) (Supplementary Note 1). Sample computations of the V1 model for each of the 5 tasks are shown173

in Fig. S5-S9.174

The median strength of inhibitory synapses increased from 0.03 to 1.65 pA during training; the median175

weight of excitatory synapses decreased from 2.96 to 1.43 pA, see Fig. 3A, and Fig. S10 for more detailed176

analyses in terms of the neuron types involved. Also, the distribution of neural firing activity was after177

training still close to the measured distribution in the brain, see Fig. 3B, with an average firing rate of 4178
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Hz.179

Experimental data suggest that neural networks of the brain typically operate in a critical regime (21,180

22, 10). We evaluated the criticality of the V1 model by measuring its branching ratio of neural activity,181

as suggested by (10). We found that both the untrained and the trained V1 model operates in a slightly182

subcritical regime. Training moved the model somewhat closer to the critical regime, reaching values of183

the branching ratio that almost perfectly matched recorded data from the brain (Fig. 3C). Hence the V1184

model operated in a dynamic regime that closely matches experimental data.185

Interestingly, when the same training procedure was applied to control models that lacked salient struc-186

tural features of the Billeh et al. model, their task performance advanced substantially slower, see Fig. 3F187

and Supplementary Note 2. This result suggests that the laminar cortical circuitry of V1 supports the188

efficiency of stochastic gradient descent. In particular, slow internal processes within GLIF3 neuron mod-189

els contribute to it because gradients move more effectively through the corresponding slowly changing190

internal variables than through spikes. We propose that the dominance of short connections within and191

between laminae of laminar cortical microcircuits in the brain also supports gradient descent learning,192

since local errors in computation are not immediately and continuously spread out all over the network193

like in randomly connected networks without this characteristic architecture of cortical microcircuits.194

We tested the robustness of the resulting multiplexed visual processing capability of the V1 model after195

training by exposing its neurons to substantially larger amplitudes q and s of the data-based noise model,196

although it had never been exposed to such noise during training (where we only applied the really small197

noise considered in (1)). Surprisingly, it is almost impossible to destroy its multiplexed visual processing198

capability (Fig. 3D): It remained stable even when the amplitudes q and s of quick and slow noise were199

increased by several orders of amplitude.200

2.3 The power spectrum of neural codes provides an explanation for the201

astounding robustness of visual processing by the V1 model202

An explanation for the robustness of visual processing in area V1 has been provided by (11). They verified203

through large-scale recordings from V1 in mouse a theoretically predicted link between noise robustness204

of visual processing and neural codes for images. They found that V1 employs high-dimensional neural205

codes for images, but the power of higher PCA components decays sufficiently fast so that its neural codes206

remain noise-robust. More precisely, they introduced a cross-validated principal component analysis that207

provides unbiased estimates of the stimulus-related variance. They found that the amount of explained208

variance continues to increase as further PCA dimensions were included without saturating below the209

dimensionality (= size) d of the image ensemble. We applied exactly the same analysis to the trained210

model of Billeh et al., and found that the model exhibited the same coding property (Fig. 4A). It was211

also shown in (11) that the explained variance of the nth principal component of network representations212

of images follows a power-law n−α. The exponent α characterizes how fast the variance that is explained213

by higher PCA dimensions decays. Their theoretical analysis predicts that α = 1 + 2/d is the optimal214

value (Fig. 4F), since this value provides a theoretically optimal compromise between encoding too many215

details (leading to smaller values of α), and keeping the neural code robust to perturbations (leading216

to larger values of α). Other theoretical work (23) also predicts that a value of α close to 1 enhances217

under mild conditions downstream generalization performance. In-vivo recordings of (11) found that the218

value of α for primary visual cortex of mouse is actually close to this optimal value α = 1 + 2/d. This219

neural coding property of area V1 in the brain has gained additional interest through the contrasting220

result of (12). They found that feedforward CNNs, which are viewed to be substantially less noise robust221

than the brain, have in fact a smaller α, as predicted by the theory. Hence we wondered whether our222

more brain-like neural network model for visual processing would exhibit a value that is closer to the223
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Figure 4 (previous page): Comparing the eigenspectrum of neural codes in the V1 model of Billeh
et al. with data from the brain, and with CNNs. (A) As in the brain, the cumulative fraction of explained
variance saturates only at the dimension of the input ensemble, here shown for d = 32 and 2,800 natural images.
(B) Eigenspectra of the untrained/trained V1 model of Billeh et al. with an ensemble of 2,800 randomly chosen
natural images, and for mouse V1 (11). (C, D, E) Exponents of the power law for the V1 model of Billeh et
al., for feedforward CNNs, and for recurrent CNNs; all for the same ensemble of 2,800 randomly drawn natural
images. (F) Summary result for exponents of the power law for the brain the V1 model of Billeh et al., and for
CNNs. (G) Eigenspectra of excitatory neurons on different layers of the model by Billeh et al. exhibiting values
close to the measured value from a large sample of neurons in V1. (H) The same for inhibitory neurons. These
exhibit on all layers except L2/3 substantially smaller coding fidelity.

theoretical optimum. We applied for that purpose the same measurement procedure as (11) to the V1224

model, for a set of 2,800 randomly drawn natural images. Figure 4B shows the eigenspectrum of PCA225

component for the model of Billeh et al. before and after training, and also the measured eigenspectrum226

of V1 responses from (11). One sees that the eigenspectrum of the model is already before training quite227

close to that of the brain, and is moved by training even closer. The resulting exponent α of the power228

law (Fig. 4C) is for the model somewhat higher than in the brain. Fig. 4F, G, H suggest that this is229

largely due to the contributions of inhibitory neurons. They are generally found to have less precise230

neural codes for sensory stimuli, and consistent with that, their eigenspectra decayed substantially faster231

in the V1 model.232

We have also reproduced the result of (12) that feedforward CNN has a substantially smaller value of α233

(Fig. 4D) and found that the recurrent CNN model of (24), which also achieves very high accuracy for234

image classification, has an even smaller value of α (Fig. 4E). Altogether our results imply that the V1235

model has, unlike CNNs, similar neural coding properties as area V1 in the brain. Furthermore, these236

can be linked according to the theory of (11) to its remarkable noise robustness.237

2.4 Comparing noise robustness and OOD generalization of the V1 model238

and CNNs239

Our preceding analyses of neural coding in the V1 model of Billeh et al. and CNNs suggest that the240

former is more noise-robust. Since it is hard to compare their robustness to noise within the networks with241

that of CNNs, because their computational units are so different, we compared instead their robustness242

to noise in the visual input, concretely to Gaussian pixel noise that was added to handwritten digits from243

the MNIST dataset. We used Gaussian noise with mean 0 and different SD. We first trained each type244

of neural network on the original dataset without noise, and then tested their classification performance245

on images with noise, see Fig. 5A for samples. Fig. 5B shows that the classification performance of the246

V1 model is substantially more robust to the added noise during testing, as predicted by the preceding247

analysis of the different neural coding strategies of the V1 model and CNNs.248

Since neither of these networks had been trained with the noisy images for which they were tested, we249

are analyzing here a particular OOD (out-of-distribution) generalization capability of the V1 model and250

of CNNs. Fig. 5C demonstrates that even if CNNs are trained for a particular noise statistics, they do251

not perform well if they are tested on images with a different SD of Gaussian noise. In contrast, the V1252

model exhibited perfect OOD generalization in this respect. Also, the remarkable robustness of the V1253

model to noise within the network (Fig. 3D), which had not been present during training, can be viewed254

as an OOD generalization capability.255
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Figure 5: Robustness of the V1 model and of CNNs to noise in images. (A) Samples of handwritten
MNIST digits with Gaussian noise drawn independently from N (0, SD) for each pixel, for different values of the
SD. (B) While the V1 model never quite reaches the peak performance of the CNNs, it tolerates noise with fairly
high SD, whereas the performance of feedforward (FF)-CNNs and recurrent (R)-CNNs is substantially degraded
even by noise with small SD. (C) Even when CNNs are trained on images with a particular noise statistics (SD),
they do not generalize well to test images with a different value of SD. Furthermore, they do not achieve for SD
between 1 and 10 the same noise robustness as the V1 model even when they were trained on images with that
type of noise.
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2.5 Neural coding dimensions for visual inputs are in the trained V1 model256

largely orthogonal to noise, like in the brain257

A further explanation for robust coding capabilities of the brain was provided by experimental data of (3).258

They reported that dimensions in which differences between visual stimuli were encoded in the brain were259

nearly orthogonal to the largest noise mode, which therefore had little effect on coding fidelity. We carried260

out the same analysis for the V1 model, using the same visual stimuli (moving gratings with orientation261

differences that were close to the perception threshold). The definition of the discriminability index d′,262

according to (3) a proposed measure for the fidelity of neural population coding, is illustrated in Fig. 6A.263

Neural population responses rA(t) and rB(t) to two stimuli A and B form two distributions (ellipses).264

PLS (partial least square) analysis projects them onto a subspace where they become most distinct.265

The discriminability d′ is defined as the separation, ∆µ, of the two distributions along the dimension266

orthogonal to the optimal boundary (green line) for classifying stimuli in this subspace, divided by the267

SD of each distribution along this dimension.268

The eigenvalues of the noise covariance matrix are plotted in Fig. 6B as function of the number of269

neurons that are sampled in the V1 model. We found that also in the V1 model the projection of the270

signal difference ∆µ onto the eigenvectors for the largest noise eigenvalues is relatively small (Fig. 6C).271

Furthermore, compared with the untrained Billeh model, training of this model moved the signaling272

dimensions to become more orthogonal to the largest noise dimension, see Fig. 6D. The projection of273

(d′)2 on an eigenvector can be interpreted as the signal-to-noise ratio because it is the ratio of the projected274

signal difference and noise eigenvalue (Materials and Methods).275

It had been argued in (3) that the amount of visual information that is encoded in area V1 reaches276

a ceiling due to noise correlations. This result appeared to contradict the results of (11). A possible277

explanation of this discrepancy was offered in (4): They conjectured that the seemingly limited coding278

capability of V1 could be explained by the relatively small number of up to 1,300 neurons from which279

simultaneous recordings had been carried out in (3). They suggested that the apparent “ceiling” would280

rise if one records from more neurons. We tested this hypothesis in the V1 model of Billeh et al., and281

found that indeed the corresponding measurement d′ for the total amount of encoded information keeps282

increasing, although at a somewhat slower rate, when the number of neurons from which one records in283

the model rises from 1,300 to 51,978, see Fig. 6E.284
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Figure 6: Analyses of relations between signaling and noise dimensions in the V1 model, and of
the impact of noise correlations when one considers larger numbers of neurons. (A) Schematic of the
calculation of the discriminability index d′ according to (3). (B) The 5 largest eigenvalues λβ (β = 1, 2, · · · , 5) of
the noise covariance matrix in the trained V1 model increase linearly with the number of sampled neurons. (C)
Neural coding dimensions (∆µ) in the trained V1 model were nearly orthogonal to the dominant eigenvectors of
the noise covariance matrix, e⃗α, invariant to neuron numbers. (D) Training moved the neural coding dimensions
so that they became more orthogonal to the dominant noise dimensions. (E) The squared discriminability index
(d′)2 kept increasing when applied to more neurons om the V1 model. d′ values were normalized by those
obtained for trial-shuffled data (averaged across 1 s). Shaded areas in (B, D, E) and error bars in (C) represent
the standard error of mean (SEM) over 100 trials.
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3 Discussion285

We have demonstrated that the neural network model of (1), which arguably provides the largest cur-286

rently available accumulation of anatomical and neurophysiological data on area V1 in the mouse brain,287

provides not only a window into brain dynamics, but also into visual processing capabilities and neural288

coding properties that are entailed by these data. CNNs are currently in AI one of the most commonly289

considered types of neural networks for visual processing. They were also inspired by some aspects of290

visual processing in the brain, especially the existence of simple and complex cells in area V1. But a291

closer look shows that they differ from V1 in the brain in almost all other respects: With regard to their292

computational units (artificial neurons in CNNs versus spiking neurons in the brain), the diversity of their293

units (very few simple units versus a large diversity of neurons with different temporal dynamics), their294

large-scale architecture (usually feedforward, versus recurrent with laminar structure), their small-scale295

architecture (very simple network motifs versus a complex combination of feedforward and recurrent296

processing in cortical microcircuits), and total wire length (almost quadratic versus just linear growth297

with the number of processing neurons). But V1 in the brain also differs from CNNs with regard to298

two important visual processing capabilities: The brain can multiplex strategies for solving diverse visual299

tasks within the same network, in particular also tasks that require integration of sequentially arriving300

visual information. In addition, visual processing in the brain is very noise-robust, also to new types301

of noise (OOD generalization). We have shown here that the previously listed fundamental differences302

between the structure of V1 in the brain and CNNs are causally related to these two superior visual303

processing capabilities of the brain: The V1 model of (1), that integrates these structural features of V1304

in the brain, is able to multiplex robust visual processing.305

Since we can reproduce now these two important functional capabilities of area V1 in a model, we have306

a new research platform at our disposal for studying how neural coding properties of the brain emerge307

from its anatomical and neurophysiological features, and how they are related to its visual processing308

capabilities. We have demonstrated here the feasibility of this new research strategy by applying to the309

V1 model, an analysis of its neural coding that had already been used successfully for elucidating neural310

codes for images in area V1 of the brain: We analyzed the eigenspectrum of the explained variance of311

principal components of its neural codes for images. We found that the listed structural features of V1312

in the brain do in fact induce a salient feature of its neural coding strategy: The V1 model exhibits a313

similar power law for neural codes of images as the brain. In contrast, CNNs have a power law with314

a substantially slower decay of the eigenspectrum. According to the theoretical analysis of (11), this315

implies that neural codes in CNNs are less noise-robust. Our V1 model also demonstrates that a further316

salient aspect of neural coding in area V1 of the brain results from its anatomical and neurophysiological317

details: According to (3) about 90% of the noise fluctuations in area V1 of the brain are constrained to318

dimensions of the population activity that are orthogonal to noise dimensions. We found that this is in319

fact an emergent property of the V1 model of (1).320

On a more general level, we have shown that the V1 model of (1) can be seen as the first prototype of a321

new generation of neural network models for visual processing that capture substantially more features of322

brain processing than CNNs. Further work is needed to tease apart the functional implications of each of323

its structural features, and to port similar advanced brain-like visual processing capabilities into simpler324

neural network models. Often one uses instead of data-based models for neural networks of the brain325

randomly connected recurrent networks of strongly simplified neuron models. In our experience, neural326

coding and computational properties of recurrent neural networks vary substantially in dependence of327

their connectivity structure and neuron models. This highlights the need to test brain-like features not328

only in abstract models, but also in neural network models that integrate our available knowledge about329

the actual structure of these neural networks in the brain.330

We propose that our method can also be applied to investigate how anatomical and neurophysiological331
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details of interconnected higher and lower brain areas carry out distributed computations, in particular332

how higher cortical areas enhance visual processing capabilities of V1. A substantial body of anatomical333

and neurophysiological data on higher cortical areas and their connectivity to V1 is currently available334

for that, see e.g. (6, 25, 26). We expect that deficits in visual processing capabilities of the V1 model,335

such as limited spatial integration of image features and a relatively short working memory time span,336

will disappear when the V1 model is combined with models of higher brain areas.337

The analysis of neural coding in the V1 model has produced a number of predictions for future biological338

experiments. In particular, we have shown in Fig. 6E that correlated noise reduces the coding fidelity of339

the network, but does not produce an a-priori bound for its sensory discrimination capability (this had340

already been hypothesized by (4)). A further prediction of our model is that the PCA eigenspectrum341

of neural codes for inhibitory neurons does not obey a power law for higher dimensions, see Fig. 4H.342

Finally, the values of excitatory synaptic weights in V1 are predicted to generally shrink through training343

(Fig. 3A left), while inhibitory weights are predicted to become stronger (Fig. 3A right).344

Visual processing in the brain exhibits also with regard to two aspects of physical implementations sub-345

stantial advantages over CNNs: Most synaptic connections in V1 are between nearby units, which is346

essential for an efficient physical realization of synaptic connections in neuromorphic hardware. This347

architectural feature is also likely to support faster learning (Fig. 3F). In addition, computations are348

carried out in the V1 model through event-based processing with very sparse firing activity. This com-349

puting regime is not only very energy efficient, but it also supports computations on tasks where temporal350

aspects play an important role, because it allows to let time represent itself in network computations.351

Hence, our analysis of a neural network model for area V1 of the brain paves the way for substantially352

more energy-efficient neuromorphic implementations of visual processing (27).353

4 Materials and Methods354

4.1 Neuron models355

We based our study on the “core” part of the point-neuron version of the realistic V1 model introduced356

by (1). To make it gradient-friendly, we replaced the hard reset of membrane potential after a spike357

emerges with the reduction of membrane potential zj(t)vth, where zj(t) = 1 when neuron j fires at time358

t and zj(t) = 0 otherwise. vth is the firing threshold of membrane potential. This causes no significant359

change in the neural response (Fig. S4). We simulated each trial for 600ms. The dynamics of the modified360

GLIF3 model was defined as361

vj(t+ δt) = αvj(t) +
1− ατ

C

(
Iej (t+ 1) +

∑
m

Imj (t+ 1) + gEL + Isynj (t)

)
− zj(t)vth

zj(t) = H (vj(t)− vth)

Iej (t) =
∑
i

W in
ji xi(t) + qKquick

j (t) + sKslow
j ,

(1)

where C represents the neuron capacitance, EL the resting membrane potential, Ie the external current,362

Isyn the synaptic current, g the membrane conductance, and vth the spiking threshold. W in
ji is the363

synaptic weight from LGN neuron i to V1 neuron j. The scales of the quick noise Kquick
j (t) and the slow364

noise Kslow
j to neuron j are q = 2 and s = 2, respectively, unless otherwise stated. Kj was randomly365

drawn from the empirical noise distribution which will be elaborated on later. The decay factor α is366

given by e−δt/τ , where τ is the membrane time constant. δt denotes the discrete-time step size, which367
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is set to 1ms in our simulations. H denotes the Heaviside step function. To introduce a simple model368

of neuronal refractoriness, we further assumed that zj(t) is fixed to 0 after each spike of neuron j for a369

short refractory period depending on the neuron type. The after-spike current Im(t) was modeled as370

Im(t+ δt) = fmIm(t) + z(t)δIm; m = 1, . . . , Nasc, (2)

where the multiplicative constant fm = exp (−kmδt) and an additive constant, δIm. In our study, m = 1371

or 2. Neuron parameters have been fitted to experimental data from 111 selected neurons according to372

the cell database of the Allen Brain Atlas (2), see (28, 1), including neuron capacity C, conductance373

g, resting potential EL, the length of the refractory period, as well as amplitudes δIm and decay time374

constants km of two types of after-spike currents, m = 1, 2.375

4.2 Synaptic inputs376

The Billeh et al. model specifies the connection probability between neurons, based on experimental data.377

The base connection probability for any pair of neurons from the 17 cell classes is provided in (1) by a378

table (reproduced in Fig. 1C); white grid cells denote unknown values. The entries in this table are based379

on measured frequencies of synaptic connections for neurons at maximal 75µm horizontal inter-somatic380

distance. This base connection probability was scaled by an exponentially decaying factor in terms of381

the horizontal distance of the somata of the two neurons (Fig. 1D). This distance-dependent scaling is382

also based on statistical data from experiments (leaving aside finer details of connection probabilities).383

The synaptic delay was spread in [1, 4] ms, which was extracted from the Fig. 4E of (1) and converted384

to integers as the integration step is 1ms.385

The postsynaptic current of neuron j was defined by the following dynamics (1):

Isynj (t+ δt) = e
− δt

τsyn Isynj (t) + δte
− δt

τsyn Crise
j (t) (3)

Crise
j (t+ δt) = e

− δt
τsyn Crise

j (t) +
∑
i

W rec
ji zi(t)

e

τsyn
, (4)

where τsyn is the synaptic time constant, W rec
ji is the recurrent input connection weight from neuron i to386

j, and zi is the spike of presynaptic neuron i. The τsyn constants depend on neuron types of pre- and387

postsynaptic neurons (1).388

4.3 Initial conditions389

The initial conditions of spikes and membrane potentials were zero unless stated otherwise. The initial390

conditions of Win and Wrec were given by the values in (1) unless stated otherwise.391

4.4 Data-driven noise model392

The noise currents Kquick
j (t) and Kslow

j in Eq. 1 were randomly drawn from an empirical noise dis-393

tribution. The quick noise Kquick
j (t) was drawn independently for all neurons in every 1ms; the slow394

noise Kslow
j was drawn independently for all neurons once 600ms. The empirical noise distribution395

(Fig. S1) was from the additive noise decoded from experimental data of mice response to 2,800 nature396

images (11) (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_397

cortex_in_response_to_2_800_natural_images/6845348). The decoding method was cross-validation398
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principal component analysis (cvPCA) (11) which will be elaborated later. It measures the reliable vari-399

ance of stimulus-related dimensions, excluding trial-to-trial variability from unrelated cognitive and/or400

behavioral variables or noise. We collected the variability (additive noise) to form the empirical noise401

distribution. We refer to the methods and supplementary materials of (11) for a detailed mathematical402

analysis of this method.403

4.5 Readout populations404

By default we employed 15 readout populations in the V1 model, whose firing activity during the response405

window encoded the network decisions for the 5 visual processing tasks. Each population consisted of 30406

randomly selected excitatory neurons in layer 5, located within a sphere of a radius of 55µm, with some407

distance between these spheres for different readout populations (Fig. S3A). The results were not sensitive408

to the number of neurons in each population (19). We also considered the case where the neurons in these409

readout populations were randomly distributed in L5 (Fig. S3B), and the case where each population was410

replaced by global linear readout neurons which received synaptic inputs from all neurons with activity411

(Z) in the V1 model, i.e. Yglobal = WreadoutZ+B, B is the bias (Fig. S3C).412

4.6 Visual processing tasks413

We designed details of these 5 tasks to be as close as possible to corresponding biological experiments414

while keeping them as simple as possible. Only for the image classification task (MNIST) there exist no415

corresponding mouse experiments.416

LGN model. The visual stimuli were preprocessed by the LGN model (Fig. 2A) according to (1) (it417

is actually meant to model preprocessing by the retina and LGN in a qualitative manner). This LGN418

model consists of 17,400 spatiotemporal filters that model responses of LGN neurons in mouse to visual419

stimuli (29). Each filter produces a positive output that is interpreted as firing rates of a corresponding420

LGN neurons.421

According to the requirements of this LGN model, each visual input pixel was first converted to gray-scale422

and scaled into an interval [−Int, Int], Int > 0. The output of the LGN model was injected into the V1423

model as external currents, i.e.,424

Isti = W in · LGN(GInt), (5)

where GInt represents images scaled into [−Int, Int] for Int = 2.425

Fine orientation discrimination task. In mouse experiments, mice were trained to distinguish orien-426

tation of drifting grating stimuli (3, 4). The stimuli were presented for 750 ms or longer. To reproduce427

this task under the limitations of GPU memory, we input drifting grating to the V1 model through the428

LGN model for 100 ms (Fig. 2B). As in (4), stimuli were sinusoidal drifting gratings (spatial frequency,429

0.05 cycles per degree, drifting rate, 2 Hz). Both in the training and testing processes, the orientation430

was uniformly drawn from [43, 47]◦ (i.e., 45±2) with the precision of 0.1◦. The orientation difference was431

the same as in (4). The initial phase was randomly sampled. The simulation sequence included 50-ms432

delay, 100-ms drifting gratings, and 50-ms response window in order.433

In the response window, we defined the mean firing rate of readout population as434

rreadout =
1

Tresp ·Nreadout

Tresp∑
t=1

Nreadout∑
j=1

zj(t), (6)
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where the sum over j is over the Nreadout = 30 readout neurons and the sum over t is over the time435

length of response window Tresp = 50 ms. If r > r0 = 0.01, then this reported a network decision that436

the orientation was larger than 45◦. Otherwise, it reported that the orientation was smaller than 45◦.437

Image classification task. To demonstrate that the V1 model is also able to classify images, we included438

the task to classify handwritten digits from 0 to 9 from the MNIST dataset (Fig. 2C). The timing of439

input images and response windows was the same as in the preceding task. The task was to decide which440

digit was denoted by the handwritten image (two samples for 7 and 6 are shown in Fig. 2C). Each of the441

10 readout populations for this task was assigned to one of the 10 digits. The network decision was taken442

to be that digit for which the readout population fired most strongly during the response window.443

Visual change detection task with natural images. In mouse experiments (30, 6), mice were444

trained to perform the visual change detection task with natural images. A sequence of static natural445

images (250 ms), interleaved by short phases (500 ms) of gray screens, was presented as visual input;446

mice had to report whether the most recently presented image was the same as the previously presented447

one. To reproduce this task under the limitations of GPU memory, we presented natural images for448

100ms each, with the gray delays between them lasting for 200ms (Fig. 2D). Note that the first image449

was presented after 50ms. All images were selected from a set of 40 randomly chosen images from the450

ImageNet dataset (31). The probability that the next image differed from the preceding one was set to451

50%. In case of a changed image identity, the model had to report within a time window of 50ms length452

that started 150ms after image onset (response window). If the mean firing rate of the readout population453

in the response window rreadout > r0, it reported a network decision that the image had changed. The454

computation of the V1 model on this task has been further analyzed in (19).455

Visual change detection task with drifting gratings. We also replaced the natural images above456

with static gratings which have different orientations and kept the input sequence the same (Fig. 2D).457

The setting of the static grating is the same as in the fine orientation discrimination task except it is458

static. The changing probability of orientation is 50%; the orientation of static gratings was uniformly459

drawn in [120, 150] (i.e., 135± 15) with the precision of 0.1◦.460

Evidence accumulation task. A hallmark of cognitive computations in the brain is the capability to461

go beyond a purely reactive mode: to integrate diverse sensory cues over time, and to wait until the right462

moment arrives for an action. A large number of experiments in neuroscience analyze neural coding after463

learning such tasks (see e.g., (7, 8)). We considered the same task that was studied in the experiments464

of (7, 8). There a rodent moved along a linear track in a virtual environment, where it encountered several465

visual cues on the left and right (Fig. 2E). Later, when it arrived at a T-junction, it had to decide whether466

to turn left or right. The network should report the direction from which it had previously received the467

majority of visual cues. To reproduce this task under the limitations of a GPU implementation, we used468

a shorter duration of 600 ms for each trial. The right (left) cue was represented by 50ms of cue image in469

which the black dots on the right (left) side of the maze. Visual cues were separated by 10ms, represented470

by the gray wall of the maze. After a delay of 250ms, the network had to decide whether more cues had471

been presented on the left or right, using two readout populations for left and right. The decision was472

indicated by the more vigorously firing readout pool (left or right) within the response window of 50ms.473

4.7 Loss function474

The loss function was defined as475

L = Lcross-entropy + λfLrate reg. + λvLv reg., (7)
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where Lcross-entropy represents the cross-entropy loss, λf and λv represent the weights of firing-rate regu-476

larization Lrate reg. and voltage regularization Lv reg., respectively. As an example, the cross-entropy loss477

of visual change detection tasks was given by478

Lcross-entropy = −
∑
m

[
T (m) log σ

(
θ
(
r
(m)
readout − r0

))
+
(
1− T (m)

)
log σ

(
θ
(
r0 − r

(m)
readout

))]
, (8)

where the sum over m is organized into chunks of 50ms and r
(m)
readout denotes the mean readout population479

firing rate defined in Eq. 6. Similarly, T (m) denotes the target output in time window m, being 1 if a480

change in image identity should be reported and otherwise 0. The baseline firing rate r0 was 0.01. σ481

represents the sigmoid function. θ is a trainable scale (θ > 0) of firing rate.482

We also used regularization terms to penalize unrealistic firing rates as well as unrealistic membrane483

voltages. Their weights, λf = 0.1 and λv = 10−5. The rate regularization is given by the Huber loss (32)484

between the target firing rates, y, calculated from the model in (1), and the firing rates, r, sampled the485

same number of neurons from the network model:486

Lrate reg. =
N∑
j

|τj − I {δj < 0}| Lκ (δj)

κ
, with

Lκ (δj) =

{
1
2δ

2
j , if |δj | ≤ κ

κ
(
|δj | − 1

2κ
)
, otherwise

(9)

where j represents neuron j, N the number of neurons, τj = j/N , δ = 0.002, δj = rj − rtargetj . I(x) = 1487

when x is true; I(x) = 0 when x is false.488

The voltage regularization was given by489

Lv reg. =
1

N

j=N∑
j=0

([
vj − EL

EL
− 1

]+)2

+

([
−vj − EL

EL
+ 1

]+)2

, (10)

where N represents the total number of neurons, vj , the membrane potential of neuron j, EL, the resting490

membrane potential, [· · · ]+, rectifier function.491

4.8 Training and testing492

We trained the model for all 5 tasks together. Pairs of visual inputs and target outputs were collected493

in separate 64 batches for each task and these batches were interlaced during training. Apart from the494

change detection tasks, the spikes and membrane potentials were reset to 0 after each trial that consisted495

of 600 ms.496

We applied back-propagation through time (BPTT) (19) to minimize the loss function. The non-existing497

derivative
∂zj
∂vj

was replaced in simulations by a simple nonlinear function of the membrane potential that498

is called the pseudo-derivative. Outside of the refractory period, we chose a pseudo-derivative of the form499

ψt =
γpd

vth − EL
exp

(
− (vtsc)

2

σ2
p

)
,

vtsc =
vt − vth
vth − EL

,

(11)
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Table 1: The Billeh et al. model achieves high accuracy in all 5 tasks, consistent with the behavior
performance of mice in similar tasks, after 6 training epochs.

Test
accuracy

Behavior
accuracy

Mean firing
rate (Hz)

Spike
raster

Fine orientation discrimination 93.15% ∼ 83%a 3.97 Fig. S5
Image classification 88.92% N/A 4.11 Fig. S6

Visual change detection of natural images 84.13%/83.25%b ∼ 73%/77%c 3.97 Fig. S7
Visual change detection of gratings 89.25% ∼ 60%d 3.90 Fig. S8

Evidence accumulation 90.92% ∼ 85%e 3.96 Fig. S9

(a) Estimated from Fig. 4C of (33) when the orientation difference was 90◦.
(b) In the visual change detection task for natural images, the two values refer to testing with familiar and novel
images, respectively.
(c) Estimated from Fig. 1I of (5) when familiar and novel images were presented to mice, respectively.
(d) Estimated from Fig. 3A of (34) when the orientation difference was 5◦.
(e) Estimated from Fig. 1C of (7) when the number of cues was 6.
Note that the behavioral experiments had longer time delays that made the tasks somewhat more difficult.

where the dampening factor γpd = 0.5, the Gaussian kernel width σp = 0.28. During the refractory500

period, the pseudo derivative was set to 0. During the training, we added the sign constraint on the501

weights of the neural network to keep Dale’s law. Specifically, if an excitatory weight was updated to a502

negative value, it would be set to 0; vice versa.503

We would like to emphasize that we tested the trained model -whenever possible- for new visual stimuli504

that had not been shown during training (this was not possible for the gratings because there were505

not sufficiently many different visual stimuli for them). In that sense, we evaluated the generalization506

capability of the trained Billeh et al. model, rather than its capability to handle a fixed set of stimuli507

correctly (which often suffices to solve behavioral tasks in experiments). The model achieved on all 5508

tasks a performance that is in the same range as reported behavioral data from corresponding mouse509

experiments (Table 1).510

4.9 Other simulation details511

The BPTT training algorithm was coded, as the simulation of the model, in TensorFlow, which runs512

very efficiently on GPUs, and also on multiple GPUs for training in parallel. We employed independent513

simulations in parallel by distributing trials for all 5 tasks over batches. Every batch consisted of 320514

trials, 64 for each of the 5 tasks. In every trial, the model of Billeh et al. was simulated for 600ms of515

biological time, which took, together with the calculation of gradients around 5 s on a NVIDIA A100516

GPU. Once all batches had finished (one step), gradients were calculated and averaged to update the517

weights by BPTT. We define an epoch as 781 iterations/steps, because this represents one cycle through518

the full training dataset of MNIST. This computation had to be iterated for 6 epochs until the average519

performance on the 5 tasks was saturated. This took 20 h of wall clock time on 160 GPUs.520

4.10 Control models521

We used three control models in Fig. 3F. The first one was a randomly connected recurrent network522

of spiking neurons with the same numbers of neurons and connections, referred to as RSNN. In the523

RSNN, all data-based features of Billeh et al. model except for the number of neurons and synapses524
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were removed: The GLIF3 neuron model was replaced by the standard LIF model; neural connectivity525

representing laminar structure with primarily local connection was replaced by random connectivity;526

diverse neuron types were replaced by a single neuron type: the excitatory neuron on L2/3 (node type527

id in Allen brain atlas: 487661754); Dale’s law was removed; initial weights were replaced by random528

values drawn from the Gaussian distribution with the same mean and variance as the initial values of529

the Billeh et al. model. In the second control model (Billeh et al. model without laminar structure), we530

kept the diverse GLIF3 neuron models, but the laminar connectivity structure was replaced by random531

connections, and we kept the same number of synaptic connections. In the third control model (Billeh532

et al. model with LIF neurons), the diverse GLIF3 neuron models were replaced by the standard LIF533

neuron model, all other features were kept.534

4.11 Branching ratio as a measure for criticality535

Based on the work of (35), where the branching ratio was recommended as a rather reliable measure for536

criticality of a network, we examined this branching ratio for the V1 model. In particular, this measure537

was shown there to be more robust to subsampling. The branching ratio is defined as the ratio of the538

number of neurons spiking at time t+1 to the number of spiking neurons at time t. Critical regimes, by539

their nature, are balanced and avoid runaway gain (positive or negative) and have a branching ratio of540

1.0. We stimulated the V1 model as in the visual change detection task of nature images for 15 s.541

In a network with A active neurons at time t, if the branching ratio has a fixed valuem then ⟨At+1 | At⟩ =542

mAt+h where<|> denotes the conditional expectation,m is the branching ratio and h is a mean rate of an543

external drive/stimulus. Considering subsampling, at is proportional to At on average < at |At⟩ = ηAt+ξ,544

where η and ξ are constants. This subsampling leads to a bias: m
(
η2 Var[At]/Var[at]− 1

)
. Instead of545

using time t and t+1, this method focuses on times t and t+k with different time lags k = 1, . . . , kmaximum .546

With this, the branching ratio mk is < at+k | at >= mk = η2 Var [At] /Var [at]m
k = bmk, where b is a547

constant. To compute mk with different k, we obtained an exponential curve and extracted m from this548

curve. m < 1 indicates a subcritical regime; m > 1 indicates a supercritical regime; m = 1 indicates a549

critical regime.550

4.12 Convolution neural networks551

Feedforward CNN. We used ResNet-18 (36) as FF-CNN. To calculate its eigenspectra, we used the552

pre-trained version on ImageNet provided by PyTorch. To evaluate its robustness against pixel noise,553

we trained ResNet-18 on MNIST with the Adadelta optimizer. The batch size was 64; learning rate was554

1; weight decay was 0.0001; the coefficient used for computing a running average of squared gradients555

was 0.9; the term added to the denominator to improve numerical stability was 1× 10−6, the number of556

training epochs was 10.557

Recurrent CNN. We used the gated recurrent convolution neural network (24) as R-CNN, inspired558

by abundant recurrent connections in the visual systems of animals. The gates control the amount559

of context information inputted to the neurons. We used the code, GRCNN-55 (weight sharing), in560

https://github.com/Jianf-Wang/GRCNN. To calculate its eigenspectra, we used the pre-trained version561

on ImageNet provided by (24). To evaluate its robustness against pixel noise, we trained R-CNN on562

MNIST with the stochastic gradient descent (SGD) optimizer. The batch size was 64; the learning rate563

was 0.1; the momentum was 0.9; the weight decay was 0.0001; the number of training epochs was 10.564
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4.13 Eigenspectrum analysis565

cvPCA. Eigenspectra of Billeh et al. model were estimated by the explained variance of the neural566

response along with the nth principal component (computed from the first presentation). It is achieved567

by cvPCA that computes the covariance of the projections of neural responses for the two repeats onto568

this component. cvPCA measures the reliable variance of stimulus-related dimensions, excluding trial-569

to-trial variability from unrelated cognitive and/or behavioral variables or noise. It accomplishes this570

by computing the covariance of responses between two presentations of an identical stimulus ensemble571

(Fig. S2A). Because only stimulus-related activity will be correlated across presentations, cvPCA provides572

an unbiased estimate of the stimulus-related variance. Briefly, the algorithm operates as follows:573

X(1) = USV ⊤ (singular value decomposition)

X̃
(1)

= X(1)V (project data onto eigenvectors)

X̃
(2)

= X(2)V

λj =
s∑

i=1

X̃
(1)

ij X̃
(2)

ij , for j ∈ {1, . . . , C} (compute eigenvalue)

where X(1),X(2) ∈ RS×N (S is the number of stimuli and N is the number of neurons) are the neural574

responses for the first and second half of the trials (and averaged across trials), V ∈ RN×C are the C575

eigenvectors of the covariance matrix of X(1) and λ ∈ RC are the cross-validated eigenvalues associated576

with each of the eigenvectors ( λj is the j th eigenvalue).577

The first step of the cvPCA algorithm computes the eigenvectors of the neural response covariance578

from one set of the trials. The second and third steps project the neural responses from each half of579

the trials onto each eigenvector. The final step computes the (scaled) variance of the neural responses580

when projected onto an eigenvector (that was computed using one half of the trials). Thus, each cross-581

validated eigenvalue is related to the amount of stimulus-related variance of the neural responses along582

the eigenvalue’s corresponding eigenvector.583

To be consistent with (11), we summed up spikes over 500ms in response to visual stimuli. We ran584

cvPCA ten times on the response of the neural network fed with the same images that are used in (11).585

On each iteration randomly sampling the population responses of each stimulus from the two repeats586

without replacement. We ran ten different runs and found they were very similar to each other, i.e,587

the SD was close to 0. For the trained Billeh et al. model, we calculated the eigenspectra in three588

models trained with different noise and randomly generated data, and found the SD is 5.95× 10−5. The589

displayed eigenspectra of the trained Billeh et al. model were averaged over these three models. The590

code is available in https://github.com/MouseLand/stringer-pachitariu-et-al-2018b.591

Billeh et al. model. We analyzed the neural representation in the trained Billeh et al. model in the592

same way as responses of V1 neurons were analyzed in (11): Without loss of generality, we used 2,800593

generic images which were randomly drawn from ImageNet validation dataset in all panels of Fig. 4.594

We also tried the 2,800 nature images used in (11) and found they gave rise to a slower decaying speed595

of eigenspectrum (1.15); there were only used in Fig. S2B to compare with the noise level in mouse V1596

experiment. We also used a smaller set of 32 images, repeated 90 times. All stimuli were input 50ms after597

the simulation onset and sustained for 500ms in each trial to be the same as experimental procedures.598

They were presented twice to allow cross-validated analysis. The initial condition of membrane potentials599

and spikes was set to zeros, unless otherwise stated. We input the 2,800-nature-image stimuli 5 times600
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with different random seeds that were used to draw the noise and initial conditions of membrane potential601

and after-spike current from uniform distributions. We found that the results were not sensitive to the602

initial condition and noise.603

CNNs. Generic images were resized so that their shorter dimension was 256 pixels and then center-604

cropped to 224 × 224 pixels. Padding the image and resizing it to 224 × 224 pixels achieved similar605

results. Images were additionally preprocessed by normalizing each image channel (RGB channels) using606

the mean and standard deviation that was used during model training (mean: 0.485, 0.456, 0.406 and607

SD: 0.229, 0.224, 0.225). For gray images, we repeated it to 3 channels. Using these preprocessed images,608

we extracted activation from every layer of each CNN and computed their eigenspectra using principal609

components analysis (PCA), because artificial neural responses are deterministic.610

Power-law fitting of eigenspectra. Using the least-squares method, we fit power laws to the eigen-611

spectra, f(n), against PC dimension, n. The fitting function is f(n) = n−α(n ∈ [nmin, nmax]), where612

nmin and nmax are lower and higher bounds, respectively. For most cases, we chose nmin ∈ [1, 20] and613

nmax ∈ [301, 2800]. For the 32-grating recordings, owing to noise and the length of the spectrum, we chose614

nmin ∈ [1, 10] and nmax ∈ [14, 35]. For each possible pair of nmin and nmax, we estimated the exponent615

α and its goodness-of-fit by the coefficient of determination (R2). We then selected as our estimate of616

nmin, nmax, and α that gave the maximum R2 (> 0.99) over all possibilities.617

4.14 Discriminability index d′ for neural responses to visual stimuli618

To estimate how much information the neural activity conveyed about the stimulus identity, following (3),619

we used the metric d′, which characterizes how readily the distributions of the neural responses to the620

two different sensory stimuli can be distinguished (37). The quantity (d′)
2
is the discrete analog of Fisher621

information (38).622

Fig. 6A and E. To be consistent with the experimental study (3), we calculated the neural response623

as the spike counts in each bin of 200ms and evaluated two different approaches to compute d′ values624

for the discrimination of the two different visual stimuli (gratings in the fine orientation discrimination625

task); the difference between two gratings is 2 ◦; each stimulus was presented in 500 trials. We analyzed626

the neural responses in a specific time bin relative to the onset of visual stimulation, which was called as627

instantaneous decoding approach used in (3). The alternative way, cumulative decoding, i.e., analyzing628

neural responses that were concatenated over time from the start of the trial up to a chosen time, demon-629

strated similar results. To determine d′ accurately despite having about fewer trials than neuron number630

in the Billeh et al. model, we reduced dimensional by using partial least squares (PLS) analysis (39) to631

identify and retain only 5 population vector dimensions in which the stimuli were highly distinguishable632

as in (3). In this 5-dimensional representation, the neural dynamics evoked by the two stimuli become633

distinguishable over the first 200ms of stimulus presentation. In the reduced space, we calculated the634

(d′)
2
value of the optimal linear discrimination strategy as:635

(d′)
2
= ∆µTΣ−1∆µ = ∆µTwopt (12)

where Σ = 1
2 (ΣA +ΣB) the noise covariance matrix averaged across two stimulation conditions, ∆µ =636

µA−µB is the vector difference between the mean ensemble neural responses to the two stimuli andwopt =637

Σ−1∆µ, which is normal to the optimal linear discrimination hyperplane in the response space (38). Each638

entry of a covariance matrix is the covariance of spike counts of two neurons ai and bi (i ∈ {1, 2, · · · , N},639

N is the number of trials): 1
N−1

∑N
i=1(ai − a)(bi − b) where x is the mean of {xi}.640

We also calculated (d′shuffled )
2
, the optimal linear discrimination performance using trial-shuffled datasets,641

which we created by shuffling the responses of each cell across stimulation trials of the same stimulus.642
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Owing to this shuffling procedure, the off-diagonal elements of ΣA and ΣB became near zero. (d′shuffled )
2

643

increased much faster with the increase of sampled neurons than (d′)
2
.644

Fig. 6B. Noise eigenvalue λβ and its eigenvector e⃗β was calculated by eigen-decomposition of noise645

covariance matrix Σ.646

Fig. 6C. To quantify the signals projected onto the eigenvector e⃗β , we projected ∆µ onto e⃗β and647

calculated its norm |∆ · µe⃗β |648

Fig. 6D. To demonstrate that training makes signaling dimensions more orthogonal to the largest noise649

dimension, we decompose (d′)2 into a sum of projections:650

(d′)
2
= ∆µTΣ−1∆µ =

∑
β

(
|∆µ · e⃗β |2

λβ

)
. (13)

Because ∆µ · e⃗β corresponds to the signal projected on noise eigenvector e⃗β and noise eigenvalue λβ651

corresponds to the noise scale on e⃗β ,
|∆µ·e⃗β |2

λβ
can be interpreted as singal-to-noise ratio on eigenvector652

e⃗β . Clearly, the eigenvectors well aligned with ∆µ are the most important for discriminating between653

the two distributions of neural responses.654
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Table S1: Performances on 5 tasks are not sensitive to the noise level. The light cyan highlights
the noise level used in this study unless otherwise stated. VCDN is tested on novel images. FOD,
fine orientation discrimination; IC, image classification; VCDN, visual change detection of nature
images; VCDG, visual change detection of gratings; EA, evidence accumulation.

FOD
acc.

IC
acc.

VCDN
acc.

VCDG
acc.

EA
acc.

q = 1, s = 0 93.67% 89.14% 83.61% 92.37% 93.75%
q = 1, s = 2 93.09% 88.49% 83.42% 89.22% 92.92%
q = 1, s = 3 93.47% 88.97% 82.52% 88.73% 90.17%
q = 1, s = 3.5 93.73% 88.49% 81.11% 88.58% 91.00%
q = 1, s = 4 93.06% 88.81% 82.30% 87.86% 91.50%
q = 2, s = 2 93.15% 88.92% 83.25% 89.25% 90.92%
q = 2, s = 3.5 93.93% 89.19% 82.20% 87.51% 90.58%
q = 3, s = 3 94.10% 88.81% 81.87% 89.52% 92.25%
q = 3, s = 4 93.53% 89.02% 83.06% 88.14% 89.33%
q = 4, s = 3 93.91% 88.91% 82.53% 88.16% 91.33%
q = 4, s = 4 93.47% 88.16% 82.16% 88.17% 89.08%
q = 5, s = 4 93.32% 88.49% 81.41% 89.12% 90.58%
q = 10, s = 10 94.03% 88.54% 82.97% 89.56% 84.33%
q = 20, s = 20 91.01% 86.63% 77.41% 85.95% 77.75%
q = 200, s = 200 54.58% 39.56% 53.09% 53.96% 52.67%

0 0.02 0.04 0.06 0.08
Decoded noise

100

103

106

C
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Figure S1: Empirical noise distribution where we drew the noise values. They are based on experi-
mental data from (11).
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Figure S2: Schematic diagram of cvPCA (cross-validated PCA) to extract signal and noise. (A)
Schematic diagram of cvPCA (cross-validated PCA). A set of generic images was presented twice with inde-
pendently drawn noise for each image (Noise A and Noise B). Neural responses to the first presentation (Data
A) were factorized by singular value decomposition (SVD) to estimate eigenspectrum of neural responses. (B)
Correlations (r) of neural responses for two presentations of the same natural image, using our data-based noise
model with s = q = 2 and projected onto selected principal components (PC).
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Figure S3: Schematic diagram of difference readout scenarios. (A) 15 spatially separated groups of 30
pyramidal neurons in L5 were selected to signal specific network outputs for 5 different tasks. Color encodes for 5
chosen tasks, same as in Fig. 2A. (B) Alternative selection of these 15 populations in L5 without spatial clustering
leads to very similar performance. (C) Schematic diagram of a linear readout receives synaptic input from all
51,978 neurons in the microcircuit model, using a corresponding number of weights that can all be optimized for
one particular task.
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Figure S4: Adding voltage rest does not significantly affect the GLIF3 model. (A) Stimulus in form
of a step function (top) was inputted to the GLIF3 model with voltage reset used in this study (middle) and
the GLIF3 model without voltage reset in (28). (B-C) Same as in (A) but for two different intensities of step
stimuli. The difference between two models is so small that it can be ignored. Henceforth, we call our modified
GLIF3 model with voltage reset also as GLIF3 model for convenience.
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Figure S5: After learning, the model reliably distinguishes the orientation of gratings in the fine orientation
discrimination task. (A) Colorful lines represent the timing of input images. Numbers on them represent the
orientations of input gratings. The bottom colormap demonstrates the activity of LGN neuron activity. (B) Spike
raster of the laminar V1 model. 200 neurons are sampled. Red and blue dots represent the spikes of excitatory
and inhibitory neurons, respectively. Note that the spike and membrane potential of the model was reset to 0
after one classification was done (separated by the think black line). (C) Spike raster of readout neurons. 10%
of neurons are sampled in every readout population. Color codes of panels are the same as in Fig. 2A. From the
top to bottom, there are readout populations of the fine orientation discrimination, the image classification, the
visual change detection of nature images and gratings, and the evidence accumulation tasks.
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Figure S6: After learning, the model reliably classified the MNIST images. (A) Colorful lines represent the
timing of input images. Numbers on them represent the digits in the input images. The bottom colormap
demonstrates the activity of LGN neuron activity. (B) Spike raster of the laminar V1 model. 200 neurons
are sampled. Red and blue dots represent the spikes of excitatory and inhibitory neurons, respectively. Red
and blue dots represent the spikes of excitatory and inhibitory neurons, respectively. Note that the spike and
membrane potential of the model was reset to 0 after one classification was done (separated by the think black
line). (C) Spike raster of readout neurons. 10% of neurons are sampled in every readout population. Color
codes of panels are the same as in Fig. 2A. From the top to bottom, there are readout populations of the fine
orientation discrimination, the image classification, the visual change detection of nature images and gratings,
and the evidence accumulation tasks.
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Figure S7: After learning, the model reliably reported the image identity change in the visual change detection
task. (A) Colorful lines represent the timing of input images and the colors code the image identity. The bottom
colormap demonstrates the activity of LGN neuron activity. (B) Spike raster of the laminar V1 model. 200
neurons are sampled. The slow noise was resampled every 600ms. Red and blue dots represent the spikes of
excitatory and inhibitory neurons, respectively. (C) Spike raster of readout neurons. 10% of neurons are sampled
in every readout population. Color codes of panels are the same as in Fig. 2A. From the top to bottom, there are
readout populations of the fine orientation discrimination, the image classification, the visual change detection of
nature images and gratings, and the evidence accumulation tasks.
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Figure S8: After learning, the model reliably reported the image identity change in the visual change detection
task. (A) Colorful lines represent the timing of input images and the colors code the image identity. Numbers on
them represent the orientations of input gratings. The bottom colormap demonstrates the activity of LGN neuron
activity. (B) Spike raster of the laminar V1 model. 200 neurons are sampled. The slow noise was resampled
every 600ms. Red and blue dots represent the spikes of excitatory and inhibitory neurons, respectively. (C) Spike
raster of readout neurons. 10% of neurons are sampled in every readout population. Color codes of panels are the
same as in Fig. 2A. From the top to bottom, there are readout populations of the fine orientation discrimination,
the image classification, the visual change detection of nature images and gratings, and the evidence accumulation
tasks.
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Figure S9: After learning, the spiking activity in the evidence accumulation task. (A) Colorful lines represent
the timing of input left/right cues. The bottom colormap demonstrates the activity of LGN neuron activity. (B)
Spike raster of the laminar V1 model. Red and blue dots represent the spikes of excitatory and inhibitory neurons,
respectively. Note that the spike and membrane potential of the model was reset to 0 after one classification was
done (separated by the think black line). (C) Spike raster of readout neurons. 10% of neurons are sampled in
every readout population. Color codes of panels are the same as in Fig. 2A. From the top to bottom, there are
readout populations of the fine orientation discrimination, the image classification, the visual change detection of
nature images and gratings, and the evidence accumulation tasks.
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Figure S10: Distribution of recurrent weights between each population before (light blue) and
after learning (dark blue) the task. Each row represents a pre-synaptic neuron population, and each column
represents a post-synaptic neuron population. The histogram represents the distribution of synaptic weights of
all synaptic connections that share the same pre-synaptic and post-synaptic neuron population. Vertical axis in
each panel is log-scale. Horizontal axis is linear scale and horizontal range is from the smallest value to the largest
value of each population. The number is 1 −D where D is from the Kolmogorov–Smirnov test, quantifying the
similarity between distributions (1). Exc., excitatory neurons.
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4.15 Supplementary Note 1764

The differences of readout scenarios can explain why behavioral performance lags behind765

neural coding fidelity in area V1. The behavioral discrimination threshold for orientations in the766

mouse V1 was almost 100 times larger than the discrimination threshold which they inferred from neural767

coding fidelity of populations of 50,000 neurons in area V1 of the mouse (4). They conjectured that this768

difference was caused by the limitations of downstream decoders. The Billeh et al. model suggests a769

slightly more refined explanation. Direct measurements of coding fidelity based on simultaneous record-770

ings from 50,000 neurons do not account for the fact that their information content has to be extracted771

by neurons in V1 that project to downstream areas. They are conceptually similar to the postulate772

of having a global readout neuron that receives synaptic input from all 50,000 neurons, see Fig. S3C.773

However, one can demonstrate in the Billeh et al. model that such a global linear readout attains for the774

fine orientation discrimination task an accuracy of 98.81%. On the other hand, a pool of 30 projection775

neurons on L5 could only achieve an accuracy of 93.15% if one assumed that they were localized closely776

together (Fig. S3A), and of 93.61% if they were assumed to be randomly distributed in L5 (Fig. S3D).777

These results suggest that how information from area V1 is extracted and projected to downstream areas778

is a limiting factor that is likely to contribute to the gap between the performance of an ideal observer779

of neural activity in V1 and the behavioral performance of mice.780

4.16 Supplementary Note 2781

Biological features speed up gradient descent training of spiking neural networks. We applied782

the same training procedure also to control models that lacked salient structural features of the Billeh et783

al. model (Materials and Methods), and found that their task performance advances substantially slower.784

We found that during the training time, the Billeh et al. model achieved an approximately saturating785

task performance, whereas these control models (all models contain 51,978 neurons) were only able to786

reach a substantially lower task performance level in 6 epochs, see Fig. 3F. Substantially larger computing787

resources will be needed to determine the performance levels that these control models can eventually788

reach after sufficiently long training.789

It had already been shown that neuron models with slower changing internal variables tend to enhance790

BPTT training, see Fig. 2D of (27), and Fig. 3C and Supplementary Movie of (40). Fig. 3C of791

the latter reference also shows that a similar training advantage holds for a biologically more plausible792

variant of gradient descent learning. But Fig. 3F shows that also the laminar connectivity structure of793

the Billeh et al. model contributes to its learning speed, even if the neuron models remain unchanged794

(yellow curve). One possible explanation is that the laminar structure enforces topographic maps between795

different layers, and hence tends to keep information more local within the network. The data-based rapid796

spatial decay of connection probabilities within a layer has a similar effect. This locality of information797

processing may facilitate learning through local learning mechanisms in such network. In contrast, in a798

generic randomly connected network without this connectivity structure, all information is continuously799

dissipated throughout the network, which is likely to impede the localization of processing errors and800

their correction.801

It will be interesting to see whether this effect also arises for biologically more realistic learning methods,802

for example, e-prop (40), which we did not perform because training with such methods tends to take803

substantially more trials, and therefore exceeded our computing resources. But since we now know that804

the Billeh et al. model is able to carry out the 5 visual processing tasks that we considered, one can now805

look for various biologically more realistic ways in the network initialization and/or learning algorithm806

-also for smaller instances of the Billeh et al. model- that can induce a similar computing capability or807
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neural coding features.808
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