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Abstract:

1. Invasive pests pose a great threat to forest, woodland and urban tree ecosystems. The oak

processionary moth (OPM) is a destructive pest of oak trees, first reported in the UK in 2006.

Despite great efforts to contain the outbreak within the original infested area of South-East England,

OPM continues to spread.

2. Here we analyse data of the numbers of OPM nests removed each year from two parks in

London between 2013 and 2020. Using a state-of-the-art Bayesian inference scheme we estimate the

parameters for a stochastic compartmental SIR (susceptible, infested, removed) model with a time

varying infestation rate to describe the spread of OPM.

3. We find that the infestation rate and subsequent basic reproduction number have remained

constant since 2013 (with R0 between one and two). This shows further controls must be taken to

reduce R0 below one and stop the advance of OPM into other areas of England.

4. Synthesis. Our findings demonstrate the applicability of the SIR model to describing OPM

spread and show that further controls are needed to reduce the infestation rate. The proposed

statistical methodology is a powerful tool to explore the nature of a time varying infestation rate,

applicable to other partially observed time series epidemic data.
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1 Introduction

Invasive pests, such as non-native insects, pose a threat to forest, woodland and urban tree ecosys-

tems by damaging and killing trees and reducing biodiversity [1–3]. This threat has increased in

recent years due to growth in international travel and trade [4] coupled with a changing climate

driving the migration of species into new ecosystems [5]. The loss of biodiversity has a profound

economic impact, through short to long term control measures and the impact on ecosystem services

[6–8].

The oak processionary moth (OPM), Thaumetopoea processionea, is an invasive and destructive

pest of oak trees, causing defoliation and making trees vulnerable to other stressors and pathogens.

The larvae of OPM have poisonous hairs, containing a urticating toxin (thaumetopoein) which is

harmful to human and animal health [9–12].

OPM was introduced to the UK through accidental imports on live oak plants, first reported in

2006. Up to 2010, the governmental policy was one of eradication [13, 14]. However, in 2011 it was

decided that OPM was fully established in the South-East England area and so the government

moved to a containment strategy, aiming to contain the OPM infestations within this original

outbreak area [14]. In 2018, legislation was introduced to curb continuing imports through the

Plant Health Order [15]. Despite the containment strategies, the extent of OPM has continued

to spread with recent analysis suggesting an expansion rate of 1.7 km/year for 2006–2014, with

an increase to 6 km/year from 2015 onwards [16]. The regions surrounding the current infection

area are particularly climatically suitable [17] and so being able to predict and control the future

dynamics of the OPM population is crucial to protect these areas.

Mathematical models provide a powerful tool for describing and predicting the spread of tree disease

and pest infections [18–20]. For OPM, previous work has included using models from electric

network theory to predict high risk regions [21] along with species distribution models to examine

the spatial distributions of OPM [22] and the effects of climate change on its expansion [17]. Bayesian

inference can be used to inform and evaluate these ecological mathematical models [23]. Previously,

Bayesian approaches have been used to estimate key parameters in the spatio-temporal invasion of

alien species [24], however, the techniques have yet to be applied to data for the spread of OPM.
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Nevertheless, the Bayesian paradigm provides a natural mechanism for quantifying and propagating

uncertainty in the model parameters and dynamic components. Consequently, Bayesian inference

techniques have been ubiquitously applied in the broad area of epidemiology [see e.g. 25–27, for an

overview].

In this paper we use data tracking the numbers and locations of OPM nests removed from oak

trees as part of a control program in two parks in south London. We illustrate the use of statistical

inference techniques for estimating the parameters for a classic SIR compartmental model [28, 29]

consisting of susceptible, infested and removed states. To allow for intrinsic stochasticity in the

spread of OPM, we use an Itô stochastic differential equation [30] representation of the SIR model.

This is further modified via the introduction of a time varying infestation rate, as is necessary to

capture the effect of unknown influences such as preventative measures [31]. Bayesian inference

for the resulting model is complicated by the intractability of the observed data likelihood, and

subsequently, the joint posterior distribution of the key quantities of interest (model parameters

and dynamic components). We overcome these difficulties via a linear Gaussian approximation of

the stochastic SIR model, coupled with a Markov chain Monte Carlo scheme [32] for generating

samples from the joint posterior. These methods are outlined in Section 2 and detailed in the

Supplementary Information, Sections S1 and S2, for use as a toolbox to apply to other ecological

datasets. We use the parameters from the compartmental model to estimate a yearly R0 measure

for OPM, analogous to the basic reproduction number for a pathogen [33], and estimate the OPM

population in 2021.

2 Methods

In this section we present the observational time series data with a summary of the data collection

methods (Section 2.1), the details of the stochastic SIR model (Section 2.2), and an outline of

our statistical inference methods (Section 2.3). Further statistical details including the relevant

algorithms are set out in the Supplementary Information (Sections S1 and S2).
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2.1 Data

The data used is part of the national Oak Processionary Moth Survey. The OPM survey is con-

ducted by the Forestry Commission as part of the governmental OPM control programme [34]. The

University of Southampton (GeoData) provide analysis, support and hold the data on behalf of the

Forestry Commission. We note that for the wider OPM control programme, the data is collected

for operational needs and therefore there are limitations for research purposes. For example, the

surveillance strategy between 2013 and 2020 focussed on monitoring the expansion of the outer

edge of the known infested area. Thus, although the data provides a sufficient estimate of the outer

expansion, the presence of nests in the central infection zone is likely underestimated. However, in

this paper we use a sub-set of this data from surveys in Richmond and Bushy Parks in which the

whole park area was surveyed each year, and the number of nests recorded accurately.

The data used in this study was obtained through the recording of OPM presence in Richmond and

Bushy Parks in South-West London. For each of the years 2013–2020 it contains i) the eastings and

northings of infested tree and ii) the number of OPM nests removed from each tree. The dataset

consists of 8470 unique infested trees, with 1767 in Bushy Park and 6703 in Richmond Park. The

locations of infested trees are shown across the two parks in Figure 1.

The raw and cumulative time series of the numbers of removed nests are shown in Figure 2(a) and

(b). We count each infested tree in the year it was first infested as one ‘removal’ in the SIR model

(see Section 2.2), regardless of how many nests were recorded as removed from this location. The

raw and cumulative time series for the number of these removals is shown in Figure 2(c) and (d).

We use the latter cumulative time series, R(t), as our observational data in the following sections.
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Figure 1: Map of the nests removed from Bushy (bottom left) and Richmond (top right) parks
between 2013–2020. The area of the marker is proportional to the number of nests removed.
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Figure 2: The (a) raw and (b) cumulative number of OPM nests removed from Richmond (blue) and
Bushy (orange dashed) parks between 2013–2021. The number of (a) raw and (b) cumulative unique
trees (described by their eastings and northings) which had nests removed between 2013–2021. The
cumulative number of trees is the time series R(t) corresponding to the ‘removed’ category in the
SIR model (see Section 2.2).
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2.2 Stochastic SIR model

We consider an SIR model [28, 35] in which a population of fixed size N is classified into compart-

ments consisting of susceptible (S), infected (I) and removed (R) individuals. Here we refer to the

I compartment as ‘infested’ due to the context of describing an invasive pest presence. Transitions

between compartments can be summarised via two pseudo-reactions of the form

S + I
β−−−→ 2I, I

γ−−−→ R.

Hence, the first transition describes contact of an infective individual with a susceptible and with

the net effect resulting in an additional infested individual and one fewer susceptible. The second

transition accounts for removal (recovered with immunity, quarantined or dead) of an infested

individual. The parameters β and γ govern the rate of infestation and removal, respectively. A

fixed population of trees is appropriate as over the timescale of interest the number of trees born into

the S compartment will be sufficiently small to be negligible. Our setting has individuals as trees and

the contact process is understood to take place via the dispersal of OPM. It is clear that transitions

should result in discrete changes to the numbers of trees in each state. This most naturally leads to

a continuous time, discrete valued Markov jump process (MJP) description of disease dynamics, as

detailed in the Supplementary Information, Section S1. We eschew the MJP formalism in favour of

a continuous valued approximation, formulated as a stochastic differential equation (SDE). This is

a pragmatic choice, since the SDE model ultimately leads to a computationally efficient inference

scheme, and the model can be easily augmented with additional components, such as time varying

parameters, which we now describe.

The SDE representation of the standard SIR model can be derived directly from the MJP (see

Supplementary Information, Section S1). Here we extend this to include a time varying infection

process. Let Xt = (St, It, β̃t)
′ where St and It denote the numbers in each of the states S and I at

time t ≥ 0 and β̃t = log βt is the (transformed) time varying infection process. Note that the fixed

population size gives Rt = N − St − It for all t ≥ 0 so that the current state of the SIR model is
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completely described by Xt. We model β̃t as a generalised Brownian motion process so that

dβ̃t = σdWt

and Wt is a standard Brownian motion process. Hence we assume that the log infection rate

evolves according to a random walk in continuous time, with variability controlled by σ. Combining

this process with component SDEs describing the dynamics of St and It gives the complete SDE

description of the SIR model with time varying infection rate as

dXt = a(xt, θ)dt+
√
b(xt, θ)dWt. (1)

Here, xt = (st, it, βt)
′ is the state of the system at time t, θ = (γ, σ)′ is the vector of static parameter

values, Wt = (W1,t,W2,t,W3,t)
′ is a vector of uncorrelated standard Brownian motion processes, and

the drift function a(xt, θ) and diffusion coefficient b(xt, θ) are given by

a(xt, θ) =


− exp(β̃t)stit

exp(β̃t)stit − γit

0

 , b(xt, θ) =


exp(β̃t)stit − exp(β̃t)stit 0

− exp(β̃t)stit exp(β̃t)stit + γit 0

0 0 σ2

 . (2)

Unfortunately, due to the nonlinear forms of a(xt, θ) and b(xt, θ), the SDE specified by (1)–(2)

cannot be solved analytically. We therefore replace the intractable analytic solution with a tractable

Gaussian process approximation, which is the subject of the next section. The resulting linear noise

approximation is subsequently used as the inferential model.

Linear noise approximation

The linear noise approximation (LNA) provides a tractable approximation to the SDE given by

(1)–(2). In what follows we give a brief derivation; formal details can be found in [36] [see also

37, 38].

Consider a partition of Xt as

Xt = ηt +Rt, (3)
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where {ηt, t ≥ 0} is a deterministic process satisfying the ODE

dηt
dt

= a(ηt, θ), η0 = x0, (4)

and {Rt, t ≥ 0} is a residual stochastic process. The residual process Rt satisfies

dRt = {a(xt, θ)− a(ηt, θ)} dt+
√
b(xt, θ) dWt,

which will typically be intractable. Assumption that ||Xt − ηt|| is “small” motivates a Taylor series

expansion of a(xt, θ) and b(xt, θ) about ηt, with retention of the first two terms in the expansion of

a and the first term in the expansion of b. This gives an approximate residual process {R̂t, t ≥ 0}

satisfying

dR̂t = Htr̂t dt+
√

b(ηt, θ) dWt,

where Ht is the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂ai(ηt, θ)

∂ηj,t
.

For the SIR model in (1)–(2) we therefore have

Ht =


− exp(β̃t)it − exp(β̃t)st − exp(β̃t)stit

exp(β̃t)it exp(β̃t)st − γ exp(β̃t)stit

0 0 0

 .

Given an initial condition R̂0 ∼ N(r̂0, V̂0), it can be shown that R̂t is a Gaussian random variable

(see [32]). Consequently, the partition in (3) with Rt replaced by R̂t, and the initial conditions

η0 = x0 and R̂0 = 0 give

Xt ∼ N(ηt, Vt) , (5)

where ηt satisfies (4) and Vt satisfies

dVt

dt
= VtH

′
t + b(ηt, θ) +HtVt, V0 = 0. (6)
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Hence, the linear noise approximation is characterised by the Gaussian distribution in (5), with

mean and variance found by solving the ODE system given by (4) and (6). Although this ODE

system will typically be intractable, a numerical scheme can be straightforwardly applied.

2.3 Bayesian inference

We consider the case in which not all components of the stochastic epidemic model are observed.

Moreover, we assume that data points are subject to measurement error, which accounts for mis-

match between the latent and observed process, due to, for example, the way in which the data are

collected. Observations (on a regular grid) yt, t = 0, 1, . . . n are assumed conditionally independent

(given the latent process) with conditional probability distribution obtained via the observation

equation,

Yt ∼ N
(
P ′xt, σ

2
eP

′xtP
)
, t = 0, 1, . . . , n (7)

where P = (1, 1, 0)′. This choice of P is due to the data consisting of observations on the removed

state Rt, which, for a known population size N , is equivalent (in information content) to observing

the sum St + It. Note that the logarithm of the infection rate process, β̃t is completely unobserved.

Our choice of observation model is motivated by a Gaussian approximation to a Poisson Po(P ′xtP
′)

distribution, with the role of σ2
e to allow a decoupling of the mean and variance. Moreover, the

assumption of a Gaussian observation model admits a tractable observed data likelihood function,

when combined with the LNA (see Section 2.2) as a model for the latent epidemic processXt. Details

on a method for the efficient evaluation of this likelihood function can be found in Section S2.3 of

the Supplementary Information.

Given data y = (y0, y1, . . . , yn) and upon ascribing a prior density π(θ) to the components of

θ = (γ, σ, σe)
′ (augmented to include σe), Bayesian inference proceeds via the joint posterior for the

static parameters θ and unobserved dynamic process x = (x0, x1, . . . , xn). We have that

π(θ, x|y) ∝ π(θ)π(y|θ)π(x|y, θ), (8)

where π(y|θ) is the observed data likelihood and π(x|y, θ) is the conditional posterior density of

the latent dynamic process. Although π(y|θ) and π(x|y, θ) can be obtained in closed form under
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the LNA, the joint posterior in (8) is intractable. In the Supplementary Information Section S2 we

describe a Markov chain Monte Carlo scheme for generating (dependent) samples from (8). Briefly,

this comprises two steps: i) the generation of samples θ(1), . . . , θ(M) from the marginal parameter

posterior π(θ|y) ∝ π(θ)π(y|θ) and ii) the generation of samples x(1), . . . , x(M) by drawing from the

conditional posterior π(x|y, θ(i)), i = 1, . . . ,M .

Given inferences on the static parameters θ and the latent dynamic process x, we consider the

following diagnostics for assessing model fit. The within sample predictive density is

π(ỹ|y) =
∫ ∫

π(ỹ|x, θ)π(θ, x|y)dxdθ, (9)

and the one step ahead out of sample predictive density is

π(yn+1|y) =
∫ ∫

π(yn+1|xn+1, θ)π(xn+1|xn, θ)π(θ, x|y)dx0:n+1dθ. (10)

Hence, in both cases we properly account for parameter and latent process uncertainty. Although

the densities in (9) and (10) will be intractable, we may generate samples via Monte Carlo, see

Supplementary Information Section S2 for further details.

3 Results

We assume the epidemic time series (see Section 2.1) for the number of removed trees, R(t), shown in

Figure 2, can be described by the compartmental SIR model with a time-varying infestation rate (see

Section 2.2). The aim is to estimate the key parameters through the Bayesian inference techniques

described in Section 2.3. These are the time-varying infestation rate, β(t), with corresponding

stochastic noise parameter σ describing dβ̃t = d log(βt) = σW3,t, the removal rate γ, and the

observation error σe.

Section S2.4 of the Supplementary Information provides details of the assumed population sizes for

each site, initial numbers of infesteds, susceptibles, and infection rate, starting parameter values

for the MCMC scheme and prior specification. Regarding the latter, we take an independent prior

specification for the components of θ, so that π(θ) = π(γ)π(σ)π(σe). We then take lognormal
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LN(1, 1) distributions for σ and σe, and a lognormal LN(0, 0.52) distribution for γ. We assume

that initial log infestation rate β̃0 follows a Gaussian N(−8.5, 0.52) distribution. These choices are

motivated by the assumption of a median removal time of around 1 year (95% credible interval:

(0.38, 2.66)), and a basic reproduction number at time 0 of R0 = β0N/γ covering a wide range

of plausible values. For example, with N = 5 × 103 the prior distributions for γ and β̃0 lead to a

95% credible interval for R0 of (0.25, 4.1). The initial conditions are chosen based on the increase

in the removal category in the first available year, e.g., for Richmond Park there were 1414 new

removals between 2013 and 2014 (new trees that had nests removed in 2014), so we assume this was

approximately the number of infested locations in 2013. We investigated several choices for initial

conditions and find our results robust to these variations.

3.1 Inference results

We ran the MCMC scheme for 10×103 iterations and monitored the resulting chains for convergence.

Indicative trace plots can be found in the Supplementary Information, Figure S1, and suggest that

the sampler has adequately explored the parameter space. Additional chains initialised at different

starting values (not shown) further confirm convergence.

From the main MCMC run we obtain the posterior within-sample means (with 50% and 95% credible

intervals) for R(t), S(t) and I(t), shown in Figures 3 and 4(a-c) for Bushy and Richmond Park,

respectively. The logarithmic time-dependent infestation rate, β̃t = log(β), is shown in Figure 3

and 4(d). For Bushy Park, the logarithmic infestation rate is plausibly constant (given a posteriori

variance) at β̃t ≈ −8, corresponding to an infestation rate of β = 3.4×10−4. Similarly, for Richmond

Park, the infestation rate is plausibly constant with β̃t ≈ −10, corresponding to an infestation rate

of β = 4.5× 10−5. Reassuringly, samples from the within-sample predictive for R(t) are consistent

with the data used to fit the model (see panel (a) of Figures 3–4).

The posterior density plots of the parameters θ = (γ, σ, σe) are shown in Figures 3 and 4(e), for

Bushy and Richmond park respectively. Pairwise joint posterior densities can be found in the

Supplementary Information, Figure S2. The marginal posterior distribution of γ is centred around

γ ≈ 1 for both Bushy and Richmond. The marginal posterior for σ is centred around σ ≈ 0.75 for

Bushy and σ ≈ 0.5 for Richmond. The observation error σe is centred around σe ≈ 1 for Bushy and
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σe ≈ 0.5 for Richmond.

3.2 Estimation of R0

From the posterior estimations of β̃t for each year and the parameter γ, we can estimate the basic

reproduction number R0. In a deterministic system, for an epidemic to die out, R0 must be less

than the threshold value of one. However, in the stochastic case it is possible for R0 to be above one

but the epidemic still die out as a result of the stochastic fluctuations. Therefore it is required that

R0 < 1 for the epidemic to shrink, upon averaging over the stochasticity. In an SIR model with a

constant infection rate, β, the basic reproduction number is given by R0 = βN/γ (or simply β/γ if

the total population number N has not been absorbed into the β constant in model formulation).

Here we adapt this to use the time variant infection rate to get a reproduction number for each of

the years between 2013 and 2020, R0(t) = β(t)N/γ. Box plots showing the posterior distributions

of R0 for both parks are shown in Figure 5. For both parks R0 has been stable, within errors, since

2013 (corresponding to the relatively constant βt). However, this suggests that R0 is still above

one, and therefore the epidemic will continue to propagate in these areas, and potentially beyond.

3.3 Forward prediction

Predictions of the spread of OPM are needed to inform control strategies. To test the applicability of

the SIR model with the inferred parameters and how well the model can capture future expansions

in OPM, we can calculate a one year prediction. We remove the last data point, R(2020), and

re-infer the parameters for the new shortened observed time series. We then use these parameters

to run the model forwards (10×103) simulations, matching the number of iterations in the MCMC)

and obtain an estimate for R(2020). The median predictions with upper and lower quartiles for

1000 runs are shown in Figure 6(a) and (c) for Bushy and Richmond, respectively. In both cases,

the predictive interval captures the observed data. Realisations from 100 forward runs are shown

in Figure 6(b) and (d) to show that results are mostly concentrated around the observed data, with

some outliers over-estimating R(t). One-step predictions for the whole time series are shown in the

Supplementary Information, Figure S3.
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Similarly we can produce predictions for the number of infested locations in 2021, R(2021). The

median predictions with upper and lower quartiles are shown in Figure 7(a) and (b) for Bushy and

Richmond, respectively. This corresponds to an average (median) of 350 new infested locations

(lower-upper quartile estimate range 150–800) in Bushy Park and 1100 (700–2000) in Richmond

Park.
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Figure 3: Bushy Park. The within-sample posteriors for (a) R(t), (b) S(t), (c) I(t) and (d) log(βt)
with mean (blue solid line) ± one standard deviation (shaded region), the 50% (blue dashed), and
the 95% (blue dot-dashed) credible regions. The observed time series for R(t) is overlaid in (a)
(orange dashed). The corresponding (e) posterior densities for the inferred parameters γ (removal
rate), σ (noise on β̃t) and σe (observation error).
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Figure 4: Richmond Park. The within-sample posteriors for (a) R(t), (b) S(t), (c) I(t) and (d)
log(βt) with mean (blue solid line) ± one standard deviation (shaded region), the 50% (blue dashed),
and the 95% (blue dot-dashed) credible regions. The observed time series for R(t) is overlaid in (a)
(orange dashed). The corresponding (e) posterior densities for the inferred parameters γ (removal
rate), σ (noise on β̃t) and σe (observation error).

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2021. ; https://doi.org/10.1101/2021.12.09.471950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471950


(a)

2013 2014 2015 2016 2017 2018 2019 2020

Year

0

2

4

6

8

10

12

 R
0

(b)

2013 2014 2015 2016 2017 2018 2019 2020

Year

0

1

2

3

4

5

6

 R
0

Figure 5: Posterior distributions of R0(t) = βtN/γ for (a) Bushy and (b) Richmond Park. The
central line indicates the median, with the bottom and top edges of the box showing the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, which are not shown here.
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Figure 6: Model predictions for the number of removed nests in 2020, R(2020), with median (blue
line) for (a-b) Bushy and (c-d) Richmond. In (a) and (c) the shaded area shows the 50% credible
region. In (b) and (d) 100 simulations are shown from the forward model. The orange line shows
the observed data.
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Figure 7: Model predictions for the number of removed nests in 2021, R(2021), with median (blue
line) for (a) Bushy and (b) Richmond park. The shaded area shows the 50% credible region. The
orange line shows the observed data up to 2020.
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Discussion

Recent modelling work has suggested that the surroundings of the current OPM infection area in

the UK are highly climatically suitable and therefore at very high risk from future infestations

[17]. Since the government strategy for the containment of OPM relies on targetted control at the

boundary of the current infested area, it is crucial to understand and be able to predict the future

spread to optimize both the cost and efficacy of these control programmes [34].

We have shown the applicability of an SIR compartmental model with a time varying infection

rate to describe the OPM epidemic in the UK between the years 2013 and 2020. The statistical

methodology used is a powerful tool for inferring the parameters of such models from real data and

is transferable to other epidemiological and ecological datasets. Previously, similar methodology

has been used to describe the spread of infectious diseases (e.g., measles [39] and Ebola [40]) and

the spatial expansion of non-native plants [24], but has not yet been applied to the study of invasive

insects.

Our results show, along with previous analysis [16], that the spread of OPM is continuing at a

stable rate despite the current intervention methods. Correspondingly, we show that the basic

reproduction number R0 has been above one since 2013. To see a reduction in the OPM population

density and to protect the surrounding areas, a reduction of R0 to below one would need to be seen.

Although the basic reproduction number R0 is typically used in the modelling of infectious diseases

[41, 42], here it gives an analogous measure for the new infested locations caused by currently

infested locations within the pest lifetime.

For simplicity and to be better described by an SIR model, we assumed that an infested location

(tree) represented one removed tree regardless of how many nests were recorded as being removed

from it. However, the defoliation effects and risks to human health from OPM are closely related

to nest density (i.e., the numbers of nests per tree) [43]. In future work nest density could be taken

into account through a nest density dependent infection rate.

A challenge of modelling OPM and other tree pests and diseases is the lack of a complete inventory

oak trees in the UK, representing the susceptible population in our SIR model. This has been
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previously noted and highlighted as a priority for future data collection by other modelling studies

[21]. It is of particular importance for future spatial models of OPM, which require an estimate of

the distribution of oak trees in the areas of interest.

It is also worth noting that many areas infested with OPM have been undergoing control measures

[34] and so any inferred infestation rates represent the dynamics under these controls, rather than

the inherent parameters of the uncontrolled pest spread. In Richmond and Bushy Parks, the yearly

nest removal is a control measure. It would be interesting to conduct a similar analysis on a

contained area that had undergone no (or different) control measures to assess the differences in the

infestation rates and thus assess the efficacy of the controls. The effect of confounding factors such

as the weather, difference in landscapes and presence of other pests and parasitoids, should also be

investigated.

The results from this work can inform the development of future mathematical models for the spread

of OPM. These models can be used to identify at-risk regions [21] and predict the distribution of

OPM on a national scale. The development of these models will require further targetted data

collection to obtain complete oak tree inventories, as well as data on the population numbers and

locations of OPM (or indeed any other invasive insect or pathogen).
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Supplementary information

S1 SIR Model

S1.1 SIR as a Markov Jump Process

Consider an SIR model in which a population of fixed size N is classified into compartments con-

sisting of susceptible (S), infected (I) and removed (R) individuals. Let Xt = (St, It)
′ denote the

numbers in each state at time t ≥ 0 and note that Rt = N − St − It for all t ≥ 0. The dynamics of

{Xt, t ≥ 0} can be described by a Markov jump process (MJP), that is, a continuous time, discrete

valued Markov process. Assuming that at most one event can occur over an infinitesimal time in-

terval (t, t+∆t] and that the state of the system at time t is xt = (st, it)
′, the MJP is characterised

by probabilities of the form

P(Xt+∆t = (st − 1, it + 1)′|xt, θ) = h1(xt, θ)∆t+ o(∆t),

P(Xt+∆t = (st, it − 1)′|xt, θ) = h2(xt, θ)∆t+ o(∆t),

P(Xt+∆t = (st, it)
′|xt, θ) = 1−

2∑
i=1

hi(xt, θ)∆t+ o(∆t),

where h(xt, θ) = (βstit, γit)
′ is a hazard function, θ = (β, γ)′ is a parameter vector containing

infection and removal rates and o(∆t)/∆t → 0 as ∆t → 0. The transition probability π(xt|x0, θ)

governing the dynamics of the MJP over arbitrary time intervals of length t can be shown [37] to

satisfy the chemical master equation (CME):

d

dt
π(xt|x0, θ) =

2∑
i=1

[
hi(xt − Si, θ)π(xt − Si|x0, θ)− hi(xt, θ)π(xt|x0, θ)

]
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where Si denotes the ith column of the stoichiometry matrix

S =

−1 0

1 −1


which encodes the effect of each respective transition on the components of Xt. Although it is

possible to evaluate π(xt|x0, θ) efficiently [44], we eschew the MJP formalism in favour of an ap-

proximation whereby Xt is modelled by a stochastic differential equation (SDE).

S1.2 SDE representation

Consider an infinitesimal time interval, (t, t + dt], over which the hazard function h(xt, θ) will

remain constant almost surely. Let dNt denote the counting process with components dN1,t and

dN2,t containing the number of infections and removals over this interval. Hence dNi,t, is Poisson

distributed with rate hi(xt, θ)dt. Upon noting that from dXt = SdNt, it should be clear that

E(dXt) = S h(xt, θ)dt, Var(dXt) = S diag{h(xt, θ)}S′dt.

Hence, the Itô Stochastic differential equation (SDE) that best matches the MJP is given by

dXt = S h(xt, θ)dt+
√
S diag{h(xt, θ)}S′ dWt,

where Wt = (W1,t,W2,t)
′ is a 2-vector of standard Brownian motion and

√
S diag{h(xt, θ)}S′ is a

2× 2 matrix B such that BB′ = S diag{h(xt, θ)}S′. Explicitly, we have for the SIR model that

S h(xt, θ) =

 −βstit

βstit − γit

 ,
√

S diag{h(xt, θ)}S′ =

 βstit −βstit

−βstit βstit + γit

 .

In Section 2.2 in the main text, we discuss extending the model to include a time varying infection

rate.
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S2 Bayesian Inference under the LNA

We take the linear noise approximation (LNA) as described in Setion 2.2 of the main text as the

inferential model. Although the observed data likelihood can be evaluated efficiently (with details

below), the joint posterior is intractable. We therefore consider a Markov chain Monte Carlo scheme

for generating samples from the posterior.

S2.1 Posterior exploration via MCMC

Our inference strategy comprises two steps:

1. Generate samples θ(1), . . . , θ(M) from the marginal parameter posterior π(θ|y) ∝ π(θ)π(y|θ).

2. Generate samples x(1), . . . , x(M) by drawing from the conditional posterior π(x|y, θ(i)), i =

1, . . . ,M .

In step 1, we use a Metropolis-Hastings algorithm to draw from π(θ|y). This requires evaluation of

the observed data likelihood π(y|θ). Note the factorisation

π(y|θ) = π(y0|θ)
n∏

t=1

π(yt|y0:t, θ). (11)

Following [32] (see also [45]), we evaluate each constituent term in (11) via a forward filter. The

forward filter requires the observation equation (main text (7)) to have a linear Gaussian structure,

which is not the case as written, due to the variance being a function of the latent state process.

Therefore, we run step t of the forward filter with P ′xt+1P replaced by P ′ηt+1P . That is, the

unknown xt+1 is replaced by the LNA predictive mean ηt+1.

Since the parameters θ remain fixed throughout the calculation of π(y|θ), we drop them from the

notation where possible. Define y0:t = (y0, . . . , yt)
′. Now suppose that X0 ∼ N(a0,C0) a priori.

Algorithm 1 (Supplementary Information Section S2.3) gives the forward filter. This can then be

used inside Algorithm 2 (Section S2.3), which uses a random walk Metropolis algorithm to generate

(dependent) draws from the marginal parameter posterior π(θ|y). The proposal mechanism requires

an innovation variance Ω which can be chosen to maximise mixing efficiency, as measured by say
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effective sample size per second. We take Ω = kV̂ar(θ|y) where the posterior variance is estimated

from a short pilot run and k is chosen subsequently to give an acceptance rate of around 20–30%

[46].

Given samples θ(1), . . . , θ(M) from π(θ|y), we generate samples of the latent process x(i) ∼ π(x|y, θ(i)),

i = 1, . . . ,M by noting that these samples can be efficiently generated using a backward sampling

algorithm. This requires the covariance between Xt and Xt+1 (since the former is drawn condition-

ally on a realisation of the latter) which depends on the 3×3 fundamental matrix Gt. This satisfies

and ODE system

dGt

dt
= HtGt, G0 = I3, (12)

where I3 is the 3 × 3 identity matrix. The ODE in (12) can be time-stepped with the ODEs in

(4) and (6) (main text) as part of the forward filter. Algorithm 3 (Section S2.3) then gives the

backward sampler.

S2.2 Model checking

Given inferences on the static parameters θ and the latent dynamic process x, we consider the

following diagnostics for assessing model fit. The within sample predictive density is

π(ỹ|y) =
∫ ∫

π(ỹ|x, θ)π(θ, x|y)dxdθ (13)

and the one step ahead out of sample predictive density is

π(yn+1|y) =
∫ ∫

π(yn+1|xn+1, θ)π(xn+1|xn, θ)π(θ, x|y)dx0:n+1dθ. (14)

Hence, in both cases we properly account for parameter and latent process uncertainty. Although the

densities in (13) and (14) will be intractable, we may generate samples via Monte Carlo. Recall that

the inference algorithm described in Section S2.1 gives draws {(θ(i), x(i)), i = 1, . . . ,M}. We then

generate {ỹ(i), i = 1, . . . ,M} via (7), by drawing ỹt
(i) from a N(P ′x

(i)
t , (σ2

e)
(i)P ′x

(i)
t P ) distribution,

independently for t = 0, . . . , n and i = 1, . . . ,M . Similarly, we generate samples from π(yn+1|y) by

first drawing x
(i)
n+1 from π(xn+1|x(i)n , θ(i)), followed by y

(i)
n+1 from π(yn+1|x(i)n+1, θ

(i)).
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S2.3 Algorithms

Algorithm 1 LNA forward filter

1. Initialisation. Compute π(y0) = N(y0 ; P
′a0 , P

′C0P +Σ0) where Σ0 = σ2
eP

′a0P . The poste-
rior at time t = 0 is therefore X0|y0 ∼ N(a1, C1), where

a1 = a0 + C0P
(
P ′C0P +Σ0

)−1 (
y0 − P ′a0

)
C1 = C0 − C0P

(
P ′C0P +Σ0

)−1
P ′C0 .

Store the values of a1 and C1.

2. For t = 0, 1, . . . , n− 1,

(a) Prior at t+ 1. Initialise the LNA with ηt = at and Vt = Ct. Integrate the ODEs (4) and
(6) forward to t+ 1 to obtain ηt+1 and Vt+1.

(b) One step forecast. Using the observation equation (7), we have that

Yt+1|y0:t ∼ N
(
P ′ηt+1, P

′Vt+1P +Σt+1

)
where Σt+1 = σ2

eP
′ηt+1P . Compute the updated marginal likelihood

π(y0:t+1) = π(y0:t)π(yt+1|y0:t)
= π(y0:t)×N

(
yt+1 ; P

′ηt+1 , P
′Vt+1P +Σt+1

)
.

(c) Posterior at t+1. Combining the distributions in (a) and (b) gives the joint distribution
of Xt+1 and Yt+1 (conditional on y0:t) as(

Xt+1

Yt+1

)
∼ N

{(
ηt+1

P ′ηt+1

)
,

(
Vt+1 Vt+1P

P ′Vt+1 P ′Vt+1P +Σt+1

)}

and therefore Xt+1|y0:t+1 ∼ N(at+1, Ct+1), where

at+1 = ηt+1 + Vt+1P
(
P ′Vt+1P +Σt+1

)−1 (
yt+1 − P ′ηt+1

)
Ct+1 = Vt+1 − Vt+1P

(
P ′Vt+1P +Σt+1

)−1
P ′Vt+1 .

Store the values of at+1, Ct+1, ηt+1 and Vt+1.
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Algorithm 2 Random walk Metropolis algorithm

1. Initialise at θ(0) in the support of π(θ|y). Set the iteration counter i = 1.

2. Propose θ∗ = θ(i−1) + ϵi where ϵi ∼ N(0,Ω)

3. With probability

α(θ∗|θ(i−1)) = min

{
1,

π(θ∗)π(y|θ∗)
π(θ(i−1))π(y|θ(i−1))

}
put θ(i) = θ∗ otherwise put θ(i) = θ(i−1).

4. If i = M stop otherwise put i := i+ 1 and go to step 2.

Algorithm 3 LNA backward sampler

1. First draw xn from Xn|y ∼ N(an, Cn).

2. For t = n− 1, n− 2, . . . , 0,

(a) Joint distribution of Xt and Xt+1. Note that Xt|y1:t ∼ N(at, Ct). The joint distribution
of Xt and Xt+1 (conditional on y1:t) is(

Xt

Xt+1

)
∼ N

{(
at

ηt+1

)
,

(
Ct CtG

′
t+1

Gt+1Ct Vt+1

)}
.

(b) Backward distribution. The distribution of Xt|Xt+1, y0:t is N(ât, Ĉt), where

ât = at + CtG
′
t+1V

−1
t+1 (xt+1 − ηt+1) ,

Ĉt = Ct − CtG
′
t+1V

−1
t+1Gt+1Ct.

Draw xt from Xt|Xt+1, y0:t ∼ N(ât, Ĉt).
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S2.4 Parameters for inference

Bushy Richmond

Total population N 5000 40000

Initial infected I0 240 1400

Initial infection rate β̃0 -8.5 -10

Initial model parameters θ0 = (γ0, σ0, σe)
′ (1, 0.5, 1)′ (2, 0.5, 1)′

Observation matrix P (1, 1, 0)

Prior distributions π(θ)

log γ ∼N(0, 0.52)

log σ ∼N(1, 1)

log σe ∼N(1, 1)

Tuning parameter Σ


0.1 0 0

0 0.1 0

0 0 1


Initial conditions mean a0 (N − I0 −R0, I0, β̃0)

Initial conditions variance C0


0 0 0

0 0 0

0 0 0.5



Table S1: The parameters used in the inference schemes described in Sections 2.3 and S2.
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S3 Additional results figures

The following section contains additional results figures referred to in the main text. We give the

trace (Figure S1) and 2D contour plots (Figure S2) for the inferred model parameters. The one-step

model predictions for all years are given in Figure S3
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Figure S1: Trace plots for (a) Bushy and (b) Richmond Park.
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Figure S2: Pairwise joint posterior densities for the parameters γ, σ and σe for (a) Bushy and (b)
Richmond Park.
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Figure S3: One-step model predictions for the number of removed nests, R(t) for the years 2014–
2020, with median (blue line) for (a-b) Bushy and (c-d) Richmond. In (a) and (c) the shaded area
shows 50% credible region and in (b) and (d) the 95% credible region. The orange line shows the
observed data.
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