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Abstract 

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We 

previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan 

sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic 

agents identified by conventional drug repurposing screens. However, this drug identification 

strategy requires laborious library screening, which is time-consuming and often limited 

number of compounds can be screened. As an alternative approach, we developed and 

trained a graph convolutional network (GCN)-based classification model using information 

extracted from experimentally identified HSPG and actin inhibitors. This method allowed us 

to virtually screen 170,000 compounds, resulting in ∼2000 potential hits. A hit confirmation 
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assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active 

compounds. Among them, 16 compounds had modest to strong inhibitory activities against 

the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a 

GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors 

against validated drug targets. 

 
 

Introduction 

 

Since the outbreak of the COVID19 pandemic, global communities have suffered a signifi- 

cant loss of lives and economic growth. Although the development of COVID vaccines can 

significantly contain the spreading of SARS-CoV-2, the virus is constantly evolving into 

more infectious and transmissible variants (e.g., the delta strain), resulting in infrequent 

breakthrough infections among vaccinated people.1–5 The constant increase of hospitalized 

patients in the USA and around the world despite the rollout of the vaccination programs 

has summoned the need to develop potent small molecule therapeutics for COVID patients. 

The cellular entry of SARS-CoV-2 is one of the key steps in the viral life cycle that 

represents a hot target for small molecule inhibitors.6,7 The entry of SARS-CoV-2 requires 

the interaction of the glycosylated viral Spike protein with the angiotensin-converting en- 

zyme 2 (ACE2) receptor on the cell surface. 8–12 Previously, we and others identified the cell 

surface heparan sulfate proteoglycans (HSPGs) as a critical factor that facilitate the entry 

of SARS-CoV-2 virions. 8,9 We further showed that HSPGs also facilitate the uptake of 

other positive charge-bearing endocytic cargos such as supercharged GFP and preformed 

α-Synuclein pathogenic fibrils.13 HSPGs are a family of glycoproteins bearing one or more 

negatively charged polysaccharide chains consisting of repeated heparan sulfate disaccharide 

units. Most HSPG family members are anchored to the cell surface either as a single spanning 

membrane protein (e.g., Syndecans) or Glycosylphosphatidylinositol (GPI) -anchored pro- 

tein (e.g., Glypicans). Due to the enrichment of negatively charged sulfate groups, HSPGs 
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can effectively serve as an attachment anchor to increase the surface dwell time for en- 

docytic cargos bearing positive charges, facilitating their engagement with a downstream 

receptor.6,13,14The internalization of HSPG cargos also requires the cortex actin network, 

which maintains plasma membrane dynamics to promote the maturation of clathrin-coated 

pits.13 

We recently conducted a drug repurposing screen, which identified 8 drugs that inhibited 

HSPG-dependent entry of SARS-CoV-2 virions. Intriguingly, despite structural dissimilarity, 

several of the identified drugs can all bind directly to heparin, a heparan sulfate analog, 

suggesting that they may target the polysaccharide chain on the cell surface of HSPG to 

inhibit viral entry. In addition to heparin-binding drugs, two structurally unrelated drugs, 

Sunitinib and BNTX, can both effectively disrupt the actin filaments underlying the plasma 

membrane (cortex actin) to inhibit HSPG-mediated endocytosis. 9–12 

While drug repurposing screen is an effective strategy to rapidly adopt existing drugs 

for new therapeutic uses, the original target(s) of the approved drugs often reduces their 

therapeutic specificity, which may cause undesired side effects for treating diseases like vi- 

ral infection. For example, as a heparan sulfate binding compound, mitoxantrone delivers 

the most potent antiviral activity in vitro. However, because mitoxantrone was originally 

approved as anti-cancer chemotherapy via targeting the DNA topoisomerase,15 cytotoxicity 

associated with DNA replication inhibition is an obvious concern. 

We postulate that drugs bearing partial structural elements from the identified HSPG 

and actin inhibitors may retain the endocytosis inhibition function but fail to act on the 

original target(s), and therefore be more specific. In this regard, conventional structure- 

activity-relationship (SAR) studies, albeit labor-intensive and time-consuming, often yield 

unpredictable results. To identify additional inhibitors targeting HSPG-mediated viral entry, 

we developed a graph convolutional network (GCN)-based classification approach. GCN 

can efficiently translate 3D structures into molecular graphs composed of nodes and edges, 

and then utilize these graphs to extract spatial information to achieve accurate molecular 
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classification and properties predictions. 16–19 Compared to other traditional computational 

methods based on molecular dynamics (MD) simulations or density functional theory (DFT), 

the computational cost of GCN is substantially lower. These features allowed us to rapidly 

screen 17,000 compounds in several NCATS libraries. From these libraries, we identified 

and confirmed a set of compounds (256) as inhibitors of HSPG-dependent endocytosis with 

the most potent IC50 value at 0.95 µM. Further testing with a SARS-CoV-2 pseudotyped 

particle entry assay confirmed 16 compounds as entry inhibitors. 

 
 

Methods 

Computational details 

GCN model 

GCN-based approaches display considerable robustness for structural elucidations, 16–19 be- 

cause it could fully utilize the molecular graphs for information extraction with substantially 

reduced computational cost. 20–27 In addition, such an architecture is also flexible enough to 

include different chemical knowledge for specific assignments.20,28–37 In this study, we em- 

ployed the self-developed GCN package for activity classifications. The workflow of the 

applied GCN was described in Figure 1. For any given drug molecule, its structural informa- 

tion was contained in the simplified molecular-input line-entry system (SMILES) string, and 

GCN can transform the molecular graph into a set of numerical descriptors for computational 

processing. 

All the collected SMILES strings of drug molecules were first translated into molecular 

graphs through the TencentAlchemyDataset within Deep Graph Library (DGL) library. 38,39 

Each drug molecule is composed of edges and nodes within 3D space. Within the frame- 

work of GCN, the nodes are more associated with atomic features, while the edges are 

corresponding to bonding descriptors. Thus, molecular graphs with full connections can 
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Figure 1: The architecture of GCN classification model for virtual screenings. 
 

reasonably represent drugs’ 3D structures. And with the numerically solved drugs’ struc- 

tures, related molecular properties can be well mapped. In fact, within any molecular or 

fragmentary graphs, all the connections between every two atoms are fully utilized for infor- 

mation extraction; the specific values were recorded in distance tensors at the radial basis 

function (RBF) layer, guaranteeing there is no omission of important structural informa- 

tion. In addition, within GCN model, to decently solve molecular graphs at atomic level, 

multiple continuous-filter convolutions (cfconv) layers were employed to optimize and record 

the inter-atomic evolution. For instance, at k+1 layer, the i th atom’s evolution can be 

expressed with the following equation: 

 

ak+1 = 
   

ak � ω
k(dij) (1) 

 

 

in which, � represents element-wise multiplication, and ωk is the filter-generation that 

can map the atoms’ descriptions to the filter bank. To efficiently control the evolution 

accuracy via the applied the filter values, a Gaussian-type function, gaussk, was employed, 

j=0 
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which can be expressed with the following equation: 
 

 

gaussm(lij) = exp(−α(lij − µm)2) (2) 

where, µm is the pre-set value of cutoff, and lij represents the bonding distance among 

the i th atom and j th atom. The α is attributed to hyper parameters, and it was set to 0.1 

in this study. 40 

For any predictive property or classification task, the computed value, Pro, by GCN 

model is calibrated with respect to experimental measurement, Pro , and the accuracy can 

be well indicated by the squared loss function, as shown below: 

 

L(Pro, Pro ) = (Pro − Pro )2 (3) 

In this study, we applied the developed GCN package for drugs activity classification; 

however, it is worth noting that this promising architecture is also able to include various 

kinds of chemical & physical knowledge for more challenging structural assignments. 

 

Data set 

 

We applied the above-described GCN model to a previously reported COVID-19 related drug 

screening, which identified drugs that block HSPG-dependent entry of α-Synuclein fibrils. 

Classification algorithm was based on NCATS’ collected activity values. The model was 

first trained by the collected data, which consisted of 3,832 compounds. Among them, 367 

compounds show activities and 3,465 are inactive. These compounds were randomly divided 

with a ratio of 9:1; and 90% was used as the training set, and the remaining 10% as the 

test set. The trained GCN model was validated by the compounds in the test set, which 

scored an accuracy of 99.5%. The trained model was then used to screen more than 170,000 

compounds contained in three independent libraries, Genesis, Sytravon, and NPACT, none 

of which had been experimentally screened by endocytosis or SARS-CoV-2 PP entry assays. 
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α-Synuclein fibrils uptake assay and drug verification 

Fluorescence labeled alpha-synuclein fibrils were generated as previously described. 13 HEK293T 

cells were dispensed into black, clear-bottom 1536-well microplates (Greiner BioOne, # 

789092-F)) at 5000cells/well in 5L media with 200nM pHrodo red-labeled α-Syn fibrils and 

incubated at 37°C, 5% CO2, 85% humidity overnight (∼16 h). Compounds picked from the 

virtual screen were titrated 1:3 with 11 points in DMSO and transferred to assay plates at a 

volume of 23 nl/well by an automated pintool workstation (Wako Automation, San Diego, 

CA). After 24 h of incubation, the fluorescence intensity of pHrodo red was measured by a 

CLARIOstar Plus plate reader (BMG Labtech). Data was normalized using the wells with 

cells containing 200nMpHrodo red-labeled Syn fibrils as 100% and the wells without cells as 

0%. 

 
 

Image processing and statistical analyses 

 

Confocal images were processed using the Zeiss Zen software. To measure fluorescence 

intensity, we used the Fiji software. Images were converted to individual channels and regions 

of interest were drawn for measurement. Statistical analyses were performed using either 

Excel or GraphPad Prism 9. Data are presented as means ± SEM, which was calculated by 

GraphPad Prism 9. P values were calculated by Student’s t-test using Excel. Nonlinear curve 

fitting and IC50 calculation was done with GraphPad Prism 9 using the inhibitor response 

three variable model or the exponential decay model. Images were prepared with Adobe 

Photoshop and assembled in Adobe Illustrator. All experiments presented were repeated at 

least twice independently. Data processing and reporting are adherent to the community 

standards. 

 

SARS-CoV-2 PP assay 

 

HEK293T-ACE2-GFP cells seeded in white, solid bottom 384-well microplates (Greiner 

BioOne) at 6,000 cells/well in 15 µL medium were incubated at 37°C with 5% CO2 overnight 
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(∼16 h). Compounds were titrated 1:3 with 11 points in DMSO and dispensed into the 

assay plate at 23 nl/well via pintool. Cells were incubated with compounds for 1h at 37°C 

with 5% CO2 before 15 µl/well of PPs were added. The plates were then spinoculated by 

centrifugation at 1,500 rpm (453 x g) for 45 min and incubated for 48h at 37°C 5% CO2 

to allow cell entry of PPs and the expression of luciferase. After the incubation, the super- 

natant was removed with gentle centrifugation using a Blue Washer (BlueCat Bio). Then 20 

µL/well of Bright-Glo luciferase detection reagent (Promega) was added to assay plates and 

incubated for 5 min at room temperature. The luminescence signal was measured using a 

PHERAStar plate reader (BMG Labtech). Data were normalized with wells containing PPs 

as 100% and wells containing control DEnv PP as 0%. 

 

ATP content cytotoxicity assay 

HEK293T-ACE2-GFP cells were seeded in white, solid bottom 384-well microplates (Greiner 

BioOne) at 6,000 cells/well in 15 µl medium and incubated at 37°C with 5% CO2 overnight 

(∼16 h). Compounds were titrated 1:3 in DMSO and dispensed via pintool at 23 nl/well 

to assay plates. Cells were incubated for 1 h at 37°C 5% CO2 before 15 µl/well of media 

was added. The plates were then incubated at 37°C for 48h at 37°C 5% CO2. After incu- 

bation, 30 µl/well of ATPLite (PerkinElmer) was added to assay plates and incubated for 

15 min at room temperature. The luminescence signal was measured using a Viewlux plate 

reader (PerkinElmer). Data were normalized with wells containing cells as 100%, and wells 

containing media only as 0%. 

 

 

Results and discussion 

 

The overall performance of the GCN model 
 

Unlike traditional computational drug discovery methods such as structural homology-based 

drug search, the GCN classification model utilizes molecular graphs to extract spatial infor- 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471787


9 
 

mation. The modeling process computes in bonding environment at atomic or inter-atomic

level within a fully connected framework as opposed to utilizing simple descriptors. As a

result, the structural features of drug molecules can be well captured and built from low-level

logic,35,40 making no emission of important possibilities. This method results in a robust per-

formance with the classification accuracy as high as 99.5% for training set (the workflow was

described in Figure 2). Additionally, the identified new compounds generally show struc-

tural dissimilarity to the training compounds, further highlighting its unique architecture

compared to other structural assignment-based approaches. 

 

 

Drug libraries GCN model Exptl. confirmation Potent Comps 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The workflow of GCN classification model upon endocytosis screenings. 
 
 

 

Identification of inhibitors for HSPG-mediated endocytosis 

We used the GCN-based model to screen 170,000 compounds. ∼2000 compounds were short-

listed by the virtual screen, which generated a small library that could be rapidly processed

by a conventional quantitative high-throughput screen (qHTS) (Figure 3a). We then em-

ployed pHrodo red labeled α-Synuclein fibrils as an HSPG cargo in a combination screen

because α-Synuclein fibrils share a similar entry mechanism as SARS-CoV-2.13 Importantly

the fluorescence intensity of cells treated with pHrodo-labeled α-Synuclein fibrils is only de-

pendent on the amount of internalized cargo and the endolysosomal pH. By comparison, the
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Figure 3: Identification of inhibitors for HSPG-mediated endocytosis: (a). The workflow 
of α-Synuclein fibrils uptake assay for confirmation of hits from virtual compound screen. 
(b). A summary of the activities of the top 10 compounds, IC50 was determined by titration 
experiments. (c). Dose-response curves of compound’s inhibitory effect on α-Synuclein fibrils 
uptake. (d). Measured fluorescence intensity of internalized α-Synuclein fibril-Alexa596 by 
U2OS cells treated with compound at 2-fold of its IC50. The experimental repeat number 
is 3. 
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luciferase-based pseudoviral entry assay can be influenced not only by the level of viral entry, 

but also by other factors that impact mRNA expression, translation, and luciferase stability. 

The screen identified 256 active compounds with most potent IC50 value of 0.95 uM. We 

cherry-picked 10 top compounds based on their potency and structural novelty (Figure 3b), 

and measured their cytotoxicity by an ATP content assay. The results showed that for 4 out 

of the 10 compounds, the IC50 for cytotoxicity was at least 10-fold larger than that for the 

inhibition of α-Synuclein fibril uptake (Figure 3b and c), suggesting a safety window for the 

usage of these drugs as endocytosis inhibitors. 

To rule out false-positive hits due to compound-induced changes in lysosomal pH, which 

could reduce the fluorescence of internalized α-Synuclein fibrils, we measured the uptakes of 

α-Synuclein fibrils labeled with a pH-insensitive dye (Alexa596) in U2OS cells. When cells 

were treated with the top 10 inhibitors at concentrations 2-fold higher than their respective 

IC50 values, we found that all compounds tested could significantly inhibit the uptake of α-

Synuclein fibrils compared to control treated cells (Figure 3d). These results suggest that 

these chemicals are indeed endocytosis inhibitors that block HSPG-mediated entry of α- 

Synuclein fibrils. We then treated cells with increased concentrations of NCGC00411718 

and NCGC00159478, which showed the highest inhibition on the entry of pHrodo-labeled α- 

Synuclein fibrils. Drug-treated cells were incubated with Alexa596-labeled α-Synuclein fibrils 

in the presence of the inhibitor for 2 hours and imaged by a confocal microscope. The results 

suggest that both compounds inhibit α-Synuclein fibril uptake in a dose dependent manner 

with IC50 comparable to that measured by pHrodo-labeled α-Synuclein fibrils (Figure 4a-d). 

 

Identification of SARS-CoV-2 entry inhibitors 
 

To test whether the newly identified endocytosis inhibitors could inhibit the entry of SARS- 

CoV-2, we used a previously established pseudotyped particle entry assay (Figure 5a). As 

shown previously,6 the entry of the pseudoviral particles into cells results in the expression of 

the luciferase reporter. To control the impact of ACE2-GFP expression levels on viral entry 
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Figure 4: Identification of new endocytosis inhibitors targeting HSPG-mediated endocytosis. 
(a). NCGC00411718-01 inhibits of α-Synuclein fibril-Alexa594 uptake by U2OS cells in a 
dose dependent manner. (b). NCGC00159478-04 inhibits of α-Synuclein fibril-Alexa594 
uptake by U2OS cells in a dose dependent manner. (c and d). Quantification of internalized 
α-Synuclein fibril-Alexa594 fluorescence intensity with compound treatment. Error bars 
indicate SEM. The experimental repeat number is 2. 

 

under drug-treated conditions, we normalized the luciferase signals by the ACE2-GFP level. 

We also measured the cytotoxicity of these chemicals in ACE2-GFP expressing cells using an 
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ATP-based cell viability assay. We analyzed the top 27 compounds from the 256 inhibitors 

identified from the α-Synuclein fibril uptake screen. Among them, 16 in total showed an 

inhibitory activity against the viral entry with the most potent IC50 value of 0.76 µM. It is 

notable that some toxicity was observed for these compounds in HEK293T-ACE2-GFP cells 

after 48 hr treatment. The viral inhibition and cytotoxicity curves of the top 6 compounds 

are shown in Figure 5b. 
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Figure 5: Identification of SARS-CoV-2 entry inhibitors: (a). The experimental scheme 
for inhibitor testing in HEK293T-ACE2-GFP cells. (b). Dose-responsive titration of com- 
pound’s inhibitory effect on SARS-CoV-2 entry and cytotoxicity. The experimental repeat 
number is 3. 
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Figure 6: NCGC00115755-02 targets cellular actin cytoskeleton: (a). Cells treated with 
NCGC00115755-02 at the indicated concentrations were incubated with Alexa594-labeled α- 
Synuclein fibrils for 2 hours. Cells were stained with Phalloidin-Alexa488 in green to detect 
actin filaments and DAPI in blue to reveal the nuclei and then imaged. Note that cells 
treated with the drug has reduced level of internalized α-Synuclein fibrils. NCGC00115755- 
02 treatment also causes the disassembly of actin stress fiber and generates large actin 
aggregates. (b). Quantification of Alexa594-labeled α-Synuclein fluorescence intensity in a. 
Error bars indicate SEM. The experimental repeat number is 2. 

 

NCGC00115755 inhibited SARS-CoV-2 pseudotyped particle entry by disrupt- 

ing actin filaments 

We previously showed that the actin network under the plasma membrane is critical for 

the entry of HSPG-dependent endocytosis cargos including SARS-CoV-2. 6,13 We therefore 
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asked whether any of the newly identified endocytosis could inhibit the actin cytoskeleton. 

To this end, we stained U2OS cells with Alexa488-labeled phalloidin, an actin binding dye. In 

control-treated cells, actin filaments were readily detected, which often run in parallel (Figure 

6a). When cells treated with the top 10 endocytosis inhibitors were stained by Alexa488- 

labeled phalloidin, we observed dose-dependent disruption of cortex actin filaments only in 

NCGC00115755-02-treated cells by confocal fluorescence microscopy (Figure 6a) and it has 

anti-pseudotyped particle activity at IC50 of 5 M. Live cell imaging of cells expressing GFP- 

tagged Tractin, an actin binding reporter showed that untreated cells contain, in addition to 

stress fibers, many actin nucleation sites near the plasma membrane, which assemble comet 

tails (Supplementary videos). By contrast, in drug treated cells, the number of actin stress 

fibers were significantly reduced and actin comet tails were barely detectable (Supplementary 

videos). Altogether, these findings suggest that NCGC00115755-02 disrupts actin filament 

assembly, resulting in an endocytosis defect. 

 
 

Conclusion 
 

Machine learning-based virtual screening technologies have the potential to efficiently select 

drug candidates for specific targets with high accuracy at an affordable cost, and therefore, 

is an important complementary strategy to conventional high-throughput small molecule 

screening (HTS). SARS-CoV-2 viruses co-opt a cellular endocytosis pathway to enter human 

airway epithelial cells. This key viral entry step has been subjected to conventional drug 

repurposing screens, yielding several viral entry inhibitors. In this study, we developed and 

trained a GCN model using the structural information from previously identified SARS- CoV-

2 entry inhibitors. When this model was applied to untested chemical libraries, it can 

efficiently select compounds with high probability of showing an anti-SARS-CoV-2 activity. 

This model, when combined with conventional drug screening assays, generates a powerful 

platform that allows rapid identification of new SARS-CoV-2 entry inhibitors. In principle, 
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this platform can be applied to any drug targets, which can quickly expand the existing 

inhibitor repertoire of any class. The findings shown in this study have revealed a promising 

venue for accelerated drug development. 
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