
1

Recut: a Concurrent Framework for Sparse
Reconstruction of Neuronal Morphology

Karl Marrett, Muye Zhu, Yuze Chi, Chris Choi, Zhe Chen, Hong-Wei Dong, Chang Sin Park, X. William Yang,
Jason Cong

Abstract—Advancement in modern neuroscience is bottlenecked
by neural reconstruction, a process that extracts 3D neuron
morphology (typically in tree structures) from image volumes at
the scale of hundreds of GBs. We introduce Recut, an automated
and accelerated neural reconstruction pipeline, which provides a
unified, and domain specific sparse data representation with 79×
reduction in the memory footprint. Recut’s reconstruction can
process 111 Kneurons/day or 79 TB/day on a 24-core workstation,
placing the throughput bottleneck back on microscopic imaging
time. Recut allows the full brain of a mouse to be processed
in memory on a single server, at 89.5× higher throughput
over existing I/O-bounded methods. Recut is also the first fully
parallelized end-to-end automated reconstruction pipeline for
light microscopy, yielding tree morphologies closer to ground
truth than the state-of-the-art while removing involved manual
steps and disk I/O overheads. We also optimized pipeline stages
to linear algorithmic complexity for scalability in dense settings
and allow the most timing-critical stages to optionally run on
accelerated hardware.

Index Terms—fastmarching, single-node, in-memory, recon-
struction, neuroscience

I. INTRODUCTION

Morphology, the 3D shape of single neurons, and topology,
the arrangement, coverage and connectivity of such cells, may
be a contributing facet of neuronal function and pathology.
Morphology in particular is a critical component of cell type tax-
onomy: the process of discriminating and classifying different
neuron types by genetic, proteomic, connectivity or pathological
characteristics[1]. A common method to studying morphology
is reconstruction, the process where fluorescently labeled cells
in 3D images are segmented and compacted into ball and stick
models[2]. Recent reviews have identified a scalable[3], end-to-
end[4] pipeline tool for single-cell reconstruction as the greatest
need of the community. The Recut pipeline comprehensively
addresses these needs.

Reconstruction establishes a coverage topology of the seg-
mented neuronal regions which can be alternatively represented
as a set of vertices with connections i.e. a graph. This graph
G = (V,E) is composed of vertices vi,j,k and edges e, where
each vertex has a fixed and unique location in 3D space.
The neuroscience community and reconstruction tooling has
aligned on the SWC standard[2], a text file format where
each line specifies a vertex in the reconstructed graph with its
3D coordinates, radii and parent vertex. Since vertices only
carry a directed edge to their parent, the SWC format actually
describes a tree as opposed to a general graph. Once the tree
of all neurons is constructed, it is partitioned into subtrees

that represent individual neurons. With individual neurons
established, their morphology is analyzed in aggregate.

A. Challenges and Related Work

1) Accuracy: Dozens of computer-assisted implementations
exist for reconstruction as documented by comprehensive liter-
ature surveys and reviews[5], [4]. Graph-based reconstruction
methods are particularly suited in modeling morphology and
connectomic data and are deeply embedded in the analysis
patterns of the neuroscience domain. However, they are prone
to suffer accuracy loss from a variety of factors such as choice
of background threshold value, normalization of the image,
and pixel-level noise, all of which contribute to erroneous path
breaks.

Due to incorporating larger spatial context cues at various
window sizes and resolutions and training, neural network
(NN) methods are a natural complement to mitigate the
issues of graph methods. While this removes sensitivity to
free parameters such as background threshold, it requires
task-specific model selection, a robust training set and still
must handle the conversion to the tree-like SWC format for
downstream algorithms such as in Figure 1.

In a recent 27 method comparison[6], all top mouse algo-
rithms were graph-based[7][8][9][10], with the exception of
Advantra[11] which uses the Monte Carlo method at the initial
stage. The top performing software Neutube[7] as well as many
off the shelf reconstruction tools [12] employ a fastmarching
algorithm similar to APP2. The connected component (CC),
signed distance fields (SDF), and tree compaction (TC) stages
of this paper therefore compare to the algorithms in APP2 as
baselines for performance accuracy metrics.

2) Algorithmic Efficiency: Existing graph based reconstruc-
tion methods have comparatively low data access and computa-
tion. In conventional high-resolution light microscopy methods
such as confocal (see details of our imaging pipeline in section
2.7), the coverage topology foreground is a tiny proportion
of the total image. In such situations, graph approaches can
avoid excessive computation since they avoid the dense and
redundant access patterns found, for example, in convolution.
Graph methods are therefore a strategic starting point to base
further optimization effort upon. We refer to the metric of
computation with respect to data size (e.g., image voxel count
or n) as algorithmic efficiency. We compare algorithms based
on their theoretic computation counts expressed in terms of n
disregarding constant factors based on the big O notation[13].
This notation is fundamental in understanding and comparing

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

1 striatum
section image

Segmentation

VDB Conversion
O(n)

Connected
component

O(n)

Signed
Distance Field

O(n)

Tree Compaction
O(n)

True Prune
O(n)

Graph Cut
O(n logn)

Morphological
analysis

R
E

C
U

T

Active voxels (n) Mem. footprint

85.2 G

45.0 M

9.23 M

170 GB

2.85 GB

480 MB

115 K 700 KB

Coverage topology (white cells)

1

1

2

3

2

1

1

2

2

1

1

1

1

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 1. Reconstruction progressively compacts the data footprint across the
pipeline stages: starting with 3D images, we convert the representation into
a sparse graph then further partition into individual graphs for each neuron,
then finally aggregate for morphological analysis. With compaction, Recut’s
throughput is limited by the DRAM bandwidth of a system. Therefore the
uncompressed footprint in memory of the active voxel working set (n) is
shown on the right at each narrowing. Numbers shown are for a 30x objective
lens non-downsampled section of the striatum brain region.

efficiency. For instance, in the same comparison study[6],
APP2 had the best runtime performance due to utilizing the
fastmarching algorithm. Yet even APP2’s radius calculation
and pruning stages have sub-optimal algorithmic efficiency
which severely limits the data sizes they can feasibly run on.

3) Performance and Resource Utilization: Better algorithm
choice is an entry point for faster software, in practice, however
hardware-specific optimizations yield far greater speedup
factors[14]. Neuroscience pipelines demand unprecedented
scale exposing a long-standing weakness in computing infras-
tructure: data movement. Graph methods often traverse image
volumes of sizes beyond memory capacity. Smaller subregions
are then streamed as needed at runtime to mitigate large reads.
These subregions are often visited and therefore read repeatedly
and a large fraction of these dense regions are background
or unaccessed pixels. This equates to programs that spend
several orders of magnitude more time reading background
values from disk than performing the desired computation.
Additionally, generic compression methods on disk do not
leverage the inherent spatial sparsity of neuroscience data.

Algorithms are tightly coupled with data structures [15]
and a unified vertex and data representation for all algorithms
is essential to prevent excessive movement related to data
conversions and inefficient access patterns. An ideal data model
supports all desired algorithms efficiently and is leveraged as
early as possible in a multi-stage pipeline. We choose the
Volumetric Dynamic B+ tree (VDB) format [16] since it is
optimized for a fast access and low memory footprint for
spatially sparse volumetric data. VDBs have a hierarchy of
cubic regions for exploiting sparsity at various granularities.
When a subregion contains no active voxels or entirely uniform
values, its representation can be collapsed into a single value
as visualized in Figure 2.

4) Scalability: Neuromorphology literature cites reconstruc-
tion as the bottleneck[17], [4] for high-scale neuroscience.
Graph kernels such as pruning are also cited in neuroscience
research as the bottleneck to analysis[6]. Graph reconstructions
methods lack scalability–the ability to handle large image
regions on common systems such as a laptop or even on
modern servers. In practice, this is due to the combination
of the efficiency and performance concerns discussed above.
Adapting to modern hardware requires enabling concurrency
throughout a pipeline which can mitigate such data concerns.
APP2, like other available iterative reconstruction methods,
is only single-threaded. This is why large-scale applications
must start multiple APP2 programs for each soma to enable
some concurrency [18]. Poor scalability is such a concern
that common practice involves windowing regions of an
image which can create cutoffs, artifacts, and intensive human
intervention.

5) Automation: Large barriers to automation in reconstruc-
tion still exist. Even trivial manual steps vastly lower throughput
by creating forced stops and long down times which greatly
degrade the value of performance improvements. Lack of
algorithmic efficiency or scalable design itself creates new
barriers to automation (e.g., enforcing windows of neurons
to be cropped by hand which takes about 2-3 days per brain
even when accelerated by an automated cropping program).
Additionally, SWC outputs of semi-automated tools are usually
filtered by hand. Other semi-automated pipelines such as [18]
must manually identify soma locations since they are so critical
to accuracy, but requiring intervention so early can limit many
benefits of automated reconstruction. Finally, reconstruction is

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

sensitive to signal-to-noise of the reporter signal, which can
be altered by tissue preparation, imaging, and stitching.

6) Correctness: Vaa3D and the BigNeuron project have
significantly advanced collaboration in the field by providing
a framework to compare reconstruction method accuracies.
However, reporting the end-to-end accuracy of reconstruction
paper is only a first step towards reproducible research and
reusable software tool-chains. For long-standing software
that is intended to grow with collaborative effort, individual
components of functionality also need to have corresponding
automated unit tests. In order to improve algorithms and
modules, baseline behavior must be first quantified and verified
with such tests[19].

7) Portability: The neural anatomy and morphology com-
munity has had inspiring success in aligning data formats
(e.g., with the tree-based SWC format) and registration atlases
(e.g., CCF). However coordinating software development
collaboration is far more complex but has even greater potential
benefits for sharing extensible reconstruction, analysis, and
visualization pipelines.

Software is far more dynamic, usually with a complex set of
shifting dependencies that aren’t declared explicitly by authors.
The implications towards reproducible results are a growing
concern, and other large scale scientific projects such as at
CERN have adopted sophisticated methods to robustly lock
and archive analysis software and all of its dependencies[20].

B. Contributions
To evaluate our implementation we provide several features

and principles:
• Correctness. Recut’s automation or computational tech-

niques produce results consistent with the original intent
without unexpected or unknown behavior changes or
failures.

• Accuracy. Our framework demonstrates comparable or
higher accuracy to those established in the reconstruction
community.

• Algorithmic Efficiency. Recut demonstrates high algorith-
mic efficiency by reducing unnecessary computation and
data access.

• Performance and Resource Utilization. Recut’s implemen-
tation includes hardware specific optimizations to improve
metrics like latency and throughput in ways that are as
portable as possible.

• Scalability. Our software design is scalable, streamable and
concurrent, meaning the implementation natively supports
and performs consistently when adding significantly larger
data sizes or more processors.

• Automation: Recut automates soma detection and first pass
reconstruction and single-neuron partitioning from clusters.
Manual proofreading steps are pushed as far downstream
in the pipeline as possible to enable the benefits above.

• Portability. Open source software implementations are
increasingly critical to scientific endeavors but have
complex dependency chains that can take even software
experts days to set up and integrate properly. Recut is
installable and usable as a standalone program or a C++
library with 2 commands from a Unix command line.

II. PIPELINE

We refer to the provided algorithms as stages since they
must proceed in a specific forward order for a given image
region. Early stages of the pipeline operate on dense regions,
whereas downstream stages tend to operate on an abstracted
and sparse tree representation. The CC, SDF, and TC stages of
Recut have a direct mapping with algorithms or components of
APP2 and the intended transformation semantics are matched
as best as possible. However, since the implementations are
different we use the standard names of the transformations as
they are used in the literature.

A. Image Preprocessing (IP)
The pipeline takes as input stitched image volumes. Inputs

can be further enhanced to improve the fidelity however for
discussions in this work we simply segment the raw inputs.

B. Segmentation (SG)
To mitigate issues of raw images and membrane labeling, our

pipeline applies the artificial neural network based algorithm
U-net[21] to segment all regions of the image belonging to
neural tissue. This segmentation stage outputs a binarized dense
volume the same dimensions of the original image with voxels
that label neurons.

Additionally, this inference step aggregates a list of the filled
soma locations. Soma location is critical for downstream stages
since it acts as a root point for the branch-like projections–
neurites–characteristic of neuron morphology. Somas are used
to establish the starting seed locations for the subsequent stages
of the pipeline. Somas are generally visible in image space and
so critical to reconstruction accuracy that many pipelines rely
on manual human identification of these locations. However,
we rely solely on our automated methods which is essential
for exploiting parallelism and boosting throughput.

C. VDB Conversion (VC)
After segmentation, we convert the dense NN outputs into

the low memory footprint VDB grid. This step conducts a
dense read O(n) such that all later stages of the pipeline have
fast accesses on the sparse volumetric grid.

D. Connected Component (CC)
Segmentation establishes contiguous regions of coverage

topology based on contextual information in local regions of
the image. However, only a subset of these labeled regions are
biologically plausible. In order to be relevant, any labeled voxel
must also be reachable from the determined soma locations.
Given the VDB graph with filled and identified somas as
starting locations, the connected component stage labels all
reachable vertices as selected in a region growing scheme. This
stage yields all components of the image and the encompassed
somas. Component refers to a cluster of neurons that are
connected by at least 1 voxel. This CC stage fills a similar
purpose to APP2’s fastmarching stage or other reconstruction
algorithms that use a Dijkstra or single source shortest path
algorithm (SSSP) to traverse foreground voxels. Contrary to
these other algorithms, our CC stage simply stores a parent
for each selected vertex with no distance or salience field.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

E. Signed Distance Field (SDF)

After the CC stage, the working set–all active elements–is
complete. In other words, all voxels belonging to the coverage
topology are known. However, the CC stage selects a vertex for
each foreground pixel, which is highly inefficient for subsequent
stages in the pipeline. To compact the redundancy in selected
vertices, each vertex is considered as a 3D sphere with a radius
that extends to the nearest background pixel (inactive voxel).
Calculating these distances provides a coverage area of each
vertex via an operation referred to as SDF.

F. Tree Compaction (TC)

Given a set of selected vertices with radii, we can perform
graph compaction by starting from somas or more salient nodes
first and traversing the graph, removing vertices that are already
within the covered radius of a previously visited vertex. This
leaves a graph that covers the same active image volume but is
described by far fewer vertices. In neural datasets, this reduces
vertex counts as detailed in Table VI.

G. Tree Prune (TP)

While it is possible to compact losslessly for an exact
volume coverage of foreground, in practice this is not useful
since it produces enormous numbers of spurious branches that
obfuscate morphology metrics. These adjustments traverse the
active set of vertices and apply refinements on the sparse graph.
In our pipeline, we use TP to remove all branches of length 1
with a parent bifurcation point.

H. Graph Cut (GC)

Recut implements a method to separate connected compo-
nents that contain multiple somas (graphs) into individual trees
(SWCs) based off the parent connection assignment in the CC
and TP stage. This allows Recut to remain a practical end-
to-end solution in dense labeling settings. For more accurate
partitionings of the graph in even denser settings, the user can
optionally run the method offered in [22].

I. Windowing, Visualization and Proofreading

Recut compresses the full image bounding volume to the
VDB format then reconstructs and outputs discrete SWCs with
their exact corresponding bounding window. This window is
reflated from the foreground VDB voxels and written to a TIFF
image on disk for subsequent visualization during proofreading
in common morphological GUI software such as Neutube or
Vaa3D. Recut can optionally output SWCs or point VDBs
with coordinates embedded in the original image for correcting
breaks where the path extends beyond the components bounding
volume. This can be particularly useful for visualization in
software tools such as Houdini that natively support both the
VDB image and VDB point grids output by Recut.

J. Morphological Analysis

The SG and CC stages entirely determine the coverage
topology accuracy of a reconstruction in our pipeline since
subsequent stages merely compact the graph representation.
However, current analysis techniques focus on graph mor-
phology which is more abstracted than the volumetric and
position information afforded by coverage topology. Persistence
homology for graph similarity builds a feature space that can ex-
press the morphological measurements of Sholl analysis while
retaining spatial embedding information[23][24]. Persistence
images have been used to classify neuronal types with subtle
morphological differences that are difficult for even human
experts to discriminate [25]. We leverage the Topological
Morphology Descriptor (TMD)[23] an implementation of
persistence homology. TMD is less sensitive to imaging and
the accuracy of the SG stage than pixel based accuracy metrics
such as those used in [6]. The TMD feature space also has
particular bearing on the edits to a tree that occur during
proofread such as fixing breaks, merging branches, etc.

III. IMPLEMENTATION

A. Algorithmic Efficiency

As demontrated in Figure 1, we have two basic types of
algorithms: NN and graph-based. NN is currently only used for
the SG stage. Whereas graph algorithms tend to have sparse
irregular data access with complex concurrency schemes, NN
methods have dense and regular data access patterns and simple
parallelization schemes. The graph methods are also particularly
well suited to take advantage of sparsity.

The desired transformations are quite common and there
are many alternate implementations to these stages such as
pruning with sphere packing, however CC and SDF stages are
graph-based employing a breadth-first search on an iterative,
advancing wavefront. This allows us to use the same underlying
graph representation, overhead data structures and traversal
patterns, thus greatly simplifying the implementation and
reducing memory communication. The efficiency of the graph
stages of Recut are listed in Table I.

TABLE I
A COMPARISON OF THE ALGORITHMIC EFFICIENCY OF RECUT NOT

ACCOUNTING FOR PARALLELISM OVER MULTIPLE PROCESSOR CORES. n
INDICATES THE TOTAL WORKING SET COUNT OF VERTICES AT THAT

PARTICULAR STAGE, r INDICATES THE RADIUS DISTANCE OF A PARTICULAR
NODE.

Stage APP2 Recut
CC - O(n)
FM O(n logn) O(n logn)
SDF O(nr3) O(n)
TC O(nr3) O(nr3)
TP O(n) O(n)

Besides TC, GC, or the optional fastmarching, the algo-
rithmic efficiency of the graph stages of Recut are O(n) as
depicted in Table I. This is ideal efficiency since each stage
needs to update n nodes and those updates are not dependent
on the order of n.

The FM algorithm is less efficient than Recut’s CC stage
because it requires on the order of log n more work per visited

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

Fig. 2. VDB grid of sparse neuronal data. The coverage topology of all
active voxels is shown in red. Active leaf node regions–those that contain an
active voxel–are outlined in blue. Active internal nodes regions are outlined
in yellow and active secondary internal nodes in green. Empty leaf nodes and
internal nodes have no outlines and have tiny memory footprint overheads.

node to run. Note that we include the term r–a node’s radius–
even though it is independent of the working set count n
since it helps in understanding the performance of the stages
below. APP2’s calculation of radius SDF algorithm requires
r3 operations per node, since it checks a circle, r times,
whereas Recut’s implementation is again on the order of 1
operation per node, due to the same implementation pattern
as the previous FM stage. Recut’s TC stage sparsely checks
a sphere of vertices according to each node’s radius, whereas
the APP2’s hierarchical prune densely checks a circle, r times.
TP for both Recut and APP2 require a single traversal of the
compacted graph.

B. Resource Utilization

TABLE II
VAA3D, APP2 MARKER FOOTPRINT IN MEMORY

Attribute Type Bytes
Parent pointer 8
Radius double 8
Flags int 4
Coordinate 3× double 24
Total Marker 44

TABLE III
RECUT vertex AND message vertex FOOTPRINT IN MEMORY

Attribute Type Bytes Red. v. APP2
Parent offset 3× int8 3 2.7×
Radius uint8 1 8×
Flags uint8 1 4×
Message offset 3× uint8 3 8×
Total Vertex 5 8.8×
Total Message Vertex 8 5.5×

1) Vertex Representation: We utilize a customized vertex
model that can support downstream stages while remaining
compact as shown in Tables II and III. Neuroimaging data has
inherent geometric properties and those properties tend towards
predictable power law distributions. Upon statistical analysis
we can enforce data value range cutoffs to quantize the types
of fields used at each vertex to constrain the vertex memory
size. Recut employs two basic types to represent the finest
granularity of an image: the vertex and the message vertex.
Any updates occur at the granularity of a vertex. All vertex
attributes are held within VDB grids, whereas message vertices

are temporary and are emplaced dynamically in each FIFO.
Concurrency is achieved via messages between leaf nodes
which are buffered in FIFOs. Message vertices are simply
an extension of the vertex type with a slightly larger memory
footprint since they must be tagged with an offset to distinguish
their coordinate identity within a leaf.

2) Image Representation: Typically, acceleration or paral-
lelization schemes of graph processing rely on a preprocessing
step to partition or arrange nodes and edges according to
connections. This is an effective data-oriented approach for
kernels operating on static power-law graphs[26]. Unlike most
high performance graph kernels, the graph stages of Recut
are dynamic: they prune and reassign parents (edges) and
repeatedly prune substantial portions of the active vertex set.
Due to their embedding in volumetric space, the graphs are also
planar, with an edge count of 1, with highly local connections.
Additionally, only a small fraction (demonstrated in Table VI)
of all image voxels are ever visited and selected during the CC
stage. For these reasons, the common high performance graph
arrangement schemes would mostly be single-use requiring a
costly rebuilding during or after each stage. This rearrangement
itself would have a similar runtime as a stage.

To deal with these issues, Recut’s internal image and graph
format both use OpenVDB grids, which are optimized for fast
access and low disk and memory usage for sparse volumetric
data[16]. VDB grids allow Recut to transition from an image
abstraction to a graph representation seemlessly, which is why
we use the terms voxels and vertices interchangeably. VDB
grids hierarchically partition the data at different flexibly-sized
cube regions. The smallest partition region in a VDB grid
is termed a leaf node, which is a cube of vertices processed
by a thread independently of other leaf nodes. The leaf node
size introduces spatial and temporal locality by enforcing a
thread to stay within a small region of data until it completes
processing all possible updates. Vertex attributes are accessed
or stored as needed at the granularity of leafs. Each active leaf
node requires a FIFO to hold future vertices to process and
receive incoming messages.

3) Coverage Topology: Recut is designed to operate on
arbitrarily large images that represent contiguous volumes of
brain space. For example, light sheet data produces whole brains
which Recut ingests as a single image, efficiently combines or
compares multiple channels, and translates to a single topology
representation. We conceptually split the topology into two
parts, coverage and attribute, which corresponds in concept to
the underlying OpenVDB data structure’s usage of bit masks
and attribute arrays respectively. The SG stage produces an over-
representation of the topology coverage–the total segmented
voxels of the original image–which the CC stage constrains
to only vertices reachable from somas. After the CC stage,
the coverage is complete and the voxel based accuracy of the
reconstruction is established (although paths can be reassigned
to different neurons during GC). While coverage may be static
after the CC stage, the attribute topology–the working set of
all active vertices and their properties–gets reduced during
TC. Despite the narrowing in memory footprint, the intended
coverage is preserved abstractly via the radius property of the
remaining vertices in the attribute topology.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

4) Overhead: Recut allocates a FIFO for each of the active
leafs determined by SG before running the CC stage. The subset
of these FIFOs, that are reachable from somas, have a lifetime
for the rest of the pipeline since they need to dynamically
buffer vertex messages to any leaf to ensure thread safety.
We reduce memory requirements needed for message buffers
further by leveraging an update grid which sparsely stores
whether border regions have been updated such that messages
can be generated safely in the integration method at the end
of each iteration shown in Algorithm 1.

5) Memory Leakage: Mismanagement of the dynamic
memory footprint–memory leakage–leads to poor utilization
of available resources and could cause large drops in program
performance (i.e., scalability issues). More subtle issues in
design can lead to memory leakage. For example, while a raw
image buffer is used for segmentation, keeping it in program
memory for the remainder of the stages would severly limit
the regions that could be processed in parallel. This leads to
a fundamental design point, only the minimum data needed
for computation is accessed at each stage. Deep pipelines
with diverse algorithmic needs require tradeoffs between the
memory footprint, the algorithmic expressivity and the fast
access. For example, Recut builds a tree graph before the GC
stage by enforcing that each vertex has 1 edge: its parent. If
Recut were expanded to include algorithms requiring undirected
graphs such as GC, it would substantially increase the memory
footprint of a vertex as it would additionally need to hold
antiparallel edges (its children).

6) Sparse Adaptability: While the above details current
design choices for our pipeline, almost all aspects can be
tailored to other needs. Fluorescent labeling sparsity can
vary greatly but is generally fixed across many imaging
rounds. The sparsity displayed in neuromorphology is not
a random set of pixels, it has localized correlation and spatially
identifiable coherence, a property known as spatial sparsity
[27]. Furthermore, exploitable spatial sparsity tends to increase
with higher dimensionality, resolution, expansion factors or
added imaging channels.

The expected labeling density can vary between 0.001% to
0.1% in order to exploit ultra-sparse scenarios. Recut can avoid
treating the region as dense and instead monitor the sparse
set of active vertices in a data structure optimized for low
memory footprint and fast access for sparse volumes known as
OpenVDB[16]. User-specified compile-time constants control
this varying behavior and linkage with the optional OpenVDB
3rd party library so that runtime latencies are avoided.

7) Downsampling Flexibility: It is common in visualization
and graphics to encode images at various resolutions–full reso-
lution, half resolution, quarter resolution, etc. This technique is
used in high performance applications and the HDF5 format,
and is most commonly referred to as multi-resolution or mip-
mapping. This method can reduce the speed of accesses in
high performance applications at the cost of doubling the
memory footprint. The VDB library provides a method to build
multi-resolution sparse grids, but the sophistication of VDB
data structure allows far faster access and smaller footprints
without needing to adapt algorithms to this paradigm. While
the resolution of voxels in grids is fixed throughout Recut, it

would be possible to simulate upsampling by interpolation or
downsampling by access or traversal pattern at runtime using
VDB’s provided functionalities.

8) Memory adaptability: Depending on the spatial sparsity
characteristics, VDB grids can be arbitrarily deep with adaptive
grid sizes chosen specifically for a data sample or type. This
can be leveraged to substantially reduce the memory footprint
at the cost of slower access times. To explore this tradeoff
further refer to [16].

9) In-Memory Computing: Combining sparse data struc-
tures and a minimal vertex representation allows substantial
reductions in memory footprint as detailed in Table VI. These
reductions can shift the performance bottleneck from being
disk-bound to main-memory bound (DRAM) for our entire end-
to-end pipeline on a reasonably equipped imaging workstation.
System builders of imaging workstations for sparse data should
therefore keep in mind that in-memory computing will have
disproportionately large benefits for performance with Recut.

C. Scalability

Due to the low reliance on global memory structures, we
designed a lock-free shared memory approach based on [28]
that operates on VDB grids that represent the required graph
data. The basic structure of this scheme is illustrated in
Algorithm 1. Concurrency is foremost at the granularity of
leaf nodes via the Intel TBB library, which parallelizes leaf
processing across threads on a single CPU. We evaluate this
framework via the speedup factor with respect to the number
of cores used. Performance of these kernels is highly data
dependent, therefore we define scalability metrics in terms of
cores since they are aligned and localized with the CPU cache
hierarchy more than threads.

Recut can traverse through VDB grids following neurite
paths in 3D space. However, since vertex attributes are stored
in distinct regions of memory (in struct-of-arrays fashion), only
the attributes of the active leafs specifically needed by each
stage are accessed.

The VDB implementation supports image regions with x,y,z
coordinates between -2e9 to 2e9. Full adult mouse brain
confocal images imaged with a 30× objective lens have a
bounding volume of about 65k×28k×2.7k with anisotropic
z downsampling. A single VDB grid bounding volume can
encompass 1.8 e16 of such brains arranged side by side due to
the reliance on indexing via 3-dimensional coordinates of type
signed integer-32. VDB grids are specifically designed to store
the spatial structure in volumetric data and compress uniform
or background regions. Our data has complex spatial sparsity at
multiple resolutions which would not be effectively exploited
by more naive adaptive grid methods. We evaluate the cost of
the VDB format via the footprint in memory with respect to
the active voxel count of the labeled segmented regions. This
metric should scale linearly for suitable sparse data structures.

D. Automation

The segmentation stage automatically identifies soma loca-
tions and removes the need to specify a background threshold
value or do other image processing. Alternatively, Recut can

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Algorithm 1: This pseudocode represents the critical
update loop. Each graph processing stage executes this
loop with a stage specific traversal and a vertex field
contained within the function on line 8. Integrating the
ghost cell updates contains the added overhead of the
parallel algorithm. Both inner parallelized for loops
implicitly induce synchronization overheads.

1 Function update(V, F , stage)
Input: VDB V with located and filled somas,

active set of FIFOs F of initial v to process,
stage can be any arbitrary graph kernel with
no side-effects outside of its Lj

Output: VDB V with updated attributes of v
according to stage

2 while any internal node Ii active do
3 for each active internal node Ii do
4 while any leaf node Lj active do
5 parallel for Lj ∈ Ii
6 if Lj is active then
7 march(Lj , Fj , stage)

8 // parallel overheads
9 parallel for Lj ∈ Ii

10 if Lj is active then
11 // check updated

borders in active
adjacent L

12 Fj =
gather_updates(Lj , F)

take raw image buffers and a desired foreground percent. While
a desired percent is less fraught than specifying a background
intensity value as with APP2, it can still be a trial and error
process which is why the automated SG stage is recommended.

E. Correctness

To ensure basic correctness, modern application development
handles implementation complexity by test-driven development.
This is a paradigm whereby a program’s isolated functionalities
or integrated behavior is verified by a test suite accompanying
the software. Rather than rely on developers to run these
tests by hand to ensure no bugs have been introduced, full
test suites can be run automatically on code changes or on
continuous schedules to prevent any correctness regressions.
This automated process, known as continuous integration (CI),
enables large teams to deploy changes to complex software
systems rapidly with confidence. Recut was developed in
conjunction with a set of fast tests (less than 2 s total runtime)
that are run automatically by the hosting platform.

F. Portability

At this initial release, the Recut framework is written
in modern C++ (C++17 and above). It leverages language
supported threading, atomic variables and some lightweight

Algorithm 2: Connected component → O(n)
1 Function march(Lj , Fj , stage=CC)

Input: Leaf node of VDB Lj with corresponding
FIFO Fj . Preinitialized by adding all soma
v to FIFO. SG sets neuronal voxels to active

Output: All reachable foreground v ∈ Lj selected,
all surface voxels accumulated for SDF
starting vertices

2 for src ∈ Fj do
3 for dst ∈ adjacents of src do
4 if dst ∈ Lj then
5 if dstx,y,z is active then
6 if not dst.selected then
7 dst.selected ← true
8 Fj ← dst
9 check_ghost_update(dst)

Algorithm 3: Signed Distance Field → O(n)
1 Function march(Lj , Fj , stage=SDF)

Input: Leaf node of VDB Lj with corresponding
FIFO Fj . Preinitialized with all surface v
added to corresponding FIFO

Output: All selected v ∈ Lj radius fields set
2 for src ∈ Fj do
3 update_radius ← src.radius + 1
4 for dst ∈ adjacents of src do
5 if dst ∈ Lj then
6 if dst.selected then
7 if dst.radius > update_radius then
8 dst.radius ← update_radius
9 Fj ← dst

10 check_ghost_update(dst)

third party libraries. Recut optionally links with different image
reading software as image data types are varied and non-
standardized in the neuroscience community. In this paper, we
link with an internal library to read TIF or Imaris (HDF5)
images. Additionally, we leverage python functionality for the
segmentation and graph-cut step detailed in [22]. Recut and all
its dependencies are distributed via the Nix package manager
such that installation, compilation, and development requires
running only two commands on a Mac, linux, or PC with WSL
installed.

IV. EXPERIMENTS AND RESULTS

A. Data and Setup

This pipeline takes TIF files as single-channel gray scale
3D images at 16-bits per pixel. The gray scale intensity
represents the fluorescent labeling density determined by wet
lab fluorescent techniques. The measured labeled signal density
% is detailed in Table VI. Labeling is a product of months or

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

years of biochemical tuning and research efforts which vary by
scientific problem. If a fluorescent label is designed with too
low a labeling frequency, the yield of neurons per mouse brain
or breeding population may be too low to produce statistically
viable results. If a fluorescent labeling is too high, neurons
become a mesh, erroneously connected from the perspective
of the reconstruction technique.

The neural data used in this report is membrane-labeled
mouse brain data with about 0.05% pixel label density
determined at the SG stage. For real data testing we use
a 7680×8448×383 image (1

8 coronal section; 2.36e10 total
pixels) of mouse cortex labeled using CAM-K2 knockout
at full resolution. The z dimension is 5× smaller than x
and y (covering steps of 1 um vs .2 um respectively). This
region contains 232 distributed somas with dense mesh-like,
continuous branching patterns. 1 section is about 16× the
window size allowed by most reconstruction software.

We tested the performance on a workstation with an AMD
Ryzen Threadripper 3960X 24-Core CPU at 3.79 GHz with
2 hyper-threads per core, 256 GB DRAM, and 3× Samsung
SSD 860 EVO 4 TB configured as RAID0.

B. Accuracy

At this labeling density reported, APP2 can only reliably
terminate on data sizes up to bounding volumes of about
2048×2048×512 or about 2 gigavoxels before runtimes become
excessive even on a modern CPU as noted in [6] and verified
in our test suite. At 30× objective lens with our particular
labeling probe, this bounding volume can encompass about 1
neuron’s span as shown in Figure 4. All accuracy comparisons
to APP2 are for single neurons.

Our parallel connected component and SDF stage converge
to exact equivalence with sequential runs and ground truth over
synthetic test and real neural data as expected and confirmed
by unit tests. Note that Recut’s exact matching with APP2
sequential results diverges from the SDF stage onward since
APP2 implements a 2D simplification of distance to compensate
for the slow performance of its algorithm. This APP2 behavior
creates an error rate that increases with pixel size. We found for
the scales of a soma (20-30 voxels) APP2’s error rate reached
up to 23.1%.

APP2 employs hiercharchical pruning, a heuristic strategy to
encourage the selection of a pruned set of maximally covering
minimally redundant final vertices whereas Recut employs an
optimized compaction strategy based off of an optimized VDB
implementation of the Advantra prune method[11].

To compare the different approaches, we compare the
absolute difference in average persistence images between
APP2 and proofread ground truth (205) and Recut and validated
(80.6) for N=42 sample windows with a single neuron. Note
that the set of proofread validated samples were derived directly
from the APP2 generated SWC. Thus, the difference indicates
manual morphological edits that humans made. Recut’s lower
difference scores indicate that the morphological characteristics
are closer to final proofread ground truth.

The persistence images were generated from path distance
thus the neurite diameter information is not included in these

Fig. 3. Persistence images for ground truth, Recut and APP2. Persistence
images are aggregates of persistence histograms[23] a value for each branch
is plotted by the radial distance from the soma at its birth (terminal) on the
x-axis, to its death (bifurcation point or soma) on the y axis.

Fig. 4. Recut or APP2 average persistence images subtracted from ground
truth. Positive normalized values in red, negative in blue.

statistics. The ground truth persistence image shows that the
majority of branches start at a similar distance from the soma
(x-axis) and terminate even closer to the soma (y-axis) which
corroborates the bush-like morphology of D1/D2 neurons.
Persistence images for APP2 have higher values along the
diagonal y=x which indicates that it introduces erroneous short
branches beginning and ending at similar distances from the
soma. The left-shifted peak of the APP2 compared to the
ground-truth possibly indicates that long paths are either added
or extending during proofreading. Additionally, the image for
Recut suggests that it often fails by introducing unnecessary
branches. These branches are short and particularly common
closer to the soma. Although the recut image does seem to
capture some of the peak of the validated ground truth, the
image is dominated by small branches.

Note that Recut’s CC stage can be optionally run using
a priority queue (heap) changing the stage to a parallel fast
marching (FM) algorithm. Choice of FM vs. CC effects the CC
traversal, the final parent paths back to root and the compaction
order of TC. However, we did not find significant effects on the
final accuracy by using an FM approach; thus, we omit it from
the end to end accuracy comparison. However, researchers
should compare and evaluate reconstruction algorithms via the
respective effects on the final biological metrics they study.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

Fig. 5. Sequential runtimes of APP2 and Recut stages plotted against the
total voxel counts.

C. Algorithmic Efficiency

Although all of Recut’s stages are fully parallel, Figure 5
illustrates the sequential runtimes of Recut and APP2 which
to our knowledge has the current fastest reconstruction and
skeletonization stages. In order to do an exact comparison,
we had to run on vertex counts that APP2 can complete in
a reasonable time-frame. It is common practice to run APP2
with a time-out since it has run-away runtimes on larger vertex
counts.

The throughput in Figure 5 also accounts for the steps APP2
must run without the Recut framework. The bounding box
window must be written, read again by APP2 before the FM
and HP stage. We do not include the time for a APP2 framework
to read the entire image initially since this is usually semi-
manual. In sequential settings, Recut’s prune stages are about
an order of magnitude faster than APP2 in denser data where
multiple trees are within a single connected component. Recut’s
TC+TP stages have similar efficiency profiles to APP2’s HP,
owing to the fact that they share the same algorithmic efficiency
as shown in I.

D. Peak Performance

TABLE IV
RECUT RUNTIMES PER STAGE ON CONFOCAL HALF CORONAL SECTION

WITH 30× OBJECTIVE LENS ON CAMK-MORF3, 24-CORES.

Stage Recut (s)
VC 81.2
CC 91.1
SDF 1.95
TC+TP 11.6
Hemi-section total 186
Striatum total 2970

The performance is even better than the algorithmic effi-
ciency would suggest since n undergoes a substantial narrowing
at the CC and TC stage as shown in Figure 1 and the
downstream stages only visit the new sparse active sets. All
Recut stages have a parallelized implementation, thus the
n operations at each stage are conducted in parallel across

TABLE V
APP2 VS. RECUT THROUGHPUT PER STRIATUM BRAIN REGION 30×

OBJECTIVE LENS, CAMK-MORF3, 24-CORES.

Pipeline component Striatum/day
Imaging .25
Stitching .33
Masking (manual) .14
Inference .30
APP2 .38
Recut 34.
Proofread (manual) .18

available cores of a single CPU. These algorithmic efficiency
improvements combined with the concurrent execution model
translate to lower runtimes and higher pipeline throughput as
illustrated in Tables IV and V. We also achieve lower runtimes
on 16× larger images than the manually managed APP2.

E. Resource Utilization

TABLE VI
DATA FOOTPRINTS FOR THE STRIATUM REGION OF 1 HEMI-SECTION, 30×

OBJECTIVE LENS, CAMK2A; MORF3 ~1% FLUORESCENT LABELING
DENSITY, BOUNDING VOLUME OF 10K,18K,468.

Metric Size
Dense voxel count (G) 85.2
Active voxel count (G) .045
Active voxel % .053
FIFO count (G) .001
Max FIFO depth 512
Uncompressed HDF5 (GB) 170.
Disk coverage topology (GB) .335
Disk compression factor 509.
Disk read + uncompress time (s) 2.89
In-memory coverage topology (GB) 2.85
Max FIFO footprint (GB) 4.01
Total runtime memory (GB) 6.86

The graph topology footprints are shown at the vertex scale
in Tables II and III and at the macro scale in Table VI. To our
knowledge, the 509× compression factor of an image via VDB
is the largest compression factor found in the neuroscience
community due to being uniquely suited to sparse volumes.
To remain responsive at interactive time scales, Recut must
have adequate system memory (DRAM) such that the full
runtime footprint can fit. For the data sizes used in Table VI,
this equates to about 6 GB, which easily fits in the memory of
most modern laptops. This replaces the read and write steps
of APP2 recorded in 5 with the VC stage on the whole image.

F. Scalability

While Recut succeeds in decoupling image IO from graph
computation in reconstruction algorithms, it fails to achieve
linear scaling on reconstructible data. This is due to the extreme
sparsity of the data and the current parallelization strategy,
as evidenced by the fact that a highly similar block-based
fastmarching algorithm achieved super-linear speedup on dense
volumes[6]. Both the SDF and CC stage apply the same
paralellization strategy and traversal on the same set of nodes,
yet SDF is 41× faster due to retaining starting seed points at
all surface voxels. CC must start from single soma locations,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

Fig. 6. Runtime and throughput of Recut’s stages.

which slows the propagation of the wavefront and dramatically
increases the iterations until convergence.

On synthetically generated data where ground truth is known,
10% density is about 17× faster when using 16 cores. However,
10% pixel label density is beyond the upper limit for what
is reconstructible on real data either for existing automated
algorithms or for manual human reconstructions. At labeling
densities above 1%, images are too saturated for proofreaders
to effectively correct tree structures.

V. CONCLUSIONS AND FUTURE WORK

Lossless high resolution imaging can be less costly to store
or transfer than even heavily downsampled images. While
Recut is currently only supported for common PCs and CPUs,
by comparison the average DRAM in newly purchased phones
is almost 5 GB according to the Mobile Handset Sell-through
Tracker. This work could enable productive and interactive
workflows at the brain region vs. the single neuron scale on
more common devices. However, to truly take advantage of
these compression advantages at scale, a GUI tool for neuron
proofreading should support visualization of VDB grids.

At a project scale, the accurately reconstructed neurons per
animal–the yield–is a fundamental determinant of throughput.
Yield is proportional to labeling density. Recut achieves con-
sistent runtimes proportional to active voxel counts (instead of
bounding volume) without hard to predict timeouts. Effectively
leveraging sparsity in this way is the key to unprecedented
image bounding volume scales.

We can also have predictable tradeoffs between label density
and proofreadability, thus placing the reconstruction bottleneck
back on yield per animal as opposed to image bounding
volumes. Unified designs and simple implementations allow
greater automation with less software infrastructure.

Recut makes large advancements in producing SWCs, the
most common encoding of morphology today. However, richer
or more native encodings such as the output windows may be
more fruitful in combination with future NN-based approaches
for morphological analysis. Recut is already particularly suited
for efficiently generating training data for NN tools which
suffer in this regard. Recut’s output windows can come from

multiple image channels while allowing window enhancements,
filtering, and positioning around neurons of interest.

Recut also assumes proofreading. This keeps humans in the
loop for improving the neuron outputs before analysis. More
aggressive and sophisticated filtering based on morphological
metrics could mitigate or remove the need proofreading in
certain scenarios. This would allow scientists to better leverage
the yield and throughput benefits of this pipeline.

This work aims to place reconstruction automation, hierar-
chical parallel infrastructure and data-oriented programming as
central concerns in the design of future neuroscience pipelines.
Given the right abstraction, we have demonstrated that a high
performance and scalable framework is possible even in unique
and challenging data settings. Though beyond the scope of this
report, this framework is modular and extends to several graph-
based neural kernels in our own pipeline, providing similar
performance and scalability gains. Having correctness, accuracy
and performance isolated and tested automatically allows Recut
to enforce established standards and prevents regressions on
these key principles by new external collaborators. Through
simple design, we can provide a hardware-agnostic scientific
community an open source framework for performance, thus
advancing the possibility of making real-time analysis or
interactive data science frameworks the common workflow.

REFERENCES

[1] H. Zeng and J. R. Sanes, “Neuronal cell-type classification: challenges,
opportunities and the path forward,” Nature Publishing Group, vol. 18,
2017. [Online]. Available: www.nature.com/nrn

[2] R. Cannon, D. Turner, G. Pyapali, and H. Wheal, “An on-line
archive of reconstructed hippocampal neurons,” Journal of Neuroscience
Methods, vol. 84, no. 1-2, pp. 49–54, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0165027098000910

[3] K. Amunts and T. Lippert, “Brain research challenges supercomputing,”
Science, vol. 374, no. 6571, pp. 1054–1055, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.abl8519

[4] C. Magliaro, A. L. Callara, N. Vanello, and A. Ahluwalia, “Gotta trace
‘em all: A mini-review on tools and procedures for segmenting single
neurons toward deciphering the structural connectome,” Frontiers in
Bioengineering and Biotechnology, vol. 7, no. AUG, pp. 1–8, 2019.

[5] L. Acciai, P. Soda, and G. Iannello, “Automated Neuron Tracing Methods:
An Updated Account,” Neuroinformatics, 2016.

[6] J. Yang, M. Hao, X. Liu, Z. Wan, N. Zhong, and H. Peng, “FMST:
an Automatic Neuron Tracing Method Based on Fast Marching and
Minimum Spanning Tree,” Neuroinformatics, vol. 17, no. 2, pp. 185–196,
2019.

[7] L. Feng, T. Zhao, and J. Kim, “neuTube 1.0: A new design for efficient
neuron reconstruction software based on the SWC format,” eneuro,
vol. 2, no. 1, pp. ENEURO.0049–14.2014, jan 2015. [Online]. Available:
https://doi.org/10.1523%2Feneuro.0049-14.2014

[8] H. Zhou, S. Li, A. Li, Q. Huang, F. Xiong, N. Li, J. Han,
H. Kang, Y. Chen, Y. Li, H. Lin, Y.-H. Zhang, X. Lv, X. Liu,
H. Gong, Q. Luo, S. Zeng, and T. Quan, “GTree: an open-source
tool for dense reconstruction of brain-wide neuronal population,”
Neuroinformatics, vol. 19, no. 2, pp. 305–317, aug 2020. [Online].
Available: https://doi.org/10.1007/2Fs12021-020-09484-6

[9] H. Xiao and H. Peng, “APP2: Automatic tracing of 3D neuron
morphology based on hierarchical pruning of a gray-weighted image
distance-tree,” Bioinformatics, vol. 29, no. 11, pp. 1448–1454, 2013.

[10] D. Z. Jin, T. Zhao, D. L. Hunt, R. P. Tillage, C.-L. Hsu, and
N. Spruston, “Shutu: Open-source software for efficient and accurate
reconstruction of dendritic morphology,” bioRxiv, 2019. [Online].
Available: https://www.biorxiv.org/content/early/2019/07/05/226548

[11] M. Radojević and E. Meijering, “Automated neuron reconstruction
from 3d fluorescence microscopy images using sequential monte carlo
estimation,” Neuroinformatics, vol. 17, no. 3, pp. 423–442, Dec. 2018.
[Online]. Available: https://doi.org/10.1007/s12021-018-9407-8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

www.nature.com/nrn
https://www.sciencedirect.com/science/article/pii/S0165027098000910
https://www.science.org/doi/abs/10.1126/science.abl8519
https://doi.org/10.1523%2Feneuro.0049-14.2014
https://doi.org/10.1007/2Fs12021-020-09484-6
https://www.biorxiv.org/content/early/2019/07/05/226548
https://doi.org/10.1007/s12021-018-9407-8
https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

[12] C. Arshadi, U. Günther, M. Eddison, K. I. S. Harrington, and T. A.
Ferreira, “SNT: a unifying toolbox for quantification of neuronal
anatomy,” Nature Methods, vol. 18, no. 4, pp. 374–377, apr 2021.
[Online]. Available: https://doi.org/10.1038%2Fs41592-021-01105-7

[13] D. E. Knuth, “Big omicron and big omega and big theta,” ACM Sigact
News, vol. 8, no. 2, pp. 18–24, 1976.

[14] M. Acton, “Data-oriented design and c++,” 2014. [Online]. Available:
https://www.youtube.com/watch?v=rX0ItVEVjHc

[15] N. Wirth, Algorithms + Data Structures = Programs. USA: Prentice
Hall PTR, 1978.

[16] K. Museth, “Vdb: High-resolution sparse volumes with dynamic
topology,” ACM Trans. Graph., vol. 32, no. 3, Jul. 2013. [Online].
Available: https://doi.org/10.1145/2487228.2487235

[17] M. N. Economo, N. G. Clack, L. D. Lavis, C. R. Gerfen, K. Svoboda,
E. W. Myers, and J. Chandrashekar, “A platform for brain-wide imaging
and reconstruction of individual neurons,” eLife, vol. 5, pp. 1–22, 2016.

[18] S. Jiang, Y. Wang, L. Liu, S. Zhao, M. Chen, X. Zhao, P. Xie,
L. Ding, Z. Ruan, H.-W. Dong, G. A. Ascoli, M. Hawrylycz,
H. Zeng, and H. Peng, “Morphohub: A platform for petabyte-scale
multi-morphometry generation,” bioRxiv, 2021. [Online]. Available:
https://www.biorxiv.org/content/early/2021/04/28/2021.01.09.426010

[19] M. Feathers, Working Effectively with Legacy Code. USA: Prentice
Hall PTR, 2004.

[20] C. Burr, M. Clemencic, and B. Couturier, “Software packaging and
distribution for LHCb using nix,” EPJ Web of Conferences, vol. 214, p.
05005, 2019. [Online]. Available: https://doi.org/10.1051%2Fepjconf%
2F201921405005

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[22] R. Li, M. Zhu, J. Li, M. S. Bienkowski, N. N. Foster, H. Xu, T. Ard,
I. Bowman, C. Zhou, M. B. Veldman, X. W. Yang, H. Hintiryan, J. Zhang,
and H.-W. Dong, “Precise segmentation of densely interweaving neuron
clusters using g-cut,” Nature Communications, vol. 10, no. 1, Apr. 2019.
[Online]. Available: https://doi.org/10.1038/s41467-019-09515-0

[23] L. Kanari, P. Dłotko, M. Scolamiero, R. Levi, J. Shillcock, K. Hess,
and H. Markram, “A topological representation of branching neuronal
morphologies,” Neuroinformatics, vol. 16, no. 1, pp. 3–13, 2017.
[Online]. Available: https://doi.org/10.1007/s12021-017-9341-1

[24] Y. Li, D. Wang, G. A. Ascoli, P. Mitra, and Y. Wang, “Metrics for
comparing neuronal tree shapes based on persistent homology,” PLOS
ONE, vol. 12, no. 8, p. e0182184, Aug. 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0182184

[25] L. Kanari, S. Ramaswamy, Y. Shi, S. Morand, J. Meystre, R. Perin,
M. Abdellah, Y. Wang, K. Hess, and H. Markram, “Objective
morphological classification of neocortical pyramidal cells,” Cerebral
Cortex, vol. 29, no. 4, pp. 1719–1735, Jan. 2019. [Online]. Available:
https://doi.org/10.1093/cercor/bhy339

[26] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “Nxgraph: An
efficient graph processing system on a single machine,” in 2016 IEEE
32nd International Conference on Data Engineering (ICDE), 2016, pp.
409–420.

[27] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:
a language for high-performance computation on spatially sparse data
structures,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, p.
201, 2019.

[28] J. Yang, “An easily implemented, block-based fast marching method
with superior sequential and parallel performance,” SIAM Journal on
Scientific Computing, vol. 41, no. 5, pp. C446–C478, Jan. 2019. [Online].
Available: https://doi.org/10.1137/18m1213464

A. Acknowledgments

We would like to thank the following authors for their
contributions to this work. MZ, CC, HD, CP, WY, YC, ZC,
and JC advised on design and provided helpful discussions and
feedback. CP, CC and WY also provided the mouse imaging
data. CC led the reconstruction proofread efforts. MZ designed
and implemented the backend image IO library and the original
sequential SG, CC, GC, and windowing output stages of the
pipeline. KM designed, implemented and analyzed the Recut
parallel framework and wrote the manuscript. We also thank
Tony Nowatski for his suggestions on an early draft of the paper.

This research is funded under NIH Grant No.: (U01MH117079-
01).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.12.07.471686doi: bioRxiv preprint

https://doi.org/10.1038%2Fs41592-021-01105-7
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://doi.org/10.1145/2487228.2487235
https://www.biorxiv.org/content/early/2021/04/28/2021.01.09.426010
https://doi.org/10.1051%2Fepjconf%2F201921405005
https://doi.org/10.1051%2Fepjconf%2F201921405005
https://doi.org/10.1038/s41467-019-09515-0
https://doi.org/10.1007/s12021-017-9341-1
https://doi.org/10.1371/journal.pone.0182184
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1137/18m1213464
https://doi.org/10.1101/2021.12.07.471686
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Challenges and Related Work
	Accuracy
	Algorithmic Efficiency
	Performance and Resource Utilization
	Scalability
	Automation
	Correctness
	Portability

	Contributions

	Pipeline
	Image Preprocessing (IP)
	Segmentation (SG)
	VDB Conversion (VC)
	Connected Component (CC)
	Signed Distance Field (SDF)
	Tree Compaction (TC)
	Tree Prune (TP)
	Graph Cut (GC)
	Windowing, Visualization and Proofreading
	Morphological Analysis

	Implementation
	Algorithmic Efficiency
	Resource Utilization
	Vertex Representation
	Image Representation
	Coverage Topology
	Overhead
	Memory Leakage
	Sparse Adaptability
	Downsampling Flexibility
	Memory adaptability
	In-Memory Computing

	Scalability
	Automation
	Correctness
	Portability

	Experiments and Results
	Data and Setup
	Accuracy
	Algorithmic Efficiency
	Peak Performance
	Resource Utilization
	Scalability

	Conclusions and Future Work
	References
	Acknowledgments

