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Abstract 

 

The frequency of synonymous codons in protein coding genes is non-random and varies both 

between species and between genes within species. Whether this codon usage bias (CUBias) reflects 

underlying neutral mutational processes or is instead shaped by selection remains an open debate, 

especially regarding the role of selection for enhanced protein production. Variation in CUBias of a 

gene (be it natural synonymous mutations or biotechnological synonymous recoding) can have an 

enormous impact on its expression by diverse cis- acting mechanisms. But expression of genes with 

extreme CUBias can also lead to strong phenotypic effects by altering the overall intracellular 

translation homeostasis via competition for ribosomal machinery or tRNA depletion. In this study, we 

expressed at high levels in human cells six different synonymous versions of a gene and used matched 

transcriptomic and proteomic data to evaluate the impact of CUBias of the heterologous gene on the 

translation of cellular transcripts. Our experimental design focused specifically on differences during 

translation elongation. Response to expression of the different synonymous sequences was assessed 

by various approaches, ranging from analyses performed on a per-gene basis to more integrated 

approaches of the cell as a whole. We observe that the transcriptome displayed substantial changes 

as a result of heterologous gene expression by triggering an intense antiviral and inflammatory 

response, but that changes in the proteomes were very modest. Most importantly we notice that 

changes in translation efficiency of cellular transcripts were not associated with the direction of the 

CUBias of the heterologous sequences, thereby providing only limited support for trans- acting effects 

of synonymous changes. We interpret that, in human cells in culture, changes in CUBias can lead to 

important cis- acting effects in gene expression, but that cellular homeostasis can buffer the 

phenotypic impact of overexpression of heterologous genes with extreme CUBias. 

 

Keywords: codon usage bias, gene expression, competition for translational resources, cellular 

homeostasis, heterologous expression 
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Introduction 

 

The genetic code allows to translate information stored in gene nucleotide sequences into 

protein sequences. This code is redundant because 61 codons encode the standard twenty amino 

acids. Codons encoding the same amino acid are called synonymous codons and amino acids either 

can be encoded by one, two, three, four or six synonymous codons. Moreover, these synonymous 

codons are usually not used at random. Accounting for the occurrence of a given amino acid in the 

coding part of a genome, some synonymous codons are indeed over-represented in the genome (i.e., 

more frequently used to encode the considered amino acid compared to a uniform situation) while 

some others are under-represented (i.e., less frequently used). This non-random usage of synonymous 

codons is referred to as codon usage bias (CUBias). CUBias widely varies across species (Ikemura, 1982; 

Kanaya et al, 1999; Novoa et al, 2019) as well as between genes within the same genome (Gouy & 

Gautier, 1982; Sharp & Li, 1986; Duret, 2002). 

There are mainly two non-mutually exclusive hypotheses to explain the existence of CUBias 

and its intra and inter-specific variation (Hershberg & Petrov, 2008 ; Plotkin & Kudla, 2011). The first 

one is the mutational bias hypothesis, which is usually referred to as a neutral explanation as it does 

not involve any selective process shaping CUBias. According to this view, the CUBias of a coding 

sequence simply arises because of local biases in the mutation spectrum during DNA replication or 

repair and hence mirrors the nucleotide composition of non-coding sequences nearby, because neutral 

mutational biases are expected to be similar for coding and non-coding parts of the genome. This idea 

of CUBias being a side-effect of mutational processes is supported by several lines of evidence. For 

example, the GC composition of exons is usually similar to that of the introns in the same gene 

Chamary, Parmley & Hurst, 2006) or to non-coding sequence in its vicinity (Chen et al, 2004). The fact 

that for many genes exons and introns tend to display similar nucleotide composition illustrates that 

mapping or not onto a translated region is not the major determinant of the mutational bias. At 

broader scale, evidence of such co-variation of nucleotide composition between coding and non-

coding regions is obvious in many vertebrate’s genomes and manifests as the so-called isochores. 

Isochores are long chromosome stretches enriched in AT or in GC nucleotides, observable by means of 

cytochemical staining during metaphase (Caspersson et al, 1968). This strong compositional bias over 

large chromosome stretches is maintained over evolution, so that the physical mapping of a gene onto 

a given isochore is the most important determinant of nucleotide composition and therefore of CUBias 

(Holmquist, 1989; Duret, 2002; Pouyet et al, 2017). Finally, local CUBias in vertebrate genomes is 

further influenced by the distance to homologous recombination hotspots and could reflect the 

intensity of the GC-biased gene conversion around the considered loci (Pouyet et al, 2017).  
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In the second hypothesis, known as translational selection, synonymous mutations are 

considered subject to selection as they can provide phenotypic variation and ultimately differences in 

fitness by means of variation in protein amount and quality during gene expression, mostly during 

translation. According to this view, selection can thus discriminate synonymous codons either because 

of their different decoding speed, their different consequences on co-translational folding of the 

translated protein (an effect probably mediated by local decoding speed itself – Pechmann & Fryman, 

2013; Yu et al, 2015) or the different accuracy for codon-anticodon decoding (Stoletzki & Eyre-Walker, 

2007; Drummond & Wilke, 2009; Walsh et al, 2020; Drummond & Wilke, 2008). Experimental 

supports for all these mechanisms have been observed, altogether supporting that selection can, at 

least in part, contribute to shape the CUBias of a gene. In eukaryotes, synonymous mutations can be 

further associated to a phenotype without direct consequences on translation, for instance when 

modifying splicing regulatory elements located in exons (Chamary, Parmley & Hurst, 2006; Savisaar & 

Hurst, 2018). The proposed effect of CUBias on decoding speed and translational efficiency is strongly 

supported by the fact that genes preferentially using synonymous codons that are the most frequent 

genome-wide are usually those expressed at higher levels and decoded by more abundant transfer 

RNAs (tRNAs). This association between codon frequency and tRNA abundance has been extensively 

reported in multiple fast growing, unicellular organisms such as E. coli (Ikemura, 1981; Sharp & Li, 

1986; Tuller et al, 2010), or S. cerevisiae (Ikemura, 1982, Akashi, 2003, Tuller et al, 2010), but also in 

multicellular organisms such as C. elegans (Duret, 2000) and D. melanogaster (Duret & Mouchiroud, 

1999) and provide support of CUBias being shaped by selection to optimize protein production in these 

species. Moreover, technical advances such as ribosome profiling, either alone or in association with 

elongation inhibitors, seem to confirm that synonymous mutations play a role in how efficiently genes 

are translated, and that this differential efficiency is directly linked to tRNA availability (Hia & Takeuchi, 

2020, but see Charneski & Hurst, 2013). In yeast for example, a positive correlation between 

translation efficiency and the match between codon frequency and tRNA availability has been reported 

(Riba et al, 2019). Other studies indeed showed that the decoding time of a codon during elongation 

is anti-correlated with the availability of its cognate tRNA (Gardin et al, 2014; Weinberg et al, 2016). 

While supported in the above-cited model species, translational selection in mammalian genomes is a 

much more debated topic (Urrutia & Hurst, Genetics, 2001) and if exists, its influence relatively to 

mutational processes seems to be much weaker (Kanaya et al, 2001; Vogel et al, 2010). In humans 

more specifically, small effective populations sizes render difficult selection on synonymous mutations 

that presumably display small selective coefficients in general (Hershberg & Petrov, 2008) and the 

importance of GC-biased gene conversion and isochore compartmentation on shaping the genome 

composition is probably strong enough to blur most of the signatures left within coding sequences by 

selection (Pouyet et al, 2017). Moreover, as for other multicellular organisms, most genes are 
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expressed at different levels across human tissues, thereby rendering the link between expression level 

and CUBias difficult to make. There is indeed an open debate in the field on whether tissue-specific 

gene expression patterns include or not a CUBias, which could be related or not to different tRNA 

availability in different tissues (Plotkin, Robins & Levine, 2004; Dittmar, Goodenbour & Pan, 2006;  

Eraslan et al, 2019). Complementary hypotheses posit that CUBias in eukaryotes could be the result of 

adaptation to varying tRNAs levels during the cell cycle (Frenkel-Morgenstern, 2012), or that CUBias 

could be constrained by the cellular processes in which the different genes are involved, such as 

proliferation and differentiation (Gingold et al, 2014), although this interpretation has been 

questioned regarding the direct role played by translational selection in shaping the distinct CUBias of 

genes involved in these two antagonistic processes (Pouyet et al, 2017). Finally, some studies revealed 

that synonymous sites do not evolve neutrally in mammals but instead have functional impacts, though 

not necessarily through their translational effects (Newman et al, 2016; Chamary & Hurst, 2005; Kudla 

et al, 2006). 

The translational selection hypothesis proposes that the CUBias of a gene can modulate its 

own translation efficiency, by means of cis-effects. But it has been proposed that the CUBias of a gene 

can exert effects on the expression and translation efficiency of other genes, by means of trans-effects. 

Indeed, translation is the most expensive step of the gene expression process (Lynch & Marinov, 2015) 

and the availability of the translational machinery - itself also complex and costly - is the overall 

limitation for protein synthesis, as 95% of the cellular ribosomes are actively engaged in translation at 

any time point (Princiotta et al, 2003). The different cellular transcripts face thus a direct competition 

for finite translational resources (e.g. ATP, GTP, amino acids, ribosomes, tRNAs - Li et al, 2014). 

Selection has thus resulted in large differences between cellular transcripts in their ribosomal binding 

ability, so that not necessarily the most abundant mRNAs are those that are more active at recruiting 

ribosomes and starting translation, resulting in ribosomal sequestering and loss of translation 

opportunity for other mRNAs (Callens et al, 2021). Further, when abundant and actively ribosome-

recruiting mRNA species perform poorly at translation elongation -because of a poor CUBias, for 

instance–, ribosomal pausing leads to accumulation of slowly proceeding ribosomes, amplifying 

ribosome sequestration and further reducing the pool of free ribosomes available for the translation 

of other mRNAs (Pelechano, Wei & Steinmetz, 2015; Shah et al, 2013). Since these trans effects can 

hamper translation of essential genes, it is conceivable that genes that require high expression levels 

have been selected to be encoded with a particular CUBias, to decrease the burden caused onto other 

genes arising from their high expression levels, or to avoid suffering from trans acting effects caused 

by high expression level of other genes. Two studies in E. coli strongly support this hypothesis of trans- 

acting effects mediated by competition between mRNAs. First, expressing different synonymous 

versions of the green fluorescent protein (GFP) surprisingly did not result in changes in its own 
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translation (i.e., no cis- effects), but instead led to different trans- effects on global translation 

efficiency (Kudla et al, 2009). Second, it was shown that the global negative effects associated to 

translating highly expressed genes that use rare codons can be balanced if the availability of the 

cognate tRNAs was increased to meet the demand (Frumkin et al, 2018). Results also consistent with 

such trans- effects have been communicated for yeast (Pop et al, 2014). Finally, from a practical 

perspective, competition between mRNAs to access shared resources such as tRNAs can be considered 

under a perspective of cellular economy, using a supply-and-demand reasoning, where the pool of 

transcripts exerts a demand for being translated, requiring their codons to be decoded by the 

corresponding cognate anticodons, representing the “offer” (Gingold & Pilpel, 2011; Gingold, Dahan 

& Pilpel, 2012). A proxy for the overall demand in tRNAs could be computed using codon composition 

of mRNAs present in the cell and by accounting for their relative abundance in the cell transcriptome 

(Gingold, Dahan & Pilpel, 2012; Schmitt et al, 2014).  

In this study we aim at studying trans-acting effects by analyzing the different cellular changes 

incurred as a function of CUBias of heterologous genes. We combine transcriptomic and proteomic 

data to identify patterns consistent with trans- effects on translation efficiency mediated by 

competition for the translation machinery availability, using human HEK293 cells as model system. We 

have analysed such effects by studying both individual gene translation efficiency and overall 

translation efficiency at the whole-cell scale. Globally our results show that heterologous gene 

overexpression triggers changes in the cellular transcriptome of large extent. In contrast, changes in 

the cellular proteome are more discrete and do not show any evident global trend with regards to 

CUBias of the heterologous genes. Our results suggest that, in our experimental conditions, cellular 

homeostasis can largely buffer the effects of gene overexpression, and provide only limited support 

for the hypothesis of trans-acting arising from directional competition for limited translational 

resources, associated to CUBias. 
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Results 

 

Heterologous gene expression upon transfection leads to substantial changes in the cellular 
transcriptome, independently of the codon usage bias of the heterologous genes 
 

A principal component analysis performed on our transcriptomic data (exclusively using cellular 

mRNAs, i.e., heterologous mRNAs excluded) revealed that the main source of variation across our 

samples stems from transfection itself (Fig. S1). The first principal component captures 67% of the total 

transcriptomic variance, with Mock samples displaying values divergent from all other versions, while 

the second principal component captures 18% of the total transcriptomic variance and is strongly 

associated to differences between the three experimental batches (Fig. S1). Indeed, variation along the 

first component is largely explained by variation in the total amount of heterologous transcripts in the 

sample (Spearman correlation coefficient: 0.87, P = 4.8e-7, Fig. S2). Since heterologous expression is 

the largest determinant of transcriptomic changes, we focused on the identification of differentially 

expressed (DiffExp) cellular transcripts compared to the Mock for each transfected plasmid version. We 

state first that transfection with our “Empty” control, i.e. a plasmid that encodes for the neoR and for 

the egfp genes, leads to identification of 711 DiffExp transcripts. The number of DiffExp transcripts 

detected in the experimental conditions, i.e., cells transfected with plasmids encoding for the neoR 

gene and for different synonymous versions of the shble_egfp gene, varies between 505 for Shble#6 to 

1,312 for Shble#3 (Fig. 1A). Interestingly, a vast majority (~ 90%) of DiffExp transcripts were up-

regulated (Table S1). As noted above, the largest determinant of transcriptomic changes is the intensity 

of heterologous expression: variation in the number of DiffExp transcripts detected is largely explained 

by the variation in the amount of heterologous transcripts (Spearman correlation coefficient: 0.54; Fig. 

1A). Considering the response to transfection and heterologous egfp expression alone, we observed 

that most of the 711 mRNAs identified as DiffExp in the Empty version were also identified as DiffExp 

in all six (63%) or in five out of the six (81%) shble synonymous versions (Fig. 1B). We hence interpret 

our sets of DiffExp genes (listed in Table S1) constitute a fundamental part of the cellular response to 

transfection and heterologous gene expression and not to a specific shble synonymous version. The 

precise overlap between DiffExp mRNAs in the Empty and in each of the six shble versions is given in 

Fig S3. Finally, and independently of their behaviour in the Empty condition, we observe that a vast 

majority of transcripts DiffExp compared to the Mock in each version are shared among shble 

synonymous versions, despite their very different CUBias (Fig. 1C and Fig. S4). For each set of DiffExp 

mRNAs with respect to the mock control condition we performed a functional enrichment analysis (see 

Methods). All seven DiffExp gene sets shared the same top three enriched categories, namely 

Inflammatory response, Type I interferon signaling pathway and Response to virus. Other categories 
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appeared always over-represented among the DiffExp in all gene sets: Negative regulation of viral 

genome replication and Immune response categories (Table S2). Of note, an overwhelming majority of 

mRNAs belonging to these five categories appeared to be up-regulated in comparison to the Mock, 

suggesting transfection triggered an inflammatory response in our HEK293 cells (Table S2). 

Overall, the global trends for our transcriptomic results are that: i) transfected cells undergo 

substantial changes in the transcriptome, largely through gene upregulation; ii) the extent of these 

changes correlates with the extent of heterologous gene expression; iii) transcriptomic changes upon 

transfection largely overlap the cellular response to viral infection; and iv) the bulk of the 

transcriptomic response are shared among conditions, irrespective of the CUBias of the transfected 

shble version. 

 

Lack of directional changes in the cellular proteome upon transfection and heterologous gene 
expression, irrespective of the codon usage bias of the heterologous genes 
 

We next used proteomic data obtained on samples matching transcriptomic data to investigate 

whether we could find similar evidence for a shared response across versions or alternatively if a shble 

synonymous version-specific response is observed after transfection at the protein level compared to 

the transcript level. Variation along the first two axes of a principal component analysis (Fig. S5) succeed 

at capturing an important fraction of the global variation in the proteome (77%) among samples. 

However, in striking contrast to what we observed from transcriptomic data, the experimental 

conditions did not spread following any evident pattern. Especially, variation along the first component 

was not driven by variation in the total amount of heterologous transcripts expressed by the samples 

(Spearman correlation coefficient = 0.099; P = 0.67, Fig. S5). Differential expression analysis failed to 

identify differentially expressed proteins, either with regards to transfection itself or regarding the 

different shble synonymous versions in the transfected plasmids. We tried to refine these raw analyses 

by defining a set of proteins that could maximize the chances of detecting DiffExp proteins between 

conditions. We identified thus all proteins that were detected in all three replicates of a same condition 

and that were not detected in any of the three replicates of at least one other condition (see Methods 

and Table S3), reasoning that if an effect is to be found, working specifically on this subset of proteins 

would maximize variation across versions. We found 369 proteins that fulfilled this criterion, but again 

a principal component analysis failed at identifying systematic differences between conditions (Fig. S6). 

Further, we did not identify any enrichment in functional categories in this 369-protein set. Overall, we 

concluded that in our experimental setup, the cellular proteomic response to heterologous expression 

was much less important than the transcriptomic one (see discussion for potential explanations). 
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High translation level of heterologous sequences does not impair translation of cellular genes with 

similar codon usage bias 

 
Our experimental setup of paired transcriptomic and proteomic data recovered from the same 

samples allowed us to estimate intra-sample covariation between mRNA and protein levels, measured 

in TPM and riBAQ, respectively. On average across samples, variation in mRNA levels accounts for 

around one-third of the variation in protein levels (median=0.31, min=0.29, max=0.35, Table S4). These 

values agree with previous measurements performed on mammalian cells, with studies reporting a R² 

of 0.41 for mouse cells (Schawanhaüsser et al, 2011) and usually between 0.30 and 0.40 in human cells 

(reviewed in Vogel & Marcotte, 2012). A representative example is provided in Fig. S7 for a sample in 

condition Shble#1. We concluded that our data fit well within the classical range of mRNA-protein 

covariation expected for human cells in culture. 

For prokaryotic and unicellular eukaryotic systems overexpressing genes with extreme CUBias 

it has been proposed that overexpressing heterologous can affect the translation efficiency of other 

genes (Kudla et al, 2009; Frumkin et al, 2018; Shah et al, 2013). To test whether this is also the case in 

our human cultured cells system, we chose as a proxy for translation efficiency of a given gene the ratio 

protein-level-over-transcript-level (expressed as riBAQ/TPM ratio). We studied first the impact of 

heterologous expression on the translation efficiency of cellular genes by comparing the Empty 

condition to the Mock condition. Cells under the Empty condition were transfected with a plasmid 

encoding only the egfp gene, whose sequence, “enhanced” for expression in human cells, is strongly 

biased towards the use of the most frequent codons in the human genome. This first level of analysis 

should hence provide insights into potential consequences of over-expressing an “over-humanized” 

gene on translation efficiency of cellular genes. Changes in the riBAQ/TPM ratio in Empty vs. Mock 

samples calculated for 2,471 cellular genes and plotted as a function of the CUBias match between the 

corresponding gene and the average human genome are depicted in Fig. 2A. Our results show that the 

intensity of changes in riBAQ/TPM for cellular genes when EGFP is actively translated is not a function 

of gene’s CUBias (slope = 0.00378, F-test P = 0.29). Specifically, we did not observe that genes enriched 

in the most-frequent codons in the human genome – i.e., those used to encode egfp, with COUSIN 

values above one – suffer the most. This lack of directional impact in our system does not support the 

hypothesis that translation of highly expressed over-humanized genes impairs translation of cellular 

genes that also use these human frequent codons. We performed the same analysis comparing 

riBAQ/TPM ratios in the Mock to the ones for Shble#1 and Shble#2 conditions, as these two versions 

encode shble using an over-humanized CUBias, in the same direction than egfp (respective COUSIN 

values to the human genome for egfp, Shble#1 and Shble#2: 3.38, 3.47 and 3.42, respectively). We 

observed similar results than for the Empty condition (Fig. 2B, slope = 0.0048, F-test P = 0.18 and Fig. 
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2C, slope = -0.0059, F-test P = 0.11), further supporting the absence of competition exerted by 

translation of highly expressed “overhumanized” genes on the translation efficiency of host genes, 

irrespective of the CUBias of the cellular genes. 

To extend the analysis of the impact of heterologous gene expression on the translation of 

cellular genes to the range of CUBias explored in our setup, we aimed at identifying cellular genes that 

presented consistent trends of changes in riBAQ/TPM ratio across conditions. As a proxy for translation 

level of the heterologous genes we used the total amount of EGFP and SHBLE detected in each sample, 

using the sum of the corresponding riBAQ values (Fig S8). We stratified the experimental conditions in 

two sets: those that expressed heterologous genes enriched in codons frequently used in the human 

genome (i.e., Empty, Shble#1 and Shble#2) and those that expressed heterologous genes enriched in 

codons rarely used in the human genome (i.e., Shble#3, Shble#4, Shble#5 and Shble#6). We focused 

first on the conditions using human-frequent codons. For a total of 2,550 cellular genes, we could 

perform linear regressions exploring correlation between variation in riBAQ/TPM ratios for each 

individual gene and the total amount of heterologous proteins in the corresponding sample. This 

analysis used twelve underlying data points per gene as explanatory variable: three values for the mock 

control samples and nine values for the transfected samples. Among these genes, 235 displayed a 

significant variation (assessed by the significance of the regression slope) in their riBAQ/TPM ratios as 

a function of heterologous protein expression: 109 genes showed a positive, significant co-variation 

with heterologous proteins levels and 126 showed a negative, significant co-variation (Fig. 3A, yellow 

and green sets, respectively). A representative example of a gene with a negative association (green 

set) is given in Fig. 3B (left, KIF11). We next compared these two sets of genes in terms of CUBias, 

reasoning that a competition for translational resources between cellular and heterologous transcripts 

should primarily negatively affect translation of genes enriched in most human-frequent codons (i.e., 

in the same codons used by egfp and Shble#1 and Shble#2 versions). Instead, we found that the median 

COUSIN score for the two gene sets were not significantly different (0.58 for the set of 126 genes; 0.45 

for the set of 109 genes; Wilcoxon Mann-Whitney test P = 0.58, Fig. 3C, left). An additional Anderson-

Darling test failed to reject the null hypothesis that the COUSIN value distributions for each dataset 

could have been drawn from a same underlying distribution and were thus not significantly different 

(P=0.33, Fig. 3D, left). Furthermore, these two gene sets, with translation positively or negatively 

affected by overexpression of heterologous genes enriched in human-frequent codons, do not display 

different distribution of COUSIN values than the overall cellular genes (Fig. S9). Our results confirm the 

trend communicated above and show that cellular genes whose translation was positively or negatively 

impacted by overexpression of heterologous genes enriched in human-frequent codons do not display 

different CUBias. Hence, these results reinforce the view that in our experimental system we do not to 

recover the expected pattern consistent with competition for translational resources. Instead, high 
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expression heterologous genes enriched in human-frequent codons does not impose a substantial 

differential burden on host translation efficiency of cellular genes as a function of their CUBias.  

It is conceivable that we failed to identify an impact of over-humanized protein expression on 

host translation due to a pool of tRNAs for the considered codons large enough to accommodate the 

demand exerted by translation of heterologous mRNAs. Alternatively, we can expect the pool of tRNAs 

decoding human rare codons to be more limiting and therefore perhaps more prone to be depleted by 

the demand imposed by the translation of heterologous mRNAs rich in these rare codons. We 

performed then a similar analysis focusing on the conditions expression heterologous genes enriched 

in codons that are underrepresented in the human genome. For 2,580 cellular genes we performed 

linear regressions of their riBAQ/TPM ratios as a function of the total amount of heterologous proteins. 

This analysis used 15 underlying data points per gene as explanatory variable: three values for the mock 

control samples and twelve values for the transfected samples (i.e. Shble#3, Shble#4, Shble#5 and 

Shble#6) (Fig. S8). Among these genes, 285 displayed a significant variation (assessed by the 

significance of the regression slope) in their riBAQ/TPM ratios as a function of heterologous protein 

expression: 130 genes showed a positive, significant co-variation with heterologous proteins levels and 

155 showed a negative, significant co-variation (Fig. 3A, pink and blue sets, respectively). A 

representative example of a gene with a negative association (blue set) is given in Fig. 3B (right, SNRPG). 

We compared then the CUBias of the genes in each of these two sets and we observed that they differ 

in their match to the average human CUBias: cellular genes showing a negative association with 

overexpression of heterologous genes enriched in human-rare codons display higher COUSIN values 

than genes displaying positive association (respective median values 0.79 and 0.13; Wilcoxon Mann-

Whitney test P = 0.010, Fig. 3C, right). The distribution of COUSIN values between the two gene 

datasets is also significantly different (Anderson-Darling test, P = 0.0010, Fig. 3D, right). Furthermore, 

cellular genes negatively affected by overexpression of heterologous genes enriched in human-rare 

codons do not display different COUSIN values distribution than the ensemble of the cellular genes, 

while genes positively affected do display a different CUBias distribution that is shifted towards lower 

COUSIN values (Fig. S10). This result is counter-intuitive because – assuming cellular mRNAs compete 

with heterologous mRNAs to access to rare-codon decoding tRNAs – we would instead have expected 

cellular genes negatively impacted to be the ones preferentially using these non-optimal codons that 

are required for translating heterologous transcripts and hence to be those presenting lower COUSIN 

values. We thus examined whether the 155 genes – which surprisingly are not enriched in rare codons 

despite being impaired by heterologous expression of under-humanized versions – were more 

expressed. This could indeed help to understand this counter-intuitive pattern, with the underlying 

assumption that highly translated transcripts are more prone to potential shortage of tRNAs due to 

heterologous translation. We nevertheless observed that these 155 genes were on average less 
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expressed (Fig. S11, Wilcoxon-Mann Whitney test P < 2.2e-16), in opposite to what this assumption 

predicts. 

For the sake of completeness, we repeated all these analyses (i.e., regressions performed using 

cellular genes from either conditions Empty, Shble#1 and Shble#2, or from conditions Shble#3, 

Shble#4, Shble#5 and Shble#6), after having excluded cellular genes that were significantly affected in 

the same direction in both datasets (i.e., after having removed the 27 cellular genes that are positively 

affected in both regression analyses and the 34 cellular genes that are negatively affected in both 

regression analyses, as displayed in Fig. 3A). The results did not change with regards to those 

communicated above (details in Fig. S12 and Fig. S13). 

 

Overall, the global trends for our experiment results for the show that: i) overexpressing 

heterologous genes with extreme CUBias leads to changes in the protein-over-mRNA levels for a limited 

number of cellular genes; and that ii) overexpression of heterologous genes enriched in human-

frequent codons does not have a differential impact on cellular genes as a function of their CUBias. Our 

results do not support thus the hypothesis for resource competition among mRNAs for the rare cellular 

resources of the translation machinery, as overexpression of genes with a given CUBias does not hinder 

translation of other genes with similar CUBias. 

 

Heterologous expression of genes with extreme CUBias does not lead to a global alteration of the 

translation efficiency of cellular transcripts 

 
 We finally used a more integrated approach of the cell to examine how global codon content 

that is present at the transcriptomic layer ‘flows’ to the proteomic layer during the process of 

translation. This approach follows a supply and demand reasoning: a demand for being decoded is 

exerted by codons present in the pool of cellular mRNAs whereas the codon composition ultimately 

inferred from the cell proteome informs us to what extend this demand has been met. For this purpose, 

we calculated for each sample the abundance of each codon as they are represented in the cellular 

transcriptome and proteome (see Methods, and Table S5 and Table S6 for values of these abundance 

values). By dividing proteome-wide relative synonymous codon frequency (RSCF) of each codon by its 

transcriptome-wide RSCF counterpart we obtained for each sample an integrated view of how 

effectively each synonymous codon had been translated. We called this variable Prot-to-RNA RSCF (see 

Methods and Fig. S14). We validated this Prot-to-RNA RSCF variable as a proxy of whole-cell translation 

efficiency of synonymous codons by showing that it modestly but significantly correlates (correlation 

coefficient = 0.31, P = 0.045) with anticodon content, using previously published tRNA quantification 

data obtained on HEK293 cells (Mattijssen et al, 2017 and see Table S7 for a detailed map of codon-
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anticodon pairing and the associated counts of tRNA). We indeed observed a correlation between our 

Prot-to-RNA RSCF variable and the relative synonymous proportion of the total tRNAs decoding each 

codon encoding a similar amino acid (Fig. 4A). Further confirming this positive relationship between 

Prot-to-mRNA RSCF and tRNAs availability, we observed that when assessed individually on a per amino 

acid basis, a positive trend was found for 10 out of the 12 amino acids included in our analysis (the six 

amino acids Asn, Asp, Cys, His, Phe and Tyr have their two synonymous codons decoded by a single 

anticodon, and so were excluded by definition – see Methods) (Fig. 4A). 

 For each 59 amino acids-encoding codons we next tested if the version of the transfected 

construct had a significant effect onto the Prot-to-RNA RSCF of the considered codon (Table S8). We 

found a significant effect for 23 codons, representing a total of 11 amino acids (Leu, Arg, Ser, Val, Ala, 

Gly, Thr, Ile, Phe, Glu, Gln - see Table S9). Considering only these 23 codons, we interestingly observed 

in Fig. 4B that, compared to other samples, those expressing Shble#3 – an AT-rich version – seem to « 

favor » (respectively « avoid ») translation of GC-ending (respectively AT-ending) codons (Fig. S15 and 

Table S9). This intriguing pattern led us to consider the first two axes of variation in Prot-to-RNA RSCF 

across samples, in order to see whether samples clustered along these axes depending on the AT 

richness of the shble version they express. Results are shown in Fig. 4C. We first checked that 

correlation between heterologous transcripts expression and the first component (61% of variance) of 

variation of Prot-to-RNA RSCF across samples was non-significant, ruling out expression level of the 

different synonymous versions as a confounding factor (Fig. S16). Regarding the second component 

(14% of variance explained), we indeed observed (Fig. 4C) that samples expressing AT-rich versions 

(Shble#3, Shble#4, Shble#6) tended to cluster together while GC-rich versions (Shble#1, Shble#2, 

Shble#5 + Empty) tended to cluster together in opposite direction: samples expressing AT-rich versions 

display high values projected onto PC2 (median = 0.027) and those expressing GC-rich versions display 

low values (median = -0.019). Superimposing to this pattern the loadings onto the 2nd axis of the 59 

variables (i.e., 59 codons), the following association emerges: most samples expressing AT-rich versions 

(Shble#3, Shble#4 and Shble#6) seem to have preferentially translated cellular mRNAs rich in GC-

ending codons compared to samples expressing GC-rich versions. This pattern is shown in Fig. 4D. 

Hence, although not the primary difference across samples (14% of inter-sample variance), this result 

suggests a differential effect in terms of codon third base-dependent translation efficiency in host cells 

driven by base composition of heterologous they express. This observation is not in total agreement to 

what we would have expected under our initial assumption, which stated that translation of cellular 

transcripts should be impacted depending on the overall match between their CUBias and the one of 

the heterologous genes expressed by the host cell, which was not the case here using COUSIN values 

of our synonymous versions, as displayed in Fig. 4D. As an example, versions Shble#1 and Shble#5 have 

clear distinct CUBias but the corresponding samples have very close Prot-to-RNA RSCF profiles. Instead 
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these two synonymous versions are very similar regarding their GC composition, supporting that base 

composition of heterologous genes may have a stronger translational consequences than their overall 

CUBias match with the human genome in our experimental setup. 

 

 

Discussion 

 

We present here a systematic analysis of the changes in the cellular transcriptomic and 

proteomic profiles upon experimental transfection, using a number of synonymous versions of 

heterologous genes with divergent CUBias. Our results show that transfection and heterologous gene 

expression elicited substantial changes in the cellular transcriptome, while changes in the proteome 

were of a lesser extent. Transcriptomic changes triggered by plasmid DNA transfection in human cells 

in culture mainly involved the activation of genes related to inflammatory response and to antiviral 

immunity. This cellular response was shared across all experimental conditions used (i.e. mock 

transfections, EGFP expression alone or SHBLE-EGFP expression) pointing towards a common response 

to the presence of plasmid dsDNA in the cytoplasm of the transfected cells. Indeed, DNA in eukaryotic 

cells is restricted to enveloped subcellular structures (nucleus, mitochondria, chloroplasts), and the 

presence of naked DNA in the cytoplasm is most often related to viral infections. In vertebrates several 

cytoplasmic DNA sensors exist such as the cyclic GMP-AMP synthase (cGAS) and the stimulator of 

interferon genes (STING) (Wu & Chen, 2014). Consistent with the activation of such DNA-sensing 

pathways and their known downstream effects on gene expression (Stetson & Medzhitov, 2006; Wu 

& Chen, 2014), we detect in our transfected cells many activated genes related to Type I interferon 

signaling pathway. This was the case of upregulation in all our experimental conditions of interferon 

stimulated genes ISG15 and ISG20, interferon induced proteins with tetratricopeptide repeats IFIT1, 

IFIT2 and IFIT3, or of the interferon alpha-inducible protein 6 IFI6 genes. Though our study did not aim 

at characterizing the HEK293 response to transfection, our results suggest that it induces an 

inflammatory response that could be dependent on STING activation, as recently shown by a study 

conducted on this cell line (Khiar et al, 2017). Finally, we also observed that transfection led to up-

regulation of genes known to have viral RNA sensor roles, such as the four members of the OAS gene 

family (2'-5' oligoadenylate synthetases, OAS1, OAS2, OAS3, OASL), all of them enzymes regulated by 

interferon signaling and displaying a RNAse activity (Kristiansen et al, 2011; Zhu et al, 2014). Note that 

this observation is not necessarily in contradiction with the fact that we transfected DNA and not RNA, 

knowing that crosstalk exists between antiviral sensors of DNA and double-stranded RNA (Cheng et 

al., 2007). In conclusion transfection of plasmid DNA into HEK293 resulted in the induction of a 
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common anti-viral response through the overexpression of mRNAs involved in inflammatory 

processes. 

Expressing plasmid-encoded heterologous genes in human cells triggered large transcriptomic 

changes. For each of the different synonymous construct we identify at least 500 cellular transcripts 

to be differentially expressed after transfection. In striking contrast to these transcriptomic changes 

we observed no differences in the proteome of the transfected cells. A technical explanation for this 

differential response between transcriptomic and proteomic responses could be related to the 

differential power of the technical approaches quantifying transcripts and proteins: on the one hand, 

RNASeq identifies by sequencing the presence of cDNA molecules, which are assembled into 

transcripts and eventually mapped onto the reference transcriptome; on the other hand, label-free 

mass spectrometry identifies the presence of peptides of a given mass and charge, compatible with 

several amino acid combinations, and for which the sequence of the putative peptide is identified after 

systematic comparison against the universe of possible peptides in the reference database. The 

essential difference in nature is thus that RNASeq can “discover” the presence of molecules, for 

instance by de novo transcriptome assembly, while label-free proteomics can only evaluate the 

presence of peptides originated from the proteins present in the reference database. Beyond these 

intrinsic difference in their technical limitations, transcriptomic and proteomic analyses present 

different sensitivity. In our case we have detected the presence of 13,737 gene transcripts (median 

value) per sample while we could only detect 2,969 (median value) proteins per sample. Furthermore, 

the detected proteins were biased towards those corresponding to transcripts displaying relatively 

little variation of expression after transfection, which are also the more expressed ones. Despite this 

technical gap, our results contribute to the growing evidence obtained by combining transcriptomics 

and proteomics (or Ribo-Seq) approaches, showing that proteomes tend to be more stable, and/or to 

display a larger inertia to change, than transcriptomes and so that many changes observed at the 

mRNA level are post-transcriptionally buffered and not immediately detected at the protein level. Such 

a trend has been also communicated for two yeasts species (McManus et al., 2014), for the molecular 

responses of other fungi either to stressors or environmental cues (Brancini et al, 2019; Blevins et al, 

2019), as well as across primates (Khan et al, 2013). Regarding cultured human cells, it has been 

demonstrated that overall protein levels in aneuploidic cell lines - such as the HEK293 cells used here 

- are overall close to those of the normal diploid state, than overall transcript levels, further suggesting 

a buffering effect at the translation level (Stingele et al, 2012). In this regard, it has been shown that 

human tissues involved in similar broad functions display similar proteomes, even if their 

transcriptomes are divergent (Wang , 2019). It is also interesting to note that this more similar pattern 

of protein expression compared to mRNA expression across different tissues is conserved across 

evolutionary timescale, as recently demonstrated for mammals (ZY Wang et al, 2020). Finally, a 
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genome-wide association study illustrated that expression-QTL detected from different human cell 

lines usually have a more reduced effect on protein levels than on mRNA levels, and that this holds 

true whatever the noise level of the transcriptomics and proteomics data, excluding statistical power 

biases as a source to explain these differences between layers of expression (Battle et al, 2015). 

Additionally, differences in degradation rates of mRNAs and proteins can further enhance this gap 

between the transcriptomic and the proteomic responsiveness: in mammalian cells in culture, proteins 

display in average five times larger half-lifes than mRNAs (46 h vs. 9h, respectively), and there is no 

correlation between the stability of mRNA and the corresponding protein (Schwanhaüsser et al., 

2011). It is thus conceivable that changes at the proteome level appear buffered because highly 

expressed and long-lived proteins might still be detectable present at their initial expression level (i.e. 

at the time transfection occurred) and had not sufficient time to achieve a complete turnover. 

Nevertheless, even if such effect exists, we anticipate its impact on our experimental data to be 

mitigated because we collected our cells for the transcriptomic and proteomic determination 48h after 

transfection. In summary, although we cannot rule out a technical effect in terms of sensitivity and 

number of features detected between RNA and protein measurements, and although we cannot 

dismiss the possible effects of differential degradation kinetics, we interpret that the observed 

differences in the extent of changes triggered by heterologous expression between the transcriptomic 

and the proteomic molecular layers possibly reflect a phenomenon of post-transcriptional buffering of 

biological significance. 

It is well known that CUBias strongly influences the expression level of a gene (either directly 

or indirectly via linked variables such as GC composition, dinucleotide composition or mRNA folding 

energy – Boël et al, 2016; Cambray, Guimaraes & Arkin, 2018). Such cis- acting effects of CUBias on 

gene expression have been thoroughly documented for our shble_egfp experimental system (Picard 

et al, in preparation). The purpose of the present study was mainly to determine whether and to what 

extent CUBias may display trans- acting effects on overall translation, specifically: does strong 

expression of a heterologous gene lead to a differential impact on the translation of cellular genes as 

a function of the match between their individual CUBias and the CUBias of the overexpressed 

heterologous gene? In mammalian cells, virtually all ribosomes are engaged in translation at any given 

time (Princiotta et al, 2003), and translation is the most expensive step in the biological information 

flow process (Lynch & Marinov, 2015), consuming around 45% of all cellular energy (Princiotta et al, 

2003). It is thus conceivable that high expression levels of certain genes may come at the expense of a 

limited expression of other genes, due to competition for non-finite pool of translational resources 

shared by mRNAs present in the cell. This may be especially the case for highly abundant mRNA species 

that are not efficiently translated (Shah et al, 2013) – for example due to a poor CUBias. The existence 

of such trans- effects has been verified in E. coli using high-throughput approaches by Frumkin and 
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coworkers with respect to tRNAs availability (Frumkin et al, 2018). Another study on S. cerevisiae led 

to the same conclusion that CUBias of highly expressed genes is key in maintaining the overall 

translation efficiency of the rest of mRNAs present in the cell (Qian et al, 2012). Our study was precisely 

conceived to test on a mammalian model the hypothesis that CUBias of highly expressed genes impacts 

translation efficiency via trans- acting effects, linked to competition between heterologous transcripts 

and cellular transcripts to access tRNAs. We found no evidence of such effects in our experimental 

system, despite having constructed synonymous shble versions that are expressed at remarkably high 

levels. Indeed, heterologous shble-egfp transcripts represent more than 1% of transcripts in most 

samples (i.e., above 10,000 Transcripts Per Million) and the SHBLE and EGFP proteins together 

represent more than 0.6% of the total protein abundance detected for all versions except Shble#6. 

Results presented in Fig.2 and Fig. 3 show no support for the codon usage-specific decrease in 

translation efficiency of cellular mRNAs expected under the hypothesis that high expression of 

heterologous genes leads to trans- acting effects through tRNA shortage. In the case of overexpression 

of codon-humanized genes, one could suppose that the pool of tRNAs corresponding to these most 

used codons in human genes is sufficiently large to buffer the strong additional demand exerted by 

the translation of heterologous mRNAs. It is thus perhaps not surprising that genes displaying 

increased or decreased translation efficiency when humanized heterologous genes are overexpressed 

do not differ in their CUBias preferences. However, regarding the use of rare codons that are decoded 

by tRNAs probably more prone to shortage, the competition hypothesis predicts that overexpression 

of heterologous genes enriched in rare codons should result in a negative impact on the translation of 

cellular genes enriched in these same rare codons (Frumkin et al, 2018; Yona et al, 2013). Our results 

however do not support this hypothesis. In contradiction to this expectation, we instead observe a 

decreased translation efficiency in cellular genes enriched in common codons when we force the cells 

to overexpress heterologous genes rich in rare codons. We ruled out that genes with decreased 

translation efficiency (negatively correlated with the amount of proteins expressed from versions rich 

in rare codons) are more expressed, which could have render them more prone to potential tRNA 

shortage independently of their CUBias. We must admit that we have not found yet a satisfying 

explanation of this counter-intuitive pattern. 

The synonymous versions of the shble coding sequence used in this study were designed to 

present distinct CUBias, except for the first seven codons, which were identical across versions and 

that correspond to the amino acids in the AU1 epitope (MDTYRYI) used for western-blot protein 

detection. Thus, the chemical and coding environments immediately surrounding the translation 

starting point are identical for all synonymous versions. Notwithstanding, our postulate is that our 

gene recoding strategy allows to largely tease apart initiation- from elongation-driven effects. Indeed, 

local mRNA structures present around the start codon can hinder ribosomal binding and early 
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progression and hence translation initiation, but as a result of our design such local structures should 

be equally present in all our synonymous versions. Molecular modelling suggests indeed that 

translation is mainly limited by initiation rate rather than by elongation rate (Riba et al, 2019; Shah et 

al, 2013). These predictions are supported by numerous experimental studies reporting a link between 

mRNA secondary structures immediately upstream the translation start site and protein synthesis: the 

stronger the secondary structures the stronger the hamper for translation initiation (Gu, Zhou & Wilke, 

2010). The inverse positive relationship between mRNAs with less structured 5’ UTR and higher protein 

production seems to be conserved throughout evolution as has been identified in E. coli (Kudla et al, 

2009), unicellular eukaryotic organisms (Shah et al, 2013; Weinberg et al, 2016; SE Wang et al, 2020) 

and mammals including humans (Gandin et al, 2008; Mauger et al, 2019 but see De Sousa Abreu et 

al, 2009 that described no effect of the initiation rate on translation efficiency in human transcripts). 

It also appears that, in addition to initiation, early elongation events (typically the decoding of the first 

5 amino acids) can play a critical role in determining overall translation efficiency, either because 

ribosome arresting at certain early codons leads to abortive translation (Verma et al, 2019) or because 

early elongation steps interfere with initiation (Chu et al, 2014). Our design for synonymous version 

recoding of the shble gene focused thus on the elongation steps of protein synthesis, allowing us to 

evaluate the cellular impact of the increased demand for translation of either rare or common codons, 

rather than on the impact of codon recoding on translation initiation. This design was made on purpose 

because we were explicitly interested in studying how the elongation steps of a highly expressed gene 

imposes a burden onto the host’s translation machinery and eventually leads to -trans effects. It 

remains nevertheless true that long-range interactions within the same mRNA molecule exist, so that 

the translation start can be differentially involved in global secondary structures for different shble 

gene versions (Shah et al, 2013; Chu et al, 2014).  

Results presented in Fig. 4 suggest that differences in the GC composition between our 

synonymous versions impacted host translation efficiency in opposite ways: cultures transfected with 

AT-rich versions (Shble#3, Shble#4, Shble#6) presented an enhanced translation efficiency of cellular 

mRNAs rich in GC-ending codons whereas cultures transfected with GC-rich versions (Shble#1, 

Shble#2, Shble#5) presented an enhanced translation efficiency of cellular mRNAs rich in AT-ending 

codons. Considering the hypothesis of trans- effects exerted on cellular genes through translation of 

heterologous genes, we expected our synonymous versions to cluster not according to their GC-

content but rather according to their overall match with the CUBias of the host cell (proxied here by 

their COUSIN score). It is difficult to explain this effect of GC composition of heterologous genes on 

host translation. As a first line of thought regarding cellular mechanisms, we did not observe the 

expected pattern of AT-rich versions triggering the expression of schlafen11. In mammals, this gene is 

known to be a part of the innate immune response against viral infections resulting in an altered 
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translation in a CU-dependent manner, specifically impairing AT-rich transcript translation (Li et al, 

2012). As a second line of thought regarding transcript stability, mRNA nucleotide composition 

regulates its own abundance independently of translational effects driven by CUBias (Vogel et al, 

2010). Indeed, in mammals, effects of transcript GC composition on its own half-life are mediated 

either by changes in mRNA secondary structures (Chamary & Hurst, 2005) or changes decay pathways 

(Courel et al, 2019). Further, higher amounts of the corresponding protein were observed not because 

the novel CUBias arising from GC content manipulation led to an increased translation efficiency but 

rather simply because of the increased mRNA steady levels it enables (Kudla et al, 2006; Mauger et al, 

2019). As a third line of thought, a highly expressed heterologous gene could globally modify the 

cellular translation dynamics because of the overload it imposes on the translation machinery, via 

ribosomal sequestration, for instance (Princiotta et al, 2003). It has been indeed shown that adenine-

rich mRNAs promoted ribosomal binding to these transcripts (Castillo-Méndez et al, 2012). 

Our results suggest that translation efficiency of human cellular transcripts in cells expressing 

a transgene is not dependent on the match between their CUBias and the one of the heterologous 

gene. This suggests that forcing human cells to express important quantity of heterologous proteins 

from underlying sequences with over-humanized CUBias – as usually done in biotechnology – is not 

detrimental to cells. Beyond this conclusion we would like to draw attention to the fact that modifying 

CUBias so that the designed sequences are either enriched or depleted in the most frequent 

synonymous codons found in a genome has not always straightforward consequences on translation 

efficiency. Albeit probably true that in most cases such strategy of codon “optimization” (or “de-

optimization”) gives the expected results in terms of protein production (see Quax et al, 2015 for a 

review; Welch et al, 2009; Schmitz & Zhang, 2021), there are several instances that gave surprising 

results, not only in humans but also for micro-organisms (Pop et al, 2014). In bacteria for example 

some studies reported that varying CUBias did not change protein expression of the target, was it a 

transgene or a gene in the genome of a recoded strain (Kudla et al, 2009; Frumkin et al, 2018) or worse 

reported that encoding a protein with putatively most optimal codons ultimately led to a decrease in 

expression (Agashe et al, 2013) or activity (Zucchelli et al, 2017). Regarding mammalian cells, the link 

between codon manipulation and protein expression is even more difficult to study as we do not know 

yet formally whether rare codon limit protein production. A systematic examination of sequence 

features that impact protein concentration performed on a human cell line revealed for example that 

CUBias only has a minor impact compared to other features (Vogel et al, 2010). It is also difficult for 

humans to establish a link between CUBias and protein expression because level of tRNAs is usually 

found to vary across tissues (Dittmar, Goodenbour & Pan, 2006 but see Pinkard et al, 2020). Yet since 

tRNAs make the link between mRNA composition in codons and their decoding into amino acids we 

cannot establish a single rule for codon optimization that would be valid for every tissue. It is probable 
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that this problem of tissue-specific codon “optimization” is more salient in the context of 

biotechnology and heterologous gene expression than under physiological conditions (Eraslan et al, 

2019). As a consequence of this difficulty, the relevance of the current adopted strategy of codon 

“optimization” in humans has been debated (Mauro & Chappell, 2014) and some studies found only 

very slight effects of the use of human most frequent codons in heterologous protein expression within 

human cell (Ngumbela et al, 2008). 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471957
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Materials and Methods 

 

Design of the synonymous six synonymous plasmidic constructs 

The original sequence of the shble gene found in Streptoalloteichus hindustans was obtained from the 

GenBank database (X52869.1, https://www.ncbi.nlm.nih.gov/nuccore/X52869.1?report=genbank). 

Six synonymous coding sequences (CDS) of this gene were designed according to the 'one codon by 

amino acid' rule. Codon usage of these six synonymous versions was designed as follows: version 

Shble#1 uses exclusively the human most frequent codon; versions Shble#2 and Shble#3 use codons 

with the highest GC or the highest AT contents among the two most common codons, respectively; 

version Shble#4 uses exclusively the human least frequent codon; versions Shble#5 and Shble#6 use 

codons with the highest GC or the highest AT contents among the two least common codons, 

respectively. An invariable AU1 tag (MDTYRYI) was added at the start of each synonymous version, 

resulting in the same first seven codons for all synonymous versions. A PCA illustrating how these 

synonymous versions differ in terms of their CUBias among one another is given in Fig. S17. Each of 

these synonymous versions of the shble CDS was linked to the CDS of the Enhanced Green Fluorescent 

Protein (EGFP) via a P2A self-cleaving peptide sequence, so that a bicistronic mRNA is produced and 

translated into two proteins after cleavage of the P2A peptide. Synonymous versions were synthesized 

(Genescript) and cloned into the XhoI site of the pcDNA3.1-P2A-EGFP-C plasmid, that also contains in 

its backbone a Neomycin resistance gene (3ʹ-glycosyl phosphotransferase). In addition to the six 

constructs bearing different synonymous versions of shble fused to egfp, a control vector missing the 

shble gene upstream the P2A-egfp region was designed, named the Empty version. This Empty version 

serves as a control to account for EGFP expression. Note that the sequence encoding EGFP is similar 

for all constructs and that its CUBias is strongly biased towards human’s most favored codons, 

resembling to the CUBias of versions Shble#1 and Shble#2 (Fig. S17). 

 

Cell transfection and sampling design 

HEK293 cells (Human Embryonic Kidney cells, CRL-1573, ATCC) were cultured at 37°C and 5% CO2, in 

Minimum Essential Medium (Earle, M1MEM10K, Eurobio), with 10% FBS (Fetal Bovine Serum, 

CVFSVF0001, EuroBio) and 1% Penicillin-Streptomycin (15140122, Fisher scientific). Transfection was 

done in six-well plates, with 1.17x105 cells/mL. The next day, medium was replaced by MEM 2% FBS. 

Each synonymous plasmid mixed with turbofect reagent (12331863, Fisher scientific) was added in 

each well and cells were sampled at day 2 (Trypsin-EDTA, CEZTDA000U, Eurobio) for further 

processing. In total, three independent series of transfection experiments – each with the eight 

conditions in duplicates – were performed. This resulted in 48 samples, balanced as follows: six 
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Shble#1 (three series of two replicates), six Shble#2 (three series of two replicates), six Shble#3 (three 

series of two replicates), six Shble#4 (three series of two replicates), six Shble#5 (three series of two 

replicates), six Shble#6 (three series of two replicates), as well as six Empty samples (three series of 

two replicates) and six Mock samples (three series of two replicates). 

 

Sequencing, RNAseq data analyses and quantification 

RNA extraction was performed using the Monarch Total RNA miniprep kit (T2010S, NEB), following the 

manufacturer’s recommendations. Total RNAs were sent to Genewiz NGS laboratory (New Jersey, USA), 

where they performed polyA selection, strand-specific RNA library preparation and 2x150bp 

sequencing on an Illumina HiSeq4000 system. After demultiplexing, we received raw data of the 48 

samples. Quality checks of raw reads were performed with FastQC (available online at: 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were passed to Cutadapt (v1.10, 

Martin, 2011) to remove universal Illumina adapters then trimmed with Trimmomatic (v0.38, Bolger, 

Lohse & Usadel, 2014) using the following options: PE HEADCROP:13 SLIDINGWINDOW:4:30 

MINLEN:85. Processed reads were pseudo-mapped onto the human transcriptome 

(//ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13). To allow 

reads coming from expression of the genes contained in the plasmids to be aligned, the transcriptome 

was appended with the Neomycin resistance transcript sequence and with the shbleX-p2a-egfp 

transcript sequence (where X stands for 1 to 6). For each sample transfected with Shble#1 to Shble#6, 

the corresponding synonymous sequence of shble was used to allow proper mapping. For Empty, only 

the egfp transcript sequence was added. For Shble#4 and Shble#6 samples, spliced forms of the shble-

p2a-egfp transcript identified (Picard et al, in preparation) were also added to allows reads spanning 

the junctions to be aligned. Pseudo-mapping onto the transcriptome was performed with Kallisto 

(v0.46.0, Bray et al, 2016) with default options except for the number of bootstrap samples and the 

number of threads, that were respectively set as follows: -b 100 -t 16. Quantification at the transcripts 

level obtained from Kallisto as Transcripts Per Million (TPM) were retrieved for further analyses, both 

from cellular and heterologous transcripts. For each of the three independent experiments of 

transfection per construct we averaged TPM obtained from the two repetitions of each experiment, 

ultimately obtaining data for 24 samples (eight conditions, three experiments) – (Fig. S18). 

 
 
Differential expression of cellular transcripts after 2-days post transfection by different 

synonymous constructs 

For each condition, we defined the set of expressed mRNAs as those above 1 TPM in at least two out 

the three replicates that correspond to the condition. On average across all eight conditions 13,717 
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mRNA were detected as being expressed, ranging from 13,296 in the Mock condition to 13,951 in the 

Shble#5 condition. Working on the union of these sets of expressed mRNAs (14,226 mRNA), fold-

changes relative to the Mock were calculated for each seven conditions (Shble#1 to Shble#6 + Empty). 

Genes were considered differentially expressed relatively to the Mock in a condition if the median fold-

change (across the three samples corresponding to this condition) was above 2 or below 0.5 for this 

gene. In parallel, we also used DESeq2 (Love, Huber & Anders, 2014) on the total set of 19,812 mRNAs 

to similarly identify genes differentially expressed in comparison to the Mock after transfection by our 

different constructs. For this, we used counts estimated by Kallisto, that we normalized using the 

estimateSizeFactors() function of DESeq2. This second approach presents the advantage of returning 

q-values and takes into account the lack of power of differential expression for genes with low counts. 

Overlaps of genes identified as differentially expressed by these two distinct approaches were 

considered for the analysis of differential expression we describe in the corresponding part of the 

Results section of the manuscript. 

 

Content specificity of sets of differentially expressed genes using combinatorial configurations  

We used a combinatorial approach to estimate to what extent the content of the six sets (Shble#1 to 

Shble#6) of DiffExp cellular transcripts compared to the Mock was version-specific or redundant across 

versions. For this, for a given number N of sets included (N from 1 to 6), we calculated the number of 

unique genes present in the union of these N sets. For each collection of size N, we reported the 

median number of unique genes obtained from all possible arrangements. The number of possible 

arrangements of size N drawn among six sets is 6, 15, 20, 15, 6, 1, for N ranging from 1 to 6, 

respectively. 

 

Protein extraction and label-free proteomic analysis 

For protein extraction, the two replicates sampled from the same transfection experiment were 

pooled, thereby reducing the number of samples from 48 to 24. Solubilized proteins were resuspended 

in Laemmli buffer and 20-30 µg of proteins were stacked on a SDS-PAGE gel. Proteins were in-gel 

digested using Trypsin (Trypsin Gold, Promega), as previous described in Shevchenko et al, 2006. 

Proteomic data were collected in data dependent acquisition mode using a Q Exactive HF mass 

spectrometer coupled with Ultimate 3000 RSLC (Thermo Fischer Scientific). The software MaxQuant 

(Cox & Mann, 2008) was used to analyze tandem mass spectrometry data. All m/Z spectra were 

searched using standard settings with the search engine Andromeda (Cox et al, 2011) against a target 

decoy database to deliver false-positive estimations. The database contains entries from the H. sapiens 

Reference Proteome (UP000005640, release 2019_02, https://www.uniprot.org) and a list of potential 
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contaminants. Sequences of the two heterologous proteins of interest (SHBLE and EGFP) were added 

into this database to allow for their identification. Search parameters were let at their default values, 

oxidation (Met) and acetylation (Nt) were applied as variable modifications and carbamidomethyl (Cys) 

as a fixed modification. FDRs of peptides and proteins identification were let at their default values 

(both at 1%). Proteins groups were automatically constructed by MaxQuant. A representative ID in each 

protein group was automatically selected using an in-house bioinformatics tool (Leading_v3.2) After 

excluding usual contaminants, 4539 human proteins were identified in at least one sample (out of 24 

samples). Protein quantifications in intensity based absolute quantification (iBAQ, Schwanhausser et 

al, 2011) were retrieved and normalized by the total sum of iBAQ within each sample (heterologous 

proteins excluded) to obtain relative iBAQ (riBAQ). riBAQ quantification has been shown to accurately 

report the mole fraction of each protein within sample (Shin et al, 2013). Protein quantification by 

Label Free Quantification (LFQ) was also retrieved for the analysis of differentially expressed proteins 

(Cox et al., 2014). 

 
Analysis of differentially expressed proteins 

The software Perseus (Tyanova et al, 2016) was used to identify human proteins which level of 

expression vary depending on the version of the plasmid that was transfected into our cells. Adding 

the Mock condition in addition to the six synonymous versions and the Empty construct, this resulted 

to a total of eight groups, each supported by n=3 biological replicates. We used LFQ for this analysis of 

differentially expressed proteins as this metrics is tailored for comparisons of the expression level of a 

given protein between different samples. LFQ values were log2 transformed and the following rationale 

was applied: proteins that were not present in at least 2 out of 3 replicates in a least one condition 

were filtered out. Only the remaining 1,989 proteins were considered for the rest of the analysis as 

they probably represent proteins identified with sufficient level of confidence. Note that this number 

is low due to the inherent calculation of LFQ values, which returns zero when there is not enough 

information for a peptide to be detected (Cox et al, 2014). 

 
Analysis of proteins with a qualitative expression pattern according to the different conditions 

Complementary to the analysis of differentially expressed proteins, we selected proteins that 

displayed qualitative differences (i.e., ON/OFF) across our eight groups (Shble#1 to Shble#6, Empty, 

Mock). To do so, we selected – based on their riBAQ – proteins that were detected in all three 

replicates of at least one group but not detected in any of the three replicates in at least another group. 

This stringent definition of qualitative expression pattern yielded 369 proteins displaying such behavior 

(see Table S3). Within each of the 24 samples, we found that those expressed in the considered sample 
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among this set of 369 proteins systematically displayed lower riBAQ values than the rest of the proteins 

expressed in that sample (Fig. S19). 

Calculation of Protein to mRNA ratios for samples expressing over-humanized versions compared to 

ratios in the Mock condition 

We tested for competition between translation of mRNAs from plasmidic genes that use codons close 

to the human average CUBias and translation of host mRNAs. To do so, we calculated separately for 

Shble#1, Shble#2 and Empty conditions the ratio between gene’s Protein to mRNA ratios (riBAQ/TPM) 

in the considered condition and in the Mock condition. For each condition, ratios compared to the 

Mock were calculated from the n=3 samples of the condition and the n=3 Mock samples. After 

excluding genes that were not detected in all the three Mock samples, we retained 2471 genes for 

which we calculated these [riBAQ/TPM]Condition / [riBAQ/TPM]Mock ratios. These ratios enable to 

compare the Protein to mRNA ratio of cellular genes in transfected cells in regard to the same measure 

in the absence of heterologous expression. 

 

Changes in individual Protein to mRNA ratios under different conditions and levels of heterologous 

protein expression 

Transfected samples were separated depending on the CUBias of the heterologous genes they 

encoded: nine samples expressing heterologous proteins with an over-humanized CUBias (n=3 Empty 

samples, n=3 Shble#1 samples, and n=3 Shble#2 samples) and twelve samples expressing EGFP plus a 

version of SHBLE rich in rare codons (n=3 Shble#3 samples, n=3 Shble#4 samples, n=3 Shble#5 samples, 

and n=3 Shble#6 samples). Adding the three samples of the Mock condition, this led to two sets of 

samples (n=12 and n=15) that do not overlap except for the three Mock samples. Note that Mock 

samples were included to serve as «anchors» for our linear regressions, representing what happens in 

the absence of heterologous protein expression. Independently for these two sets of samples, we used 

linear regressions to model how riBAQ/TPM ratios of a given gene varied with expression levels of over-

humanized (n=9 + the three Mock) or rare codons rich (n=12 + the three Mock) heterologous proteins 

(EGFP+ SHBLE). The range of the x axis for these two sets of regression is provided in Fig. S8. Before 

running regressions, we filtered genes based on their values of riBAQ/TPM ratio in order to calculate a 

slope only when considered sufficiently meaningful. We used the following rationale: when the 

regression was performed based on the n=12 samples, we fixed a threshold of at least 8 non-null values 

of ratio and when the regression was performed based on the n=15 samples we fixed a threshold of at 

least 9 non-null values of ratio. This results in 2,554 and 2,585 genes to analyze for regressions based 

on n=12 and n=15 samples respectively, that later became 2,550 and 2,580 after having removed the 

very few genes with more than three (respectively four) infinite values of ratio. In each case, genes for 
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which the F-test testing the significance of the regression slope had a p-value smaller than alpha = 5% 

were considered for further analysis. 

 

Measurement of codon usage bias 

COUSIN scores (Codon Usage Similarity Index, Bourret, Alizon & Bravo, 2019) were used to compare 

the (overall) codon usage of both human and plasmidic genes to the average Homo sapiens codon 

usage. The COUSIN score reflects the extent to which codon usage of a query sequence matches the 

one of a reference. In our study, the reference is the whole codon composition of the coding part of 

the human genome. Briefly values above 1 reflect an overmatch compared to the codon usage 

preferences of the reference while values below zero reflect preferences opposite to those of the 

reference. Note that by design, all six synonymous versions of the shble CDS have a different COUSIN 

values, with some being over-humanized (higher COUSIN; Shble#1 and Shble#2) while others being 

enriched in infrequent codons compared to the average human codon usage (lower COUSIN; Shble#3 

to Shble#6). Ordered by decreasing COUSIN scores, the COUSIN score of the six different synonymous 

versions based on their CDS are as followed:  3.473 (Shble#1), 3.421 (Shble#2), 0.192 (Shble#5), -0.484 

(Shble#3), -1.323 (Shble#6) and -2.533 (Shble#4). The COUSIN score of the CDS encoding EGFP is high 

(3.379), close to the one of Shble#1 and Shble#2 versions (Fig. S17). 

 

Comparison of COUSIN scores distribution between two different gene sets  

Sets of genes with either a significantly positive or negative slope of riBAQ/TPM ratio with increasing 

heterologous protein expression across samples were compared regarding their CU. We compared the 

distribution of the COUSIN scores between the two sets of genes using Anderson-Darling tests, with 

the use of the ad_test() function implemented in the R package “twosamples” 

(https://github.com/cdowd/twosamples). 

 

Synonymous codon content in sample’s proteomes compared to transcriptomes 

For every annotated gene in the human genome the number of occurrences of each 59 amino acid 

encoding codons (Tryptophane and Methionine excluded) was retrieved using the CDS of its longest 

predicted transcript. Then using expression levels of either all detected cellular mRNAs or all detected 

cellular proteins (measured in TPM and riBAQ, respectively), we quantified for each codon the amount 

of its “expression” in the transcriptome or in the proteome of our 24 samples as 

follows :∑ 𝐶𝑜𝑑𝑜𝑛𝑐𝑜𝑢𝑛𝑡) ⋅ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛))23454 . Codon content in each sample was hence represented 

by two vectors of length 59, one derived from its transcriptome-wide profile of expression and another 

derived from its proteome-wide profile of expression. From these vectors we obtained vectors of 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471957
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

transcriptome-wide and proteome-wide relative synonymous codon frequency (RSCF) by dividing 

values of each codons encoding a similar amino acid by the total sum of values of codons encoding the 

considered amino acid. Ultimately, to quantify how the CUBias ‘flows’ from transcriptome to proteome 

we divided the proteome-wide RSCF of each sample by its transcriptome-wide RCSF counterpart. We 

called this variable Prot-to-RNA RSCF and considered it as a proxy for whole-cell translation efficiency 

of synonymous codons. Note that our codon counts vectors were computed without considering 

heterologous features in the cell transcriptome and proteome. 

 

Analysis of Prot-to-RNA RSCF variation across conditions 

For each 59 amino acid encoding codons we tested the effect of the transfected construct onto the 

whole-cell translation efficiency of the considered codon through linear models, with Prot-to-RNA 

RSCF as a response variable. Before running our models, we checked assumptions of residuals 

normality and homoscedasticity using Shapiro and Levene tests, respectively. Only 3 out of the 59 

codons – Thr_ACG, Gly_GGA and Leu_UUA (Table S8) – deviated from normality but we still decided 

to perform parametric tests for all 59 codons. For each individual codon a one-way ANOVA was 

performed with the eight conditions corresponding to our design (Shble#1 to Shble#6, Empty, Mock), 

each supported by n=3 measurements of Prot-to-RNA RSCF. The p-value threshold of significance for 

the ANOVA F-test was set at 0.05. When this test was significant for a codon, we performed multiple 

pairwise comparisons across constructions on the codon Prot-to-RNA RSCF applying an FDR correction 

(Benjamini & Hochberg, 1995). 

 

Link between Prot-to-RNA RSCF and tRNA availability 

We checked that our Prot-to-RNA RSCF constructed variable could serve as a proxy for whole-cell 

translation efficiency of synonymous codons by leveraging tRNA count data obtained on HEK293 cells 

(Mattijssen et al, 2017 – Table S7). The purpose was to combine our Prot-to-RNA RSCF values obtained 

for synonymous codons with a measure that reflects tRNA-anticodon availability with respect to the 

considered amino acid. For this, we used relative fractions of the total tRNA counts corresponding to 

a given amino acid that decode each synonymous codon. For the six two-fold degenerated amino acids 

that have their synonymous codons decoded by a single anticodon (Asn, Asp, Cys, His, Phe, Tyr), these 

relative fractions are necessarily of values 1 for each of the two synonymous codons. In cases where 

several synonymous codons can be decoded by the same tRNA-anticodon species, the same relative 

fraction of the total tRNAs was attributed to these codons. Considering the case of Alanine, the four 

codons are only decoded by three tRNA-anticodon species: GCA by the UGC anticodon, GCG by the 

CGC anticodon, and both GCU and GCC by the anticodon AGC. Hence, in such case, fractions of tRNAs 
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that are devoted to decode GCU and GCC (relatively to the total tRNAs counts) would be the same for 

both codons and be equal to: 

tRNA-AGC / (tRNA-AGC + tRNA-UGC + tRNA CGC + tRNA-AGC). In complex cases where a single codon 

can be read by several distinct tRNA-anticodon species - namely Thr-ACC decoded by UGU and AGU 

anticodons, Thr-ACG that can be decoded by UGU and CGU anticodons, Pro-CCU that can be decoded 

by AGG and UGG anticodons, and Pro-CCG that can be decoded by CGG and UGG anticodons (Table 

S7) we decided to not attribute to Thr-ACC, Thr-ACG, Pro-CCU and Pro-CCG a fraction of total tRNAs 

because we could not have a one to one mapping. This explains why in Fig. 4A only two Threonine 

codons (Thr-ACU and Thr-ACA) and two Proline codons (Pro-CCC and Pro-CCA) are represented. 

 

Functional enrichment analysis 

The Functional Annotation Chart module of the DAVID tool (https://david.ncifcrf.gov/, Dennis et al, 

2003) was used to detect functional categories over-represented in gene sets. Functional categories 

displaying a Fold-Enrichment above 2 and a FDR-corrected p-value below 0.05 were considered as 

significantly over-represented. 

 

Statistical analyses 

All statistical tests were performed with R (version 3.6.3). Principal components analyses were 

performed using the prcomp() function of the R package “stats”. Principal components (the 

eigenvectors of the covariance matrix) were visualized and superimposed to PCA graphs using 

prcomp()$rotation. The heatmap presented in Fig. 4 was constructed using the heatmap.3() function 

(https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R), 

with Z-normalization performed intra-row (i.e. on a codon by codon basis). Except when explicitly 

noted, all reported correlation coefficients correspond to Pearson correlation coefficients. 
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Figure 1. Panel A. Link between the amount of differentially expressed cellular transcripts relatively 

to the Mock and the mean quantity of heterologous transcripts produced. For each condition the 

mean expression of heterologous mRNAs (shble-egfp transcript + neoR transcript) is the average 

obtained from the n=3 transfection replicates. Expression levels are given as Transcripts Per Million 

(TPM). Samples are color-coded as follows: Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, 

Shble#4 in red, Shble#5 in grey, Shble#6 in brown and Empty in purple. 
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Figure 1. Panel B. Match between differentially expressed (DiffExp) transcripts in the Empty control 

and DiffExp transcripts in the six shble_egfp synonymous versions. Each of the 711 DiffExp transcripts 

in the Empty condition were assigned to a category depending on the number of other conditions this 

gene was found to be DiffExp. Bar heights correspond to the number of genes identified in each 

category (left axis). In all cases the transcripts are labelled as DiffExp with respect to the mock control 

condition. The secondary axis on the right reports the cumulative fraction of the 711 DiffExp transcripts 

in the Empty control condition as each category is added to the previous one. Data should be read as 

follows, using “Emtpy + 5 versions” as an example: among the 711 transcripts DiffExp between the 

Empty version and the mock, a total of 447+131 transcripts (i.e., 81% of the 711 transcripts) are 

also DiffExp in five or more of the Shble synonymous conditions 
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Figure 1. Panel C. Number of differentially expressed (DiffExp) transcripts identified in cells 

transfected with different shble_egfp synonymous versions. Values along the x-axis represent how 

many out of the six sets of DiffExp transcripts (corresponding to conditions Shble#1 to Shble#6) were 

included, and values along the y-axis represent the number of unique DiffExp genes obtained across 

these sets. The graph should be read as follows, using the value x=3: for each of the twenty different 

combinations of three data sets sampled among the six shble_egfp conditions, the number of unique 

DiffExp transcripts are shown in open black circles, while the median of these values is plotted as a red 

dot (median value of y=1220.5 across the 20 combinations in this example). The horizontal dash line 

corresponds to the full universe of 1,411 DiffExp genes identified when all six sets of DiffExp genes are 

included and represents the upper limit of genes that can be identified with sub-samples of the six 

genes sets. Hence, by combining only half of the six conditions (x=3), a large proportion (86%) of unique 

genes detected when all six conditions are included is already recapitulated.  
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Figure 2. Panel A. Protein-to-RNA ratios in the Empty condition compared to the Mock control 

condition as a function of individual gene’s codon usage bias (CUBias). Transcript levels were 

estimated as Transcripts Per Million (TPM), while protein levels were estimated as relative intensity-

Based Absolute Quantification (riBAQ) values. Each dot represents, for one gene, the averaged 

[riBAQ/TPM]Empty normalized by the [riBAQ/TPM]Mock, calculated from the n=3 transfection replicates. 

This ratio of ratios reflects the extent to which cellular transfection and heterologous expression of a 

gene with an over-humanized sequence (egfp, encoded in the Empty condition) affects translation 

efficiency of cellular transcripts, and it has been calculated for the 2,471 genes for which both 

proteomic and transcriptomic values were available. For visual purposes, the horizontal line centered 

on the y=0 value (log scale) is shown. The x-axis displays the match between the CUBias of each 

individual gene to that of the human genome average, calculated using the COUSIN index: negative 

scores correspond to genes with CUBias opposite to the human average while scores above one 

correspond to genes with CUBias similar in direction but of stronger intensity than the human average. 

No link was found between gene’s [riBAQ/TPM]Empty normalized by the [riBAQ/TPM]Mock and 

gene’s CUBias (linear regression slope value = 0.00378, F-test P = 0.29). 
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Figure 2. Panel B. Similar as panel A, but for the Shble#1 condition compared to the mock control 

condition. The shble gene in the Shble#1 version had been synonymously recoded using systematically 

for each amino acid the most used among the synonymous codons in the human genome average. It 

corresponds thus to an overhumanized heterologous gene (COUSIN value=3.47). No link was found 

between gene’s [riBAQ/TPM]Shble#1 normalized by the [riBAQ/TPM]Mock and gene’s CUBias (linear 

regression slope value = 0.0048, F-test P = 0.18). 

  

Figure 2. Panel C. Similar as panel A, but for the Shble#2 condition compared to the mock control 

condition. The shble gene in the Shble#2 version had been synonymously recoded using systematically 

for each amino acid the GC-richest among the two most used synonymous codons in the human 

genome average (COUSIN value=3.42). It differs only in eight codons from the Shble#1 version. No link 

was found between gene’s [riBAQ/TPM]Shble#2 normalized by the [riBAQ/TPM]Mock and gene’s CUBias 

(linear regression slope value =  -0.0059, F-test P = 0.11). 
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Figure 3. Panel A. Categories of genes according to their variation in riBAQ/TPM ratios with varying 

heterologous protein expression across conditions. The ratio riBAQ/TPM was taken as a proxy for the 

translation efficiency of a given transcript. The green set corresponds to cellular genes displaying a 

decreasing translation efficiency as heterologous protein expression under the conditions Empty, 

Shble#1 and Shble#2 increases (i.e., when overexpressing humanized heterologous genes), while the 

yellow set corresponds to cellular genes displaying an increasing translation efficiency under these 

same conditions. The blue set corresponds to cellular genes displaying a decreasing translation 

efficiency as heterologous protein expression under the conditions Shble#3, Shble#4, Shble#5 and 

Shble#6 increases (i.e., when overexpressing non-humanized heterologous genes), while the pink set 

corresponds to cellular genes displaying an increasing translation efficiency under these same 

conditions. Note that, by construction, neither the green and yellow sets nor the blue and pink sets 

overlap. 
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Figure 3. Panel B. Example of two cellular genes displaying significant variation in their riBAQ/TPM 

ratio as a function of heterologous protein expression levels across samples. The ratio riBAQ/TPM 

was taken as a proxy for the translation efficiency of a given transcript. KIF11 belongs to the green set 

shown in panel A (negative association with increasing amount of protein expressed from over-

humanized heterologous genes) and SNRPG belongs to the blue set (negative association with 

increasing amount of protein expressed from non-humanized heterologous genes). Samples are color-

coded according to the transfected construct: Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, 

Shble#4 in red, Shble#5 in grey, Shble#6 in brown, Empty in purple and Mock in orange. P-value of the 

F-test testing the significance of the regression is indicated. 
 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471957
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

 

Figure 3. Panel C. Left: COUSIN scores for cellular genes displaying either negative (red) or positive 

(blue) changes in the riBAQ/TPM ratio values under increasing expression of over-humanized genes 

(Empty, Shble#1 and Shble#2). Below each boxplot the underlying number of genes included is shown. 

Right: Cumulative distribution of COUSIN values for the two sets of genes described in the left. P-values 

for an Anderson Darling test contrasting the two distributions is indicated. 

Figure 3. Panel D. Left: COUSIN scores for cellular genes displaying either negative (red) or positive 

(blue) changes in the riBAQ/TPM ratio values under increasing expression of non-humanized genes 

(Shble#3, Shble#4, Shble#5 and Shble#6). Below each boxplot the underlying number of genes included 

is shown. Right: Cumulative distribution of COUSIN values for the two sets of genes described in the 

left. P-values for an Anderson Darling test contrasting the two distributions is indicated. 
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Fig. 3D 
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Figure 4. Panel A. Covariation between Prot-to-RNA relative synonymous codon frequency (RSCF) 

and relative tRNA content (per amino acid). Values on the x-axis were calculated on a per amino acid 

basis and represent the count of tRNAs bearing a given anticodon, normalized by the total count of all 

tRNAs decoding synonymous codons that encode the considered amino acid. tRNAs counts were 

obtained from Mattijssen et al, 2017. Values on the y-axis have been calculated by averaging Prot-to-

RNA RSCF values across all 24 samples. 43 codons-anticodons pairs, corresponding to 12 amino acids, 

are included in this analysis (Leu, Arg, Ser, Val, Ala, Gly, Ile, Lys, Glu, Gln, Thr, Pro). These amino acids 

are coloured as follows: light green for Leu, brown for Arg, orange for Ser, dark green for Val, blue for 

Ala, deep pink for Gly, black for Ile, aquamarine for Lys, blue green for Glu, yellow for Gln, Grey for Thr 

and purple for Pro. The overall Pearson correlation between averaged Prot-to-RNA RSCF values and 

relative tRNA content is slightly significant and the regression line is shown. For ten out of the twelve 

amino acids for which it was possible to conduct this analysis, a positive trend between codons Prot-

to-RNA RSCF values and the relative amount of tRNA that decode them was found (i.e., for all twelve 

amino acids except Ala – blue – and Pro – purple). Note that by construction it is expected that some 

dots drawn with the same colour display similar x-axis values: this is the case when several synonymous 

codons are decoded by the same tRNA-anticodon (see Methods). 
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Figure 4. Panel B. Heatmap of Prot-to-RNA relative synonymous frequency (RSCF) profiles based on 

codons displaying a significant construct effect on their translation efficiency. The 23 codons for 

which one-way ANOVAs yielded a significant construct effect (eight modalities: Shble#1 to Shble#6 plus 

the Empty and Mock control conditions) on Prot-to-RNA RSCF values are included and displayed in 

rows. The vertical color bar on the left indicates whether codons are A or U-ending (blue) or G or C-

ending (red). All 24 samples are shown in columns, with the horizontal color bar indicating the 

corresponding experimental conditions (Shble#1 to Shble#6, Empty and Mock). Samples are color-

coded according to the transfected construct: Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, 

Shble#4 in red, Shble#5 in grey, Shble#6 in brown, Empty in purple and Mock in orange. Heatmap color 

intensity corresponds to the Z-score, after a per codon (row) Z-normalization. Note that samples of the 

Shble#3 condition display high Prot-to-RNA RSCF values for GC-ending codons (red) and low values for 

AT-ending codons (blue). 
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Figure 4. Panel C. Inter-sample variation of Prot-to-RNA relative synonymous codon frequency 

(RSCF) profiles considering all 59 amino acid encoding codons. Contrary to Panel B, the principal 

component analysis – of which PC1 and PC2 are shown – has been constructed using Prot-to-RNA RSCF 

data from all the 59 amino acids. Eigenvectors loads of the covariance matrix are superimposed to the 

PCA graph and are colored according to the nucleotide composition at the codon 3rd position (blue for 

A or U-ending codons, red for G or C-ending codons). The 24 samples are color-coded according to the 

transfected construct: Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, Shble#4 in red, Shble#5 

in grey, Shble#6 in brown, Empty in Purple and Mock in orange. Values in parentheses represent the 

fraction of the total variance captured by the corresponding axis. 
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Figure 4. Panel D. Link between base composition or CUBias of the shble gene with preferentially 

translated codons. The y-axis corresponds in both cases to sample scores projected onto the PC2 axis 

of the PCA of Panel C (capturing 14% of the total variance in RSCF). Only the 18 experimental 

synonymous shble_egfp conditions are included. Samples are color-coded according to the transfected 

construct: Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, Shble#4 in red, Shble#5 in grey and 

Shble#6 in brown. On the left, the x-axis indicates the overall GC-richness of each synonymous version 

and on the right it indicates the value of the COUSIN index for the different versions. Negative scores 

COSUIN values correspond to genes with CUBias opposite to the human average while values above 

one correspond to genes with CUBias similar in direction but of stronger intensity than the human 

average. Regression lines are plotted, as well as the P values of the F test for the slope significance and 

the coefficient of determination (R²). 
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