Summary
During fear learning, defensive behaviors need to be finely balanced, to allow animals to return to normal behaviors after the termination of threat-indicating sensory cues. Nevertheless, the circuits underlying such balancing are largely unknown. Here, we investigate the role of direct (D1R+) - and indirect (Adora+) pathway neurons of the amygdala-striatal transition zone (AStria) in fear learning. In-vivo Ca2+ imaging revealed that fear learning increased the responses of D1R+ AStria neurons to an auditory CS, given that the animal moved. In Adora+ neurons, fear learning also induced a differential activity during freezing and movement, albeit with little influence of the CS. In-vivo optogenetic silencing during the training day showed that plasticity in D1R+ AStria neurons contributes to auditory-cued fear memories, whereas Adora+ neurons suppressed learned freezing when no CS was present. Circuit tracing experiments identified cortical input structures to the AStria, and recording of optogenetically-evoked EPSCs at the corresponding projection revealed different forms of long-term plasticity at synapses onto D1R+ and Adora+ AStria neurons. Taken together, direct- and indirect pathways neurons of the AStria show differential signs of in-vivo and ex-vivo plasticity after fear learning, and balance defensive behaviors in the presence and absence of aversively motivated sensory cues.
Competing Interest Statement
The authors have declared no competing interest.