










Figure S8: After learning, the model reliably reported the image identity change in the visual change detection
task. (A) Colorful lines represent the timing of input images and the colors code the image identity. Numbers on
them represent the orientations of input gratings. The bottom colormap demonstrates the activity of LGN neuron
activity. (B) Spike raster of the laminar V1 model. 200 neurons are sampled. The slow noise was resampled
every 600ms. Red and blue dots represent the spikes of excitatory and inhibitory neurons, respectively. (C) Spike
raster of readout neurons. 10% of neurons are sampled in every readout population. Color codes of panels are the
same as in Fig. 2A. From the top to bottom, there are readout populations of the fine orientation discrimination,
the image classification, the visual change detection of nature images and gratings, and the evidence accumulation
tasks.

36

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2022. ; https://doi.org/10.1101/2021.12.07.471653doi: bioRxiv preprint 



Figure S9: After learning, the spiking activity in the evidence accumulation task. (A) Colorful lines represent
the timing of input left/right cues. The bottom colormap demonstrates the activity of LGN neuron activity. (B)
Spike raster of the laminar V1 model. Red and blue dots represent the spikes of excitatory and inhibitory neurons,
respectively. Note that the spike and membrane potential of the model was reset to 0 after one classification was
done (separated by the think black line). (C) Spike raster of readout neurons. 10% of neurons are sampled in
every readout population. Color codes of panels are the same as in Fig. 2A. From the top to bottom, there are
readout populations of the fine orientation discrimination, the image classification, the visual change detection of
nature images and gratings, and the evidence accumulation tasks.
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Figure S10: Distribution of recurrent weights between each population before (light blue) and
after learning (dark blue) the task. Each row represents a pre-synaptic neuron population, and each column
represents a post-synaptic neuron population. The histogram represents the distribution of synaptic weights of
all synaptic connections that share the same pre-synaptic and post-synaptic neuron population. Vertical axis in
each panel is log-scale. Horizontal axis is linear scale and horizontal range is from the smallest value to the largest
value of each population. The number is 1 −D where D is from the Kolmogorov–Smirnov test, quantifying the
similarity between distributions (1). Exc., excitatory neurons.
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4.15 Supplementary Note 1764

The differences of readout scenarios can explain why behavioral performance lags behind765

neural coding fidelity in area V1. The behavioral discrimination threshold for orientations in the766

mouse V1 was almost 100 times larger than the discrimination threshold which they inferred from neural767

coding fidelity of populations of 50,000 neurons in area V1 of the mouse (4). They conjectured that this768

difference was caused by the limitations of downstream decoders. The Billeh et al. model suggests a769

slightly more refined explanation. Direct measurements of coding fidelity based on simultaneous record-770

ings from 50,000 neurons do not account for the fact that their information content has to be extracted771

by neurons in V1 that project to downstream areas. They are conceptually similar to the postulate772

of having a global readout neuron that receives synaptic input from all 50,000 neurons, see Fig. S3C.773

However, one can demonstrate in the Billeh et al. model that such a global linear readout attains for the774

fine orientation discrimination task an accuracy of 98.81%. On the other hand, a pool of 30 projection775

neurons on L5 could only achieve an accuracy of 93.15% if one assumed that they were localized closely776

together (Fig. S3A), and of 93.61% if they were assumed to be randomly distributed in L5 (Fig. S3D).777

These results suggest that how information from area V1 is extracted and projected to downstream areas778

is a limiting factor that is likely to contribute to the gap between the performance of an ideal observer779

of neural activity in V1 and the behavioral performance of mice.780

4.16 Supplementary Note 2781

Biological features speed up gradient descent training of spiking neural networks. We applied782

the same training procedure also to control models that lacked salient structural features of the Billeh et783

al. model (Materials and Methods), and found that their task performance advances substantially slower.784

We found that during the training time, the Billeh et al. model achieved an approximately saturating785

task performance, whereas these control models (all models contain 51,978 neurons) were only able to786

reach a substantially lower task performance level in 6 epochs, see Fig. 3F. Substantially larger computing787

resources will be needed to determine the performance levels that these control models can eventually788

reach after sufficiently long training.789

It had already been shown that neuron models with slower changing internal variables tend to enhance790

BPTT training, see Fig. 2D of (27), and Fig. 3C and Supplementary Movie of (40). Fig. 3C of791

the latter reference also shows that a similar training advantage holds for a biologically more plausible792

variant of gradient descent learning. But Fig. 3F shows that also the laminar connectivity structure of793

the Billeh et al. model contributes to its learning speed, even if the neuron models remain unchanged794

(yellow curve). One possible explanation is that the laminar structure enforces topographic maps between795

different layers, and hence tends to keep information more local within the network. The data-based rapid796

spatial decay of connection probabilities within a layer has a similar effect. This locality of information797

processing may facilitate learning through local learning mechanisms in such network. In contrast, in a798

generic randomly connected network without this connectivity structure, all information is continuously799

dissipated throughout the network, which is likely to impede the localization of processing errors and800

their correction.801

It will be interesting to see whether this effect also arises for biologically more realistic learning methods,802

for example, e-prop (40), which we did not perform because training with such methods tends to take803

substantially more trials, and therefore exceeded our computing resources. But since we now know that804

the Billeh et al. model is able to carry out the 5 visual processing tasks that we considered, one can now805

look for various biologically more realistic ways in the network initialization and/or learning algorithm806

-also for smaller instances of the Billeh et al. model- that can induce a similar computing capability or807
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neural coding features.808
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