
Life history adaptations to fluctuating environments: Combined effects of1

demographic buffering and lability of demographic parameters2

Christie Le Coeur∗1, Nigel G. Yoccoz2, Roberto Salguero-Gómez3, and Yngvild3
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Abstract10

Demographic buffering and lability have been identified as adaptive strategies to optimise fit-11

ness in a fluctuating environment. These are not mutually exclusive, however we lack efficient12

methods to measure their relative importance for a given life history. Here, we decompose the13

stochastic growth rate (fitness) into components arising from nonlinear responses and variance-14

covariance of demographic parameters to an environmental driver, which allows studying joint15

effects of buffering and lability. We apply this decomposition for 154 animal matrix population16

models under different scenarios, to explore how these main fitness components vary across17

life histories. Faster-living species appear more responsive to environmental fluctuations, ei-18

ther positively or negatively. They have the highest potential for strong adaptive demographic19

lability, while demographic buffering is a main strategy in slow-living species. Our decomposi-20

tion provides a comprehensive framework to study how organisms adapt to variability through21

buffering and lability, and to predict species responses to climate change.22

23

Keywords: comparative study, convexity, demographic buffering, demographic lability, envi-24

ronmental variance, climate change, matrix population model, nonlinearity, temporal covari-25

ance, stochasticity26
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Introduction27

Understanding life history adaptations to fluctuating environments is increasingly important,28

as anthropogenic climate change is altering the temporal variability of multiple climatic drivers29

(IPCC, 2021; Laufkötter et al., 2020; Pendergrass et al., 2017). For instance, while an increased30

variance in daily and seasonal temperature and precipitation is expected across much of Europe31

in summer, a decrease is projected in other regions (Huntingford et al., 2013; IPCC, 2021; Kotz32

et al., 2021; Pendergrass et al., 2017). Fluctuations in abiotic and biotic environmental drivers33

experienced by organisms may affect their relative fitness and select for specific adaptations to34

live in variable environments.35

Two main processes have been identified as adaptations to environmental variability, opti-36

mizing fitness: Demographic buffering reduces the variance in demographic parameters (e.g.,37

survival, fertility), thereby minimizing the effects of bad environments (Morris & Doak, 2004;38

Hilde et al., 2020), while demographic lability lets the organisms take advantage of good envi-39

ronments by mounting a large increase in some demographic parameters compared to an average40

or bad environment, and therefore increasing their mean (Koons et al. 2009; Jongejans et al.41

2010; Barraquand & Yoccoz 2013; see Box 1 for Glossary). The two processes are not mutually42

exclusive but can be selected simultaneously, so that different demographic parameters of a43

given life history can show different responses to an environmental driver. Yet, these processes44

have often been investigated separately, and we lack efficient methods to disentangle and pre-45

dict their relative importance for a given life history and environment. To understand how46

organisms combine lability and buffering of their demographic parameters to enhance fitness47

in varying environments, we need a demographic model framework to predict two main fitness48

components: i) the effects of nonlinearity in responses of all demographic parameters to an49

environmental driver, and ii) the effects of variance-covariance of these parameters. While the50

latter is well described in stochastic demographic theory (Lande et al., 2003), we know much51
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less about the impacts of nonlinearity, representing the potential for adaptation to varying52

environments through lability.53

A key prediction from classical theory for evolutionary bet-hedging and stochastic popu-54

lation growth is that the long-term fitness will be reduced if the temporal variance of fitness55

is increased (Lewontin & Cohen, 1969). This result is assuming an unstructured population56

with annual population growth rates that are IID (independently and identically distributed).57

The fitness is then the logarithm of the geometric mean of these growth rates (Lewontin &58

Cohen, 1969). In structured populations, the stochastic growth process is more complex due59

to fluctuations in the (st)age structure that introduce autocorrelation in the annual growth60

rates (Caswell, 2001). Still, under the assumption of small fluctuations in the demographic61

parameters, Tuljapurkar (1982) derived an important approximation of long-term growth rate62

in stage-structured populations, emphasising how the variance in fitness is linked to variances63

and covariances of demographic parameters in different stages (equation 1). The key conclusion64

from this approximation is that temporal variability in demographic parameters and/or positive65

covariance will have a negative effect on fitness, and should be selected against, in particular66

for demographic parameters that have a large impact on fitness in the mean environment. Ac-67

cordingly, the demographic buffering hypothesis predicts that natural selection should favour68

a reduction in variance of the demographic parameters with the strongest influence on popu-69

lation growth (Boyce et al., 2006; Gaillard & Yoccoz, 2003; Hilde et al., 2020; Pfister, 1998;70

Tuljapurkar & Orzack, 1980).71

However, positive effects of environmental variability have also been demonstrated under72

strong negative covariance among demographic parameters (Colchero et al., 2019; Doak et al.,73

2005; Tuljapurkar, 1990), negative environmental autocorrelation (Tuljapurkar, 1982), and con-74

vex relationships between demographic parameters and the environment. The latter represents75

a case of adaptive lability as described by Koons et al. (2009). In contrast to adaptive demo-76

graphic buffering, which optimizes fitness by reducing the variance of most influential demo-77
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graphic parameters, lability can be adaptive if the benefit of an increase in the arithmetic mean78

of the annual growth rates through increased demographic parameter means can overcome the79

negative effect of increased demographic variance on fitness (Box 1). Nonlinearity in population80

and demographic parameter responses to environmental drivers may be common in the wild81

(Barraquand & Yoccoz, 2013; Clark & Luis, 2020; Dahlgren et al., 2011; Drake, 2005; Hansen82

et al., 2021; Jenouvrier et al., 2012; Lawson et al., 2015; Louthan & Morris, 2021; Mysterud83

et al., 2001), highlighting the potential importance of lability as an adaptation to environmen-84

tal variability. However, with structured life histories the combined effects of nonlinearity in85

different demographic parameters on fitness are challenging to predict (Koons et al., 2009).86

Somewhat contrasting predictions have been made as to which demographic parameters87

should be labile or buffered, and the relative importance of each process for a given life history.88

Demographic lability has been suggested to affect mainly the demographic parameters with89

least effect on fitness (Hilde et al., 2020), as a consequence of selection for buffering of more90

influential demographic parameters. Other studies suggest that lability can be equally impor-91

tant to demographic buffering, and that it can also occur in highly influential demographic92

parameters (Jongejans et al., 2010; Koons et al., 2009; McDonald et al., 2017). Based on the93

latter prediction, recent research suggests that adaptive lability and buffering can be located94

at the opposite ends of a continuum, encompassing a wide range of demographic strategies95

(Salguero-Gómez, 2021; Santos et al., 2021). Yet, the extent to which lability among the least96

or the most influential demographic parameters can be adaptive strategies for coping with vary-97

ing environments, relative to buffering, remains largely unexplored (e.g., Barraquand & Yoccoz98

2013).99

We thus need a more thorough understanding of how the opportunity for selection on de-100

mographic buffering and lability depends on major axes of life history variation such as the101

slow-fast continuum (Stearns, 1992; Gaillard et al., 2016; Salguero-Gómez et al., 2016b). For102

instance, populations of fast-living species have been predicted to be more responsive to envi-103
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ronmental variability than those of slow-living species, and to be more likely to show adaptive104

lability in their demographic parameters (Dalgleish et al., 2010; Iles et al., 2019; Koons et al.,105

2009; Morris et al., 2008). According to demographic buffering hypothesis, species towards the106

slow end of the continuum benefit most from reduced variance in annual survival of the ma-107

ture stages, while fast-living species gain relatively more from reduction of variance in annual108

fertility and/or survival of the immature stages (Hilde et al., 2020; Gaillard & Yoccoz, 2003;109

Rotella et al., 2012). These effects can be predicted from Tuljapurkar’s small noise approxi-110

mation (Tuljapurkar, 1982; equation 1), but we lack a similar expression to describe the net111

impact of nonlinearity in different demographic parameters of the same life history. Here, we112

introduce a new ’nonlinearity index’ to predict changes in the arithmetic mean arising from non-113

linearity in different demographic parameter responses to an explicit environmental driver. We114

decompose the stochastic growth rate into contributions from nonlinearity effects and variance-115

covariance effects. We then apply the decomposition to study how organisms may combine116

adaptive buffering and lability responses depending on generation time, which closely correlates117

with the species’ position along the slow-fast continuum (Gaillard et al., 2005). We use pop-118

ulation models from the COMADRE animal matrix database (Salguero-Gómez et al., 2016a)119

as a starting point for our calculations, representing a broad range of life histories in the mean120

environment. We then add stochastic environmental variation and perform the decomposition121

under different scenarios for nonlinearity and covariance among demographic parameters (Fig.122

1). Our study provides a method to disentangle the effects of buffering and lability for any123

given life history, and the subsequent analysis addresses two main questions: First, what is the124

opportunity for positive effects due to adaptive lability to overcome negative impacts through125

the variance-covariance of demographic parameters, and how does this pattern depend on gen-126

eration time? Second, are demographic parameters that show adaptive lability typically the127

least or most influential demographic parameters for fitness?128
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Material and methods129

To explore fitness responses to environmental variability along the slow-fast continuum, we de-130

composed the long-term stochastic growth rate ln(λs), a measure of fitness (Tuljapurkar, 1990;131

Caswell, 2001; Lande et al., 2003), into main components capturing effects of nonlinearity in132

demographic parameters as a function of an environmental driver z, and effects of variance-133

covariance among the parameters. Our approach builds on Tuljapurkar’s approximation which134

assumes linear relationships between demographic parameters and an IID environmental vari-135

able: (Tuljapurkar, 1990):136

ln(λs) ≈ lnλ0 − σ2, with σ2 =
V ar(λt)

2λ2
0

. (1)

Here λ0 is the arithmetic growth rate in the mean environment, which is assumed equal to the137

mean arithmetic growth rate λ̄ (ignoring non-linear responses), while V ar(λt) is the variance138

in annual population growth caused by temporal variance and covariance in the demographic139

parameters. We show in the next section that including nonlinear effects of the environment on140

demographic parameters mainly affects ln(λs) through the mean arithmetic growth rate λ̄, but141

also through the variance-covariance term. After defining main components of the stochastic142

growth rate, we perform a theoretical exploration of how the different components will vary143

across generation time, using different scenarios regarding nonlinear functions for survival and144

fertility (Fig. 1A-C). We also confront hypotheses about demographic lability, through scenarios145

that specifically consider effects of nonlinearity in the demographic parameters of immature or146

mature individuals only, keeping other parameters constant (’forced buffering’ scenarios, Fig.147

1C). All simulations and calculations were performed in R, version 4.0.3 (R Core Team, 2020).148

R code is provided in Supporting information S7.149

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2022. ; https://doi.org/10.1101/2021.12.09.471917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471917
http://creativecommons.org/licenses/by-nc-nd/4.0/


Decomposing the stochastic growth rate with nonlinear effects150

We assume that the environment at each time step is described by a stochastic variable z151

(IID), with mean 0 and variance σ2
z . Population growth from one time step to the next is152

given by nt+1 = A(zt)nt, where nt is the vector containing the number of individuals in each153

stage at time t, and A(z) is the population projection matrix. Elements of A(z) are the154

demographic parameters describing survival, fertility and transitions as functions of z. To155

derive the stochastic growth rate, we approximate this projection matrix using A(z) ≈ A(0) +156

σ2
z
2 A′′(0) + ε, where ε is the matrix describing the noise terms with mean elements 0, A(0) is157

the projection matrix of the mean environment (with asymptotic growth rate λ0) and A′′(0) =158

A′′(z)|z=0 contains the second derivatives of elements of A(z). Using this second derivative159

matrix, we define a nonlinearity index (Supporting information S3)160

D = vA′′(0)u =
∑
ij

dλ0

dAij(0)
A′′

ij(0), (2)

which measures the overall degree of nonlinearity in the life history defined by A(z). A positive161

D indicates adaptive lability. A matrix element (i.e., demographic parameter) with strong162

convex curvature may still have a low impact on D if the corresponding sensitivity of λ0 to that163

element is low, and vice versa.164

Applying a Taylor approximation to the mean change of the logarithm of the total repro-165

ductive value Vt =
∑

j nj,tvj (where reproductive values v are calculated for the matrix A(0)),166

we show in Supporting information S3 that the stochastic growth rate is given by167

ln(λs) = E[lnVt+1 − lnVt|Vt] ≈ lnλ0 +
σ2
z

2λ0
D

(
1− σ2

z

4λ0
D

)
︸ ︷︷ ︸

ln λ̄− lnλ0

− σ2
z

2λ2
0

(
B +

σ2
z

2
C

)
︸ ︷︷ ︸

σ2

(3)

where D is the nonlinearity index defined above, B =
∑

ij

∑
kl

dλ0
dAij(0)

dλ0
dAkl(0)

A′
ij(0)A

′
kl(0) (where168
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A′(0) = A′(z)|z=0 is the matrix of first derivatives), and169

C =
∑

ij

∑
kl

dλ0
dAij(0)

dλ0
dAkl(0)

A′′
ij(0)A

′′
kl(0). The stochastic growth rate is thus decomposed into170

the growth rate in the mean environment, lnλ0, plus two additive terms describing changes171

mainly due to nonlinearity (ln λ̄− lnλ0), and changes mainly due to variance-covariance (σ2) of172

demographic parameters in a stochastic environment. The first term can be positive or negative,173

depending on the nonlinearity index D, and can be further decomposed into effects of survival174

and fertility coefficients (code in Supporting information S7). The second term corresponds175

largely to the variance-covariance term in the approximation of Tuljapurkar (1982), except that176

here there is also a small effect of nonlinearity through C. However, the effect of nonlinearity177

on the second term is very small compared to the effect of nonlinearity on the mean, therefore178

we refer to the first term as the nonlinearity component and second term as the variance-179

covariance component. In the Supporting information S4 we demonstrate the accuracy of this180

approximation using simulations.181

Applying the decomposition182

To explore life history variation in the main components of the stochastic growth rate, we used183

age- and stage-structured matrix population models (MPMs) from the COMADRE Animal Ma-184

trix Database (v.4.20.5; Salguero-Gómez et al., 2016a) as a starting point, considering different185

scenarios for effects of the environment z on the demographic parameters. Each MPM includes186

a projection matrix that depends on the (st)age-specific fertilities, transitions, and survival rates187

for a given time interval (see Fig. 1). We let this projection matrix represent the matrix in188

the mean environment, A(0). We selected MPMs from unmanipulated and free-ranging pop-189

ulations, considering only ’mean’ matrices (i.e., one matrix per population) with annual time190

steps. Before the analysis we standardized all MPMs to have λ0 = 1 by dividing each matrix191

element by λ1 calculated from the original matrix (see Supporting information S1 for complete192

description of selection criteria). One hundred fifty-four MPMs were selected, describing two193
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amphibian, 35 bird, 22 bony fish, three insect, 61 mammal, and 31 reptile populations, belong-194

ing to 107 species. Generation time was calculated as the mean age of parents at the stable195

(st)age distribution (Bienvenu & Legendre, 2015) and ranged from 1.1 years to 265.6 years.196

Nonlinear relationships - We added environmental effects to the survival and fertility coeffi-197

cients. Since some models were stage-structured, we first separated out the two matrices contain-198

ing these coefficients: Each stage structured projection matrix can be written as A = GS+QB199

(Vindenes et al., 2021). Here G and Q are matrices describing the stage transition rates of200

individuals and new offspring, respectively, assumed constant in our analysis. The matrix B201

contains the stage-specific fertility coefficients fj(z) on the diagonal and zeroes elsewhere, while202

the matrix S contains stage-specific survival rates sj(z) on the diagonal and zeroes elsewhere.203

For each MPM, we chose a link function for the survival rates sj(z) (logistic or loglog link)204

and a link function for the fertility coefficients fj(z) (logistic, loglog, or log link), defining the205

relationship of A(z) to the environmental driver z. For each scenario we defined different link206

functions (Fig. 1B-C), where sj(0) and fj(0) corresponded to the values from the standardized207

MPM in COMADRE. For instance, with a loglog link function, the survival rates are defined208

as sj(z) = exp(− exp(−β0 − βzSz)), and the parameter β0 is defined as β0 = − ln(− ln(sj(0))).209

The parameter βzS defines the strength of the environmental effect on sj(z), and affects the210

curvature and variance of survival probability in stage j (Fig. 1A; Fig. S6 shows survival211

and fertility coefficients for different βzS and βzF values). Fertility coefficients are defined in a212

similar way, but here we also defined a maximum MaxF = M ∗ fj(0) with M = 2.5 (results213

for different values of M are shown in Supporting information S5), so that the fertility in the214

mean environment was set as a proportion of the maximum fertility. The values in the mean215

environment sj(0) and fj(0), defined by the standardized MPM, affect the second derivatives216

of the link functions (Fig.1A and Fig.S2). A complete description including equations for all217

link functions and their derivatives is provided in Supporting Information S2 and S7.218

To limit the number of scenarios we made the simplifying assumption that survival rates of219
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different (st)ages all have the same value of βzS , and similarly all fertility coefficients have the220

same βzF . This means that there is always positive covariance among survival rates of different221

(st)ages and among fertilities of different (st)ages, while covariance between survival and fertility222

is controlled in our scenarios by the sign of βzS and βzF . These assumptions are biologically223

relevant for populations where individuals of different (st)ages live in the same environment,224

and where survival of different stages and reproduction of different stages are affected similarly225

by a key driver. A range of other scenarios are also possible but not considered here, such as226

no covariance among demographic parameters.227

Scenarios - The decomposition of the stochastic growth rate was done under 13 scenarios (Fig.228

1C) varying 1) the type of link function defining sj(z) and fj(z), 2) the covariance between229

survival and fertility; negative or positive (scenarios 1-8), and by applying 3) special cases of230

forced buffering, turning off the effect of z for certain demographic parameters (thus nonlinearity,231

variance and covariance of demographic parameters were affected; scenarios 9-13). In the first232

eight scenarios, effects of z were added to survival and fertility of all stages as described above.233

Four combinations of link functions were tested, including logistic functions for all parameters,234

loglog link functions for all parameters, and two combinations of log-link function for fj(z)235

with logistic or loglog link functions for sj(z). Each of these four combinations was tested236

using positive or negative covariance between survival and fertility (Fig. 1). In the scenarios of237

demographic lability with forced buffering, mature stages were defined as all stages equal to or238

larger than the stage with first non-zero fertility, and immature stages as all stages preceding this239

stage. Either smature(z) or all sj(z) (scenarios 9-11), or all fj(z) and simmature(z) (scenarios240

12-13) were held constant and equal to their value in the mean environment as reported in241

the standardized COMADRE MPM. We used logistic functions for the other demographic242

parameters (Fig. 1C). These scenarios reflect different assumptions of demographic lability243

and buffering within the least or the most influential demographic parameters on population244

growth, assessed qualitatively depending on the position of the populations along the slow-fast245
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continuum of life histories (Stearns, 1989; Sæther & Bakke, 2000; Gaillard & Yoccoz, 2003).246

Survival of immature stages and fertility coefficients are assumed to show a higher contribution247

to population growth in fast-living species, while survival rates of the mature stages are assumed248

to be more influential for slow life histories.249

Decomposition - For each population in each scenario, we calculated and decomposed the250

stochastic growth rate ln(λs) following equation 3. Since all the MPMs from COMADRE were251

standardized so that ln(λ0) = 0, the stochastic growth rate is a sum of the nonlinearity and the252

variance-covariance component. The sign of the stochastic growth rate directly reflects whether253

the fitness effects of environmental variance (σ2
z) are positive or negative in that population and254

scenario. All calculations shown in the main text use the value σ2
z = 1, and altering this value255

only affects the magnitude of the effects (Supporting information S4). In our analyses, |βzF | and256

|βzS | were both set to 0.4 (Fig. 1A; results for other values shown in Supporting information257

S4).258

Results259

Combined effects of nonlinearity and variance-covariance among demographic pa-260

rameters261

In all scenarios, life histories with short to intermediate generation times (< 10 years) showed262

consistently stronger fitness responses to environmental variability than slow life histories (Fig.263

2-3). Whether these responses are positive or negative, strongly depends on the combined im-264

pacts of covariance structure between the (st)age-specific survival rates and fertility coefficients265

and their curvatures.266

Positive effects of lability on the mean fitness ln(λ̄) were found mainly among the fast-267

living species, and positive effects occurred through both survival and fertility (Fig. 2-3). The268

nonlinearity index D correlated almost perfectly with this nonlinearity component (Spearman269

coefficient > 0.999 and 0.928 in all scenarios without and with bony fish MPMs, respectively),270
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suggesting that this is a reliable indicator of adaptive lability. However, as fitness ln(λs) also271

depends on the variance-covariance structure of the demographic parameters, this must also be272

taken into account.273

With positive covariance between survival and reproduction, ln(λs) was consistently reduced274

compared to the mean environment, regardless of the type of link functions used (e.g., Fig. 2a,275

b). In these scenarios, positive nonlinearity components still occurred, but were not sufficient276

to overcome the negative variance-covariance component. In contrast, populations of fast-277

living species could show an overall positive fitness ln(λs) if survival and fertility covaried278

negatively (Fig. 2 and 3), although less frequent when sj(z) and fj(z) were defined by loglog279

link functions (Fig. 2d). Positive effects were stronger when we used a log-link function for280

the fertility coefficients, so that they increased exponentially with the environmental driver z281

leading to strong convexity (Fig. 3c-d). For bony fish MPMs, the signs of the nonlinearity and282

variance-covariance components were the same as for the other MPMs, but the magnitude was283

stronger. Here the underlying models from COMADRE showed very high fertility coefficients284

and low survival rates, yielding extremely high variance in demographic parameters. Under285

scenarios using loglog link functions for sj(z) and/or fj(z), the small noise assumption behind286

our decomposition of ln(λs) was violated to a degree where the approximation broke down for287

these MPMs (Supporting information S6).288

Demographic lability with forced buffering289

In these scenarios, some survival probabilities and fertility coefficients were kept constant and290

buffered, while others were allowed to vary. The identity of labile demographic parameters,291

together with the position of the species along the slow-fast continuum, affected each fitness292

component and their combined impact on fitness (Fig. 4). When lability in all survival rates293

sj(z) or in only the mature stages smature(z) was combined with a constant fertility (Fig. 4a-294

b), only the fastest-living species showed a positive ln(λs). This positive fitness resulted from295
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a positive nonlinearity effect of survival rates and a low negative variance-covariance effect,296

reflecting buffering. When lability in fertility fj(z) and survival rates of the immature stages297

simmature(z) was combined with constant survival rates in all stages or mature stages, positive298

values of ln(λs) were also detected, especially when immature survival rates and reproduction299

covaried negatively (Fig. 4c-e).300

In contrast, for intermediate and slow-living species, labile survival rates of the reproductive301

stages smature(z) combined with constant fertility fj(z) and constant survival of immature302

stages simmature(z) (Fig. 4b) always produced negative nonlinearity components, and very small303

negative variance-covariance components, leading to an overall negative ln(λs). The scenarios of304

lability in fertility coefficients combined with constant (st)age-specific survival rates or in only305

the mature stages (Fig. 4c-e) showed a weak negative variance-covariance component while the306

nonlinearity component was zero or slightly positive, leading to overall fitness ln(λs) having307

values close to zero. In other words, constant (st)age-specific survival rates associated with308

labile fertility coefficients have a stabilizing effect on ln(λs) of slow life histories (generation309

time > 10 years; Fig. 4c VS Fig. 4a-b).310

Discussion311

This study emphasizes the importance of considering explicit links between environmental312

drivers and demographic parameters to understand the effects of environmental variability on313

fitness, as these links allow effects on nonlinearity to be quantified. We extended Tuljapurkar’s314

approximation of the stochastic growth rate to incorporate effects of nonlinearity in demo-315

graphic parameters. We also defined a nonlinearity index to measure the overall nonlinearity in316

a given life history, reflecting the potential for positive fitness effects of environmental variabil-317

ity. Our decomposition of the stochastic growth rate into nonlinearity and variance-covariance318

components creates a new framework to study their joint impacts on fitness, expanding ear-319

lier theory focusing mainly on buffering through the variance-covariance component. Applying320
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this decomposition across a range of scenarios and life histories, we identified the faster-living321

species as the most responsive to environmental fluctuations, both through the nonlinearity322

and variance-covariance components. Positive fitness values were only found when positive323

nonlinearity components were combined with negative covariance between survival and fertility,324

leading to a smaller negative variance-covariance component. In scenarios with some demo-325

graphic parameters being constant (forced buffering), lability in both the least and the most326

expected influential demographic parameters were found to benefit fitness to some extent, but327

mainly for short-lived species. Our decomposition provides a step forward in our understand-328

ing of potential adaptations to environmental variability in a wide range of life histories, and329

stresses the importance of characterising both nonlinearity and covariance structure of demo-330

graphic parameters with respect to key environmental drivers. Our framework is also useful for331

predicting population responses to increased variability under global change.332

Lability and buffering in fast vs. slow life histories333

Several studies have shown evidence that populations located at the fast end of the slow-fast334

continuum are more sensitive to changes in the different components of climate change. These335

populations tend to respond more strongly to changes in climate drivers (e.g., Compagnoni336

et al. 2021), to environmental variability (e.g., Dalgleish et al. 2010; Drake 2005; Koons et al.337

2009; Morris et al. 2008, but see Le Coeur et al. 2021; Santos et al. 2021), to shifts in temporal338

autocorrelation in the environment (e.g., Paniw et al. 2018), and to shifts in the correlation339

structure of demographic parameters (Iles et al., 2019). In line with these previous studies, we340

found that populations of faster-living species have larger absolute values of both nonlinearity341

and variance-covariance components of fitness in a stochastic environment compared to those342

of slow living-species. On one hand, fast-living species are more vulnerable to environmental343

fluctuations due to higher negative variance-covariance components, as reported in previous344

studies (e.g., Dalgleish et al. 2010; Morris et al. 2008). On the other hand, they have the largest345
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potential for adaptive lability through convex demographic responses. Our results show that346

a positive nonlinearity component can overcome the negative variance-covariance and lead to347

increased fitness especially when there is a negative correlation between fertility and survival.348

We found that the nonlinearity index D is a reliable predictor of the nonlinearity component of349

the stochastic growth rate (eq. 3).350

A majority of studies have focused on effects of the variance-covariance component alone,351

without explicit reference to the underlying environmental drivers, even though other studies352

(Drake, 2005; Henden et al., 2008; Koons et al., 2009) highlighted the potentially critical im-353

portance of including such links. Our results support this conclusion, and show that the total354

impact of environmental fluctuations on the fitness of structured populations may be either355

positive or negative if nonlinear demographic responses are present (eq. 3). With explicit links,356

where some are convex, positive fitness responses are possible, but we highlight that the net357

effect also depends on the variance-covariance component and the type of link functions. Ev-358

idence of convex relationships between demographic parameters or underlying vital rates and359

key environmental drivers is still limited for natural populations, due to data limitation or a360

priori linear assumptions in the statistical models. Our study highlights the need for empirical361

research to determine more systematically the shape and curvature of demographic parameter362

responses to accurately predict fitness responses to environmental variance. Quantifying the363

relationships between environmental drivers and all demographic parameters remains, however,364

a statistical challenge for wild populations (e.g., separating link functions; Gill, 2001) and re-365

quires long-term monitoring data (see Lee, 2017 for an alternative method to study nonlinearity366

in the growth rate response to an environmental driver with discrete levels). This highlights367

the need to continue and increase the ongoing collection of demographic data.368

The decomposition of the stochastic growth rate considers nonlinearity and variance-covariance369

of demographic parameters, which in turn are functions of underlying vital rates. For instance,370

fertility depends on both fecundity and survival of offspring or parents, depending on the census371
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of the matrix model. Studies applying the method for specific empirical systems should care-372

fully consider how the demographic parameters depend on lower-level parameters as functions373

of environmental drivers. Our qualitative conclusions on demographic buffering and lability374

across generation time are general, but quantitative differences are likely present for instance375

for models based on pre- vs. post-reproductive census, when environmental effects arise through376

lower-level parameters. This presents an interesting area for future research using the decom-377

position.378

Role of temporal covariance between (st)age-specific demographic parameters379

While negative covariance between demographic parameters could arise from life history trade-380

offs (Stearns, 1989) or opposite responses to the same environmental driver, positive covariances381

between these parameters are just as likely to occur in a population. Previous theoretical work382

has shown that positive covariance enhances the variance in population growth while negative383

covariance reduces it (Tuljapurkar, 1982, 1990). Our results are in line with this result, showing384

reduced negative variance-covariance component when survival and fertility covaried negatively385

compared to positively.386

Interestingly, there is no general consensus on the degree to which positive or negative387

covariance in demographic parameters are more common in the wild, nor if the sign, magnitude388

or type of (st)age-specific demographic parameters involved correlate with the position of a389

species along the fast–slow continuum (but see a recent comparative study, Fay et al., 2022).390

From empirical studies, positive covariances have been reported predominantly in long-lived391

species (e.g., Dahlgren et al., 2016; Rotella et al., 2012; van de Pol et al., 2010) with substantial392

(e.g., Coulson et al., 2005) or weak (e.g., Altwegg et al., 2007; Compagnoni et al., 2016; Johnson393

et al., 2010) effects on fitness. In contrast, negative covariances were less often detected (Fay394

et al., 2022), with often small effects on ln(λs). To our knowledge, relatively few studies have395

specifically addressed this question among species towards the fast-end of the continuum.396
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In our scenarios, we assumed a perfect, positive temporal covariance between (st)age-specific397

survival rates and between (st)age-specific fertilities, respectively, but positive or negative co-398

variances between survival and fertility. While these assumptions on the direction of covariance399

between stages and type of demographic parameters are plausible, they are strong in terms400

of magnitude, and a main environmental driver is unlikely to explain all of the (co)variance in401

demographic parameters. Our results may therefore overestimate the magnitude of the variance-402

covariance component in the decomposition, compared to wild populations where correlations403

are likely not perfect. Even though we assumed perfect correlation, we found that variance-404

covariance had negligible effects on fitness of slow-living populations, reflecting a large degree405

of buffering in these species. For fast-living species, covariance had contrasting effects on the406

fitness components. These effects were strengthened in scenarios where link functions implied407

more asymmetric relationships between demographic parameters and environmental driver.408

Demographic lability and buffering of different demographic parameters409

The set of scenarios combining lability in some demographic parameters with forced buffering410

in others, yielded insights into possible demographic strategies along the slow-fast continuum.411

While different predictions have been made as to which demographic parameters should be412

selected for lability (Hilde et al., 2020; McDonald et al., 2017), we found that demographic413

lability in the demographic parameters assumed to be the least (fj(z) and/or simmature(z))414

or most (smature(z)) important to fitness, could both lead to enhanced fitness in many fast-415

living life histories due to positive nonlinearity components and reduced variance-covariance416

components. However, such positive effects on fitness were stronger and more prevalent with417

lability in both fertility and survival of the immature stages (the most influential in fast life418

histories). In contrast, for slow-living life histories, lability in the survival rates of mature stages,419

believed to have the highest impact on fitness led to negative effects on fitness due to negative420

nonlinearity components. Selection for a reduction in variance in (and in positive covariance421
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between) the demographic parameters that contribute the most to fitness, combined with other422

parameters varying more freely, as stated by the demographic buffering hypothesis, seems likely423

for slow-living species, at least those with a similar animal life history as in our analysis.424

Labile and buffered demographic parameters in our scenarios were qualitatively assigned425

based on expectations from the demographic buffering and life history theories (Stearns, 1989;426

Sæther & Bakke, 2000; Gaillard & Yoccoz, 2003). This simple categorization, while accurate427

for some life histories, may be different for other populations with the same generation time.428

Further insights would require differentiating labile and buffered (st)age-specific demographic429

parameters and underlying vital rates in a population based on elasticities of the growth rate430

in the mean environment.431

432

In conclusion, this study provides a comprehensive framework for assessing the contribu-433

tions of demographic lability and buffering on fitness of any given population. Positive effects434

of environmental fluctuations on fitness are only possible to detect if we account for the im-435

pacts of nonlinear relationships between demographic parameters and environmental drivers.436

Our decomposition of the stochastic growth rate into components of nonlinearity and variance-437

covariance provides a tool to quantify their relative impacts in different life histories and scenar-438

ios, and is easily applicable for other study systems and scenarios not considered here. Across439

the slow-fast continuum of animal life histories, faster-living species have the largest potential for440

using demographic lability as an adaptive response to variability, while demographic buffering441

is a main adaptive response in slow-living species. These findings have important implications442

for predicting population and species responses to changes in environmental fluctuations under443

climate change and other anthropogenic impacts.444
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Text box 1: Glossary

Stochastic population growth rate - ln(λs): The long-term rate of population growth on a loga-

rithmic scale, a measure of fitness in a stochastic density-independent environment.

Growth rate in the mean environment - ln(λ0): dominant eigenvalue of the projection matrix

in the mean environment (z=0) A(0) on a logarithmic scale.

Mean growth rate - ln(λ̄): dominant eigenvalue of the mean projection matrix across variable

environments Ā on a logarithmic scale.

Demographic lability / labile demographic parameter : A labile demographic parameter fluctu-

ates with temporal variation in environmental conditions. The relationship between a labile

demographic parameter and the environment (e.g., a key environmental driver) can be convex,

concave or linear, so that the average value of this demographic parameter in a variable envi-

ronment becomes >, <, or = to the demographic parameter estimated in the mean environment

(z=0), respectively. The same definition applies to labile vital rates (e.g., survival, fecundity,

transition).

Adaptive demographic lability (demographic lability hypothesis): selection for demographic pa-

rameters to track environmental fluctuations that leads to an overall increased fitness, ln(λs).

Increase in ln(λs) occurs when an increase in the demographic parameter means due to convex-

ity in their responses leads to a shift in the arithmetic mean of annual population growth rates

ln(λ̄), that overcomes the negative effect of temporal variance in the annual population growth

rates (variance-covariance component σ2). This hypothesis relies on the assumption that the

nonlinearity index D (defined below) is positive.
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Nonlinearity index (D): D measures the total effect of nonlinearity of demographic parameters

in a life history, and is a key component to describe the nonlinearity component of the fitness

decomposition (equation 3). This index corresponds to the sum over all (st)ages of the second

derivatives of the demographic parameters (depending on vital rates) in the mean environ-

ment (z=0), weighted by the sensitivities of λ0 to the corresponding demographic parameters

(matrix elements). When positive (/negative), D is an indicator of adaptive (/non-adaptive)

lability through overall positive (/negative) contributions from convexity (/concavity) of the

demographic parameters. Adaptive lability can create a positive overall effect of environmental

variability if D is positive and the negative effects of increased variance-covariance of the de-

mographic parameters are not too large (see equation 3).

Demographic buffering / buffered demographic parameters: Low variance of a demographic pa-

rameter in response to temporal variation in the environmental variable z. A more flat relation-

ship between the demographic parameter and the environment z leads to such low parameter

variance, and to the mean demographic parameter in the variable environment remaining ap-

proximately equal to demographic parameter value in the mean environment (z=0). The same

definition applies to buffered vital rates (e.g., survival, fecundity, transition).

Adaptive demographic buffering (demographic buffering hypothesis): The prediction that nat-

ural selection should favour a reduction in variance of the demographic parameters with the

strongest influence on fitness in the mean environment, reducing the variance-covariance com-

ponent σ2 and leading to an overall stable or increased fitness in variable environments. The

assumption that ln(λ̄) is not affected by environmental variance (ln(λ0) ≈ ln(λ̄)), is often made

for this hypothesis.
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Figure captions

Figure 1. Framework used to study the effects of environmental variability on fitness

(stochastic growth rate ln(λs)). A. Our calculations define demographic parameters as non-

linear functions of the environmental driver z (see methods), where A(0) (from our selected,

standardized COMADRE models, Ntot= 154) defines the values of (st)age-specific survival

rates sj(0) and fertilities fj(0) in the mean environment (z=0). Different levels of environ-

mental variance levels σ2
z and environmental strength |βz| of z on the demographic parameters

were considered. In the analytical approach, ln(λs) was calculated and decomposed into main

components capturing nonlinearity and variance-covariance effects following equation 3. The

accuracy of this decomposition was tested using simulations (Supporting information S4). B.

Two or three different link-functions were considered for survival sj(z) and fertility fj(z), re-

spectively. C. Scenarios 1-8: Four combinations were examined including logistic functions

for all parameters, loglog link functions for all parameters and two combinations of exponential

fertilities fj(z) (log link) with logistic or loglog link function for sj(z). Positive or negative

covariance between survival and fertility was tested for each combination, assuming positive

covariance between sj(z), and between fj(z). Scenarios 9-11: Scenarios of forced buffering

considering demographic lability in the fertility coefficients and survival rates of the immature

stages (Simmature). Scenarios 12-13: Scenarios of forced buffering assuming demographic la-

bility in all survival rates sj(z) or in only the mature stages (Smature). Logistic functions were

used to define lability while the other rates were held constant and fixed to the values reported

in the standardized COMADRE projection matrix.

Figure 2. Mid panels: Stochastic growth rate (fitness) ln(λs) across generation time, under

four scenarios of covariance and link-functions of the demographic parameters. Left panels:

Illustration of scenarios, with grey and black lines corresponding to the (st)age-specific survival

rates sj(z) and fertility coefficients fj(z), respectively (functions varied for each stage depend-

ing on sj(0) and fj(0); only one function is shown for survival and fertility here). We assumed

positive covariance between survival rates of different (st)ages and between the fertilities of

different (st)ages. For each scenario and for each population, positive (panels a,b) or negative

(panels c,d) covariance between fj(z) and sj(z) were considered, treating fj(z) and sj(z) as

logistic functions (panels a,c) or loglog link functions (panels b,d) of the environment z. Right

panels: Decomposition of ln(λs) into main components capturing variance-covariance effects

(blue triangles) and lability effects generated by nonlinear responses of fj(z) (red circles) and

sj(z) (orange circles). Results for bony fish populations and populations with generation time
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> 62 years are not shown (NMPMs = 129; see Fig. S14 for all MPMs).

Figure 3. Mid panels: Stochastic growth rate (fitness) ln(λs) across generation time, con-

sidering positive (panels a,b) or negative (panels c,d) covariance between (st)age-specific survival

rates sj(z) and fertilities fj(z), treating sj(z) as logistic (panels a,c) or loglog (panels b,d) link

functions of the environment z and fj(z) as log link functions. We assumed positive covariance

between survival rates of different (st)ages and between the fertilities of different (st)ages. See

Fig. 2 for explanation of left and right panels. Results for bony fish populations and populations

with generation time > 62 years are not presented (NMPMs = 129; see Fig. S15 for all MPMs).

Figure 4. Results from scenarios of forced buffering assuming demographic lability only in

(a) (st)age-specific survival rates, (b) survival rates of the reproductive stages only, (c) (st)age-

specific fertilities and (d-e) fertilities and survival rates of the immature stages. For each

scenario, the long term fitness ln(λs) and its main components reflecting variance-covariance

effects (blue triangles) and lability effects due to nonlinearity of fj(z) (red circles) and sj(z)

(orange circles) are plotted against generation time (mid and right panels; see Fig. S16 for all

MPMs). See Fig. 2 for explanation of left panel.
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Figure 4.
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