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ABSTRACT 

Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to remod-
eling and injury repair.  However, their temporal polarization status and control of bone-
resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, 
we focused on two aspects of monocyte/macrophage dynamics and polarization states over 
time: 1) the injury-triggered  pro- and anti-inflammatory monocytes/macrophages temporal pro-
files, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinat-
ing healing response. Bone healing is a complex multicellular dynamic process. While traditional 
in vitro and in vivo experimentation may capture the behavior of select populations with high 
resolution, they cannot simultaneously track the behavior of multiple populations.  To address 
this, we have used an integrated a coupled ordinary differential equations (ODEs)-based 
framework describing multiple cellular species to in vivo bone injury data in order to identify and 
test various hypotheses regarding bone cell populations dynamics. Our approach allowed us to 
infer several biological insights including, but not limited to,: 1) anti-inflammatory macrophages 
are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-
inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteo-
blasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise dur-
ing two expansion waves, which can be explained by the anti-inflammatory macrophages-
mediated inhibition phase between the two waves. In addition, we further tested the robustness 
of the mathematical model by comparing simulation results to an independent experimental da-
taset. Taken together, this novel comprehensive mathematical framework allowed us to identify 
biological mechanisms that best recapitulate bone injury data and that explain the coupled cellu-
lar population dynamics involved in the process. Furthermore, our hypothesis testing methodol-
ogy could be used in other contexts to decipher mechanisms in complex multicellular process-
es. 
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Author Summary 

Myeloid-derived monocytes/macrophages are key cells for bone remodeling and injury repair.  
However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-
forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of 
monocyte/macrophage population dynamics: 1) the injury-triggered  pro- and anti-inflammatory 
monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory 
monocytes/macrophages in coordinating healing response. In order to test various hypotheses 
regarding bone cell populations dynamics, we have integrated a coupled ordinary differential 
equations-based framework describing multiple cellular species to in vivo bone injury data. Our 
approach allowed us to infer several biological insights including: 1) anti-inflammatory macro-
phages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) 
pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas os-
teoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise 
during two expansion waves, which can be explained by the anti-inflammatory macrophages-
mediated inhibition phase between the two waves. Taken together, this mathematical frame-
work allowed us to identify biological mechanisms that recapitulate bone injury data and that 
explain the coupled cellular population dynamics involved in the process.  
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INTRODUCTION  

The tightly-coupled relationship between bone-forming osteoblasts and bone-resorbing osteo-

clasts in bone remodeling and healing is well established1. Bone remodeling is initiated by 

osteoclastic turnover of aged and compromised bone tissue. Molecular cues derived from bone 

resorption subsequently drive mesenchymal precursor expansion and differentiation into osteo-

blasts for formation of new bone1. Bone healing on the other hand begins with osteoblastic bone 

callus deposition that is subsequently remodeled by osteoclasts1. Beyond this classic paradigm 

of the bone modeling unit (BMU), studies are increasingly identifying other cellular populations 

and factors that also contribute to the maintenance of bone. Macrophages of the myeloid line-

age play critical roles in inflammation, wound healing and cancer progression2. Recent studies 

have also shed light on their contribution to bone biology. While osteoclasts have traditionally 

been known as the tissue resident macrophage of the bone, more recent studies identified a 

novel population of bone-resident macrophages, osteomacs, which facilitate osteoblast bone 

formation3, 4. Additionally, in the context of bone healing, macrophages have been documented 

to rapidly infiltrate sites of bone injury to clear cellular debris in a process called efferocytosis 

and elicit subsequent inflammatory response and mineralized callus formation1. Monocytes and 

macrophages are major components of the bone immune infiltrate  following injury1, 5-7. Recent 

studies using genetic or pharmacological depletion of macrophages demonstrated significantly 

delayed time to bone repair 4, 5, 8-10. The diversity of macrophage function owes to its versatility in 

polarizing and responding to environmental cues1, 6-8. These critical functions ensure the right 

temporal sequence of events necessary for healthy and timely bone repair after injury. For in-

stance, IL-4 and TNFα have been shown to promote different macrophage polarization states  

and impact bone healing 11-13.  As an example, acute pro-inflammatory factors such as TNFα 

can improve bone repair while prolonged administration has the opposite effect11, 12. There are, 

however, a number of gaps in our understanding of monocyte and macrophage population and 

polarization behavior, including but not limited to: 1) the contributions of pro- versus anti-

inflammatory macrophages in coordinating bone injury response, 2) whether macrophages are 

directly involved in control of osteoclasts and osteoblasts populations and activities during bone 

injury, and 3) the main mechanisms that govern pro- and anti-inflammatory macrophages popu-

lation dynamics. 

 While in vitro and in vivo experimentation techniques can capture the behavior of in-

dividual populations with high resolution, they do not allow for understanding the simultane-

ous interplay between multiple cell types whose numbers change over time. This obstacle 

can be overcome with the integration of experimental data to computational approaches in order 
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to model the interactions occurring during bone injury repair. This type of approach has already 

been applied to other disease contexts like cancer14-23. Amongst the possible types of modeling 

approaches, agent-based models, such as discrete-continuum Hybrid Cellular Automata can 

examine mechanisms at the cellular scale leading to emergence of non-trivial macroscopic pat-

terns24. One advantage of such an approach, is the possibility to inform the model with experi-

mentally measured parameters. However, these parameters, such as macrophage polarization 

rate for example, can sometimes be exceptionally difficult to measure in vivo or in vitro. On the 

other hand, systems of Ordinary Differential Equations (ODEs) model individual populations 

over time under a well-mixed assumption and are often used to estimate in vivo parameters. 

While they do not describe cellular mechanisms as finely as agent-based models, their relative 

computational simplicity make them a convenient tool to identify key parameters through data 

fitting25-27. Multiple mathematical approaches have been used to study bone remodeling and re-

pair 28-32. The vast majority use systems of ODEs to model bone cell populations in homeostatic 

bone remodeling and bone disease such as osteoporosis and multiple myeloma33-38. Bone re-

modeling is a physiological program that is tightly regulated spatially and temporally. Other 

groups have considered the role of space in the process and represented cell population either 

as continuous spatial field, describing the dynamics by a set of partial differential equations 

(PDE) 39, 40, or as individual agents by an agent-based model approach 23. These models have 

largely focused on the interaction between bone-building osteoblasts and bone-resorbing osteo-

clasts, mostly ignoring the role of immune and inflammatory cells. Although these models have 

addressed biologically and clinically relevant questions, very few studies, one of which is from 

our group41 have quantitatively compared predictions of bone injury dynamics to longitudinal 

biological data. Some studies have included the role of inflammatory cells like macrophages, but 

they remain theoretical and have not been experimentally validated42, 43. The role of inflamma-

tion, and that of macrophages in particular, is recognized as being key for coordinating the bone 

injury response in vivo but, to date, how monocyte/macrophage populations coordinate it and 

interact directly with osteoblasts and osteoclasts (and vice versa) during bone remodeling has 

not been thoroughly examined1, 6. Here we use experimental, in combination with published da-

ta, to integrate osteoblasts, osteoclasts, bone, naïve, pro- and anti-inflammatory monocytes and 

macrophages into a coupled ODE model of the bone ecosystem. This approach allowed for the 

interrogation of key hypotheses that explain the bone healing program, such as the polarization 

and clearance dynamics of monocytes/macrophages, interactions between anti-inflammatory 

macrophages and pro-inflammatory monocytes/macrophages, and how pro- and anti-

inflammatory monocytes/macrophages modulate osteoclast and osteoblast behaviors. We posit 
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this integrated approach can be used to uncover mechanisms driving bone injury repair dynam-

ics and to identify key strategies aimed at shortening bone healing times.  
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RESULTS 

Quantitative data of cell populations during bone injury repair dynamics 

During non-critical bone injury healing, the following sequence of steps occur: early inflamma-

tion and hematoma formation, direct intramembranous bone deposition into a mineralized callus 

by osteoblasts44-46, and callus remodeling by osteoclasts1, 3, 9, 47. Bone-forming osteoblasts and 

bone-resorbing osteoclasts are critical mediators of these steps, and their numbers shift accord-

ingly during each phase of repair. In order to temporally quantitate bone cells during injury, we 

extracted multi-cellular longitudinal data from an experimental model of bone injury repair 

whereby non-critical epiphyseal fracture was generated in mice by direct intratibial injection41, 47-

50  (Fig. 1a). In the injured tibias of the mice, bone volume and cell populations numbers were 

quantified at baseline (day 0) and at day 1, 2, 3, 7 and 14 (n = 5/time point) following injury. 

High-resolution μCT analysis of the site of bone injury demonstrated changes in bone volume 

(BV/TV) subsequent to bone injury (Fig. 1b). Bone volume remained diminished over a 48-hour 

period prior to a five-day long expansion, beyond baseline levels. By day 14, the bone volume 

returned toward homeostasis. Consistent with other published observations, the overall bone 

volume dynamics were accompanied by corresponding sequential waves of osteoblast and os-

teoclast numbers51 50 52 (Fig. 1b). Interestingly, the overlaid data reveal alternating waves of os-

teoblasts and osteoclasts. In the same longitudinal study, the contralateral tibia from each 

mouse was additionally subject to flow cytometry to derive dynamics of total and polarized mye-

loid populations 2, 4, 5, 7, 53-107 (Fig. 1b). The myeloid dataset shows that pro-inflammatory mono-

cytes and macrophages spiked within the first 48 hours while anti-inflammatory macrophages 

were observed between 24 and 72 hours (Fig. 1b). Importantly, a fainter but prolonged second-

ary wave of pro-inflammatory monocytes-macrophages was noted, an observation which is in 

line with past studies in other inflammatory contexts52, 108-110. 

 

Mathematical modeling reveals key insights into myeloid behaviors during bone injury 

repair 

In order to shed light on monocyte-macrophage dynamics, we interrogated hypotheses regard-

ing population dynamics, differentiation,  lifespan and plasticity. To this end we built a coupled 

ordinary differential equations-based framework describing seven cell populations as well as the 

bone volume temporal dynamics. The cell populations we considered in the model were bone-

building osteoblasts, bone-resorbing osteoclasts, naïve monocytes, pro-inflammatory mono-

cytes, naïve macrophages, pro and anti-inflammatory macrophages. To properly integrate cell 

population temporal data into this framework, we first curated common literature observations 
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and hypotheses regarding osteoblasts, osteoclasts, monocyte and macrophage behavior during 

tissue injury healing (Table 1). In the model, the initial dynamics (osteoblast expansion, osteo-

clast decrease, macrophage polarization, monocyte infiltration) are triggered by injury factors108. 

We assume that the amount of factors released from an injury are proportional to the bone 

damage induced and are the primary driver of myeloid response. Myeloid cells are known to 

infiltrate the bone and polarize into pro-inflammatory status to clear cellular debris when ex-

posed to injury-associated factors (Table 1)1. Therefore, an injury variable was included in the 

model that drives the initial pro-inflammatory response by monocytes/macrophages. In the 

model, this injury variable is being depleted by a decay rate term that is proportional to the 

number of pro-inflammatory cells (Equations on Supplemental Fig. 1 and Supplemental Fig. 3) 

Browsing existing literature (Table 1), we identified various hypotheses regarding mono-

cyte/macrophage control of osteoclast and osteoblast numbers, and the mechanistic relation-

ship between pro- and anti-inflammatory myeloid cells (Fig. 2 and Table 1). These hypotheses 

pertain to these three aspects of cell population dynamics: 
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a.  Osteoclast dynamics 

1. Pro-inflammatory monocytes/macrophages stimulate osteoclast expansion; 
Anti-inflammatory monocytes/macrophages inhibit osteoclast formation and 
life span 

2. Pro-inflammatory monocytes/macrophages stimulate osteoclast expansion; 
Osteoblasts inhibit osteoclast formation and life span 

3. Osteoblasts stimulate osteoclast expansion; Anti-inflammatory macro-
phages inhibit osteoclast formation and life span 

b. Osteoblast dynamics 

1. Anti-inflammatory factors stimulate osteoblast expansion 

2. Injury factors stimulate osteoblast expansion 

c. Monocyte-Macrophage dynamics 

1. Injury factors drive both pro-inflammatory monocytes/macrophages and 
anti-inflammatory macrophages polarization; Anti-inflammatory macrophages 
suppress pro-inflammatory macrophages 

2. Injury factors drive pro-inflammatory monocytes/macrophages polarization; 
Pro-inflammatory monocytes/macrophages drive anti-inflammatory macro-
phages polarization; Anti-inflammatory macrophages suppress pro-
inflammatory macrophages  

 3. Injury factors drive resident pro-inflammatory macrophages polarization; 
pro-inflammatory macrophages repolarize into anti-inflammatory macrophag-
es when phagocytosing cellular debris; Anti-inflammatory macrophages natu-
rally repolarize into pro-inflammatory macrophages in absence of stimulus 
(plasticity); Pro-inflammatory macrophages drive pro-inflammatory monocyte 
polarization. 

 

 

Whereas evidence for  all these mechanisms have been shown in vitro or in vivo, our goal here 

is to identify the ones that can recapitulate in vivo dynamics, in order to define main mecha-

nisms that drive bone injury dynamics. We focus here on parsimonious hypothesis combina-
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tions, where for a given cell dynamics aspect (a, b or c), one mechanism only is considered, e.g 

c1 as opposed to c1&2. 

  We described the hypotheses using ordinary differential equations and integrated them 

into a mathematical model framework to assess the ability of each hypothesis combination to 

recapitulate the experimental data. This resulted in 18 ODE models, each describing a unique 

combination of hypotheses. In each permutation, we assessed how well the model fitted to the 

experimental data (Table 2). The models were ranked based on their goodness of fit, which was 

measured by the Akaike Information Criterion (AIC, Table 2), and number of residuals lower 

than 1 (Table 5). The fits to experimental data were obtained in two different ways, with the 

choice of two different functionals to minimize, �� and ��. Here we present the results obtained 

with �� but the conclusions remained the same with ��. Results indicate hypotheses combina-

tion a3-b2-c2 (AIC of 39, Fig. 3, equations presented in Supplementary Fig.1) shows the best fit 

to experimental data. The second, third and fourth best fits were obtained by a3-b1-c2 (AIC of 

42, Supplementary Fig. 2), then a3-b1-c1 (AIC of 45, Supplementary Fig. 4) and a3-b2-c1 (AIC 

of 46, Supplementary Fig. 5). The AICs of the remaining combinations were substantially lower 

(Table 2). Looking to another metric of goodness of fit, the number of residuals lower than 1, a3-

b2-c2 is clearly the best combination, with 25 residuals lower than one, and the rest of the mod-

els is far apart. With 15, 13 and 14 residuals lower than one, respectively, a3-b1-c2, a3-b1-c1 

and a3-b2-c1 rank pretty low regarding to the residuals metric (Table 5). Interestingly, some hy-

pothesis combinations do better than a3-b1-c2, a3-b2-c1 and a3-b1-c1 in term of number of re-

siduals lower than 1, but worst in term of AIC. In conclusion, combination a3-b2-c2 does sub-

stantially better than all other combinations  for both goodness of fit criteria (and for both  �� and 

�� optimizations). Of note, the best-fitting hypothesis a3-b2-c2 (Fig. 3) assumes osteoblasts are 

the main osteoclastogenesis driver (Fig. 2a3), and that anti-inflammatory macrophages play an 

important role in suppressing osteoclasts and pro-inflammatory macrophages93 (Fig. 2c2). It al-

so suggests that initial osteoblast expansion is driven by factors associated with the onset of 

bone injury108. The coupled mathematical model also allows for the estimation of polarization 

rates over time for pro-and anti-inflammatory macrophages in these two scenarios (Table 3). By 

comparison, some hypotheses combinations such as a2-b2-c3 yielded significantly poorer fits 

(AIC of 113 for a2-b2-c3, the worst fitting one, Table 2 and Fig. 4, AIC of 79 for a2-b1-c1, the  

second worst fitting one, Table 2 and Supplementary Fig. 6). This last result demonstrates that 

some cellular mechanisms and behaviors, though well-established in orthopedics (e.g. osteo-

clast stimulation by pro-inflammatory monocytes/macrophages; osteoclasts inhibition by osteo-

blasts through signals like OPG) are not able to recapitulate experimental observations in spe-
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cific physiological contexts. Taken together, these results show, through our integrative hypoth-

esis combination testing framework, the minimal set of cell-cell behaviors necessary to recapitu-

late bone injury temporal dynamics. 

 

Model simulations are consistent with independent published experimental data 

Analysis of the literature reveals several factors that are important regulators of bone injury re-

pair, such as tumor necrosis factor alpha (TNFα), interleukin-4 (IL-4), interferon-γ (IFNγ) and 

oncostatin M (OSM) 70, 100, 111-118. For example, studies in mice genetically deficient for OSM ex-

hibited reduced bone formation and osteoblasts numbers at the non-critical bone injury site50, 119. 

OSM is produced by anti-inflammatory macrophages and promotes osteoblast expansion and 

activity 50, 119-121. To assess the robustness of our bone injury repair mathematical model we 

simulated the effect of OSM depletion on osteoblast number and determined if the model would 

recapitulate the qualitative temporal dynamics of osteoblast, osteoclast population and bone 

volume as shown in an independent experimental dataset50. We found that reducing the effect 

of anti-inflammatory macrophages on osteoblast expansion by 50%, mineralization activity by 

50% and osteoclast and osteoclast inhibition by 80% yielded similar osteoblast, osteoclast and 

bone dynamics to those obtained from the OSM-deficient mice (Fig. 5). Of note, osteoblast and 

bone levels are below baseline osteoclast number and remain largely unchanged between 

treatment and control in both the experimental data and model predictions. While not examined 

in vivo by the independent study, our mathematical model additionally generated corresponding 

predictions of the effect of OSM depletion on monocyte/macrophage dynamics (Fig. 5). Interest-

ingly, OSM depletion increased anti-inflammatory macrophage population and transiently  de-

creased pro-inflammatory populations. Collectively, our model predictions are in qualitative ac-

cordance with this independent experimental dataset. This suggests that the model can be used 

for understanding the roles of myeloid cells in the bone ecosystem during bone injury healing 

and for developing therapies to accelerate and improve the process.  
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DISCUSSION 

Much remains to be discovered about how cells in the bone ecosystem collectively orchestrate 

the bone injury repair. Pharmacological and genetic experimental approaches can provide in-

formation as to the importance of key populations of cells, such as macrophages, but these ap-

proaches seldomly address the direct and indirect effects of other cell types involved in bone 

injury repair. Mathematical modeling has the advantage of being able to consider complex bio-

logical processes resulting from the interactions between several cellular populations, but their 

relevance is limited by the availability of biological parameters and validation data. Here, by 

combining experimental and mathematical models, we have investigated the interactions be-

tween cell populations in bone that synchronously orchestrate the bone injury repair program. 

To do so, we built a mathematical model that captures the dynamics of seven cell populations 

and the bone mass. Importantly, the system of equations is coupled so that each cell type can 

regulate the activity of other cell types. This interplay between the different populations poses a 

challenge regarding the reconciliation between model dynamics and experimental data but 

gives credence to the novel insights it has allowed us to uncover. These include 1) Anti-

inflammatory macrophages drive early osteoclast inhibition and pro-inflammatory phenotype 

suppression 2) pro-inflammatory macrophages are involved in osteoclast activation (bone 

resorptive activity), whereas osteoblastic cells promote osteoclast differentiation 3) Pro-

inflammatory monocytes/macrophages rise during two expansion waves, which can be ex-

plained by the anti-inflammatory macrophages-mediated inhibition phase between the two 

waves.  

  Experimentally, as described in our previous study41, we observe a rapid expansion of 

pro-inflammatory monocytes and macrophages in the first 24 hours with anti-inflammatory mac-

rophages emerging shortly thereafter and persisting for up 48 hours. Of the hypotheses tested 

by the model, a3-b2-c2 provided the best fit of model simulations to experimental data. Under 

this set of assumptions, anti-inflammatory macrophages cause retraction of the pro-

inflammatory population and facilitates osteoblast expansion and mineralization/stabilization of 

the injury site. With the natural depletion of the anti-inflammatory population, the remaining inju-

ry-associated factors causes a second expansion of pro-inflammatory macrophages and mono-

cytes that in turn enhance osteoclast formation and activity. This increased activity is essential 

for the resorption of the mineralized callus at the site of injury and the return to bone homeosta-

sis in the given time frame. To our knowledge very few reports have proposed a role and mech-

anism for this second inflammatory wave during bone healing. A role of MSCs and osteoblastic 

cells has been proposed for a second increase in inflammatory cytokines like TNF57. However, 
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this two waves pattern has been observed in larger spectrum of inflammatory contexts, not only 

in bone 52, 108-110, suggesting that this temporal profile is not bone specific. Importantly, to our 

knowledge the present study is the first to propose a mathematical framework of bone healing 

where bone and immune cell populations are fully coupled and to inform such a model with ex-

perimental longitudinal data of all these populations. 

 Our hypothesis combination approach allowed us to explore the polarization properties 

of monocytes/macrophages that can be difficult to determine in vivo. For example, the best fit-

ting ODE model, a3-b2-c2 allowed us to estimate the rates of pro- and anti-inflammatory mac-

rophage polarization and indicates that pro-inflammatory macrophages do not re-polarize into 

an anti-inflammatory phenotype given the time frame, which goes against studies suggesting 

macrophage plasticity and reprogramming, at least in the context of bone injury repair. While not 

disputing the possibility that macrophages can repolarize, our results suggest that, based on the 

timing of the acquired experimental timing points, repolarization does not appear to be the main 

mechanism that recapitulates macrophage polarization dynamics. Additional insights provided 

by the ODE model include estimations on macrophage lifespan during the healing process and 

the contributory roles of pro-inflammatory macrophages and monocytes to the process. This in-

formation can be critical for therapies that target specific myeloid populations during bone injury 

repair in a bid to accelerate bone healing.  

Another important result of our study is that the hypothesis combination that fit the best, 

a3-b2-c2, implies that osteoblast and pro-inflammatory monocytes-macrophages have distinct 

roles in osteoclast biology. According to this model, osteoblast drives osteoclast differentiation, 

whereas pro-inflammatory monocytes-macrophages drive osteoclast resorptive activity. In most 

studies, this distinction is not made and both cell types are assumed to contribute to both osteo-

clast differentiation and resorptive activity. The data we present here suggest a distinction in 

osteoclast supportive functions. This hypothesis combination has been also used to simulate 

OSM depletion bone injury process. Model simulations were in accordance with experimental 

data from an independent published study. 

An important aspect of mathematical modeling is that it allows us to distill the key cell 

species and molecules driving the bone dynamics. Of note, our model does not consider the 

potential roles of other cell types in the bone ecosystem that could contribute, such as T cells. 

Our results suggest that that integrating myeloid populations into the model provides enough 

resolution to explain the process of non-critical bone injury repair. Our mathematical framework 

is flexible enough, however, that the effects of other immune cells such as T cells could be in-

cluded. Additionally, we are aware the hypotheses we have identified throughout this study, 
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while the most common, do not cover exhaustively all myeloid behaviors described in literature. 

However, the hypothesis testing pipeline we have devised enables us to efficiently adapt our 

model to reflect any additional hypotheses. Another important aspect that our model currently 

neglects is that of bone quality which requires a different set of data acquisition techniques and 

further refinement of the mathematical approach. Moreover, bone healing is a spatially regulat-

ed process and having this aspect included in the model would be an exciting refinement in or-

der to explore further mechanistic aspects of bone structure and regeneration.  

Through our hypothesis combination approach, we have integrated established biology into 

a mathematical framework describing cell population dynamics during non-critical bone injury 

repair. One potential application of our framework is to investigate how time to healing subse-

quent to bone injury can be reduced. Existing studies have shown that bone healing times can 

be impacted in modulating pro- and anti-inflammatory macrophages13, 111, 112, 119. While the mod-

el is parameterized with mouse data, there is much overlap between mice and humans with re-

spect to the phases of the bone injury repair program. Thus, using our existing workflow, we can 

conceivably re-parameterize our model with human patient-derived data to further its potential 

as a relevant prospective tool for the clinic.  

In conclusion, we have developed a coupled ordinary differential equation (ODE) system of 

the bone ecosystem that models the interplay between 8 key cellular populations during bone 

injury repair. The model yields several novel findings regarding macrophage dynamics and mac-

rophage impact on osteoblasts and osteoclasts dynamics. Further, the model can also provide 

novel insights into phenomena that are hard to measure in vivo such as rate of pro- or anti-

inflammatory polarization over time. A better understanding of bone healing will have clinical 

translatability allowing, for instance, to accelerate the process and improve patient outcomes. 

The model accounts for coupling between these population and will be useful in developing 

therapeutic strategies/interventions that shorten healing times. Further, the model has broad 

applicability and can be used as a platform to examine other bone diseases such as osteoarthri-

tis and skeletal malignancies such as bone-metastatic cancer.  
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MATERIALS AND METHODS 

Intratibial Bone Injury Model 

Data from in vivo bone injury experiment were derived from preprint manuscript available in the 

Cold Spring Harbor bioRxiv server, 

https://www.biorxiv.org/content/10.1101/2020.10.13.338335v1.abstract. In this study, all animal 

studies were performed in accordance with Guidelines for the Care and Use of Laboratory Ani-

mals published by the National Institutes of Health, and approved by the Animal Care and Use 

Committee at the University of South Florida, under IACUC Protocol R5857 (CCL). Male 

C57BL/6 mice (5-6 weeks old) were purchased from Jackson Laboratory. Mice (n=30) were 

subject to tibial bone injury by penetration of a 28-gauge (0.3062mm diameter) syringe through 

the knee epiphysis to mid-shaft. Mice tibias at baseline and at days 1, 2, 3, 7 and 14 (n=5/time 

point) were collected for analysis. Temporal population data was used to parameterize subse-

quent mathematical models. 

 

Micro-Computed Topography 

Bone volume data was derived from formalin-fixed tibias by micro-computed topography (μCT) 

scanning using Scanco μ35 scanner. Endosteal trabecular bone volume was analyzed 100μm 

away from the tip of growth plate to clear the dense bone nature of the growth plate. 1000μm 

along the midshaft of each bone was then scanned and analyzed using built-in functions (n=30 

bones; 5/time point).  

 

TRAcP Staining 

After μCT analysis, tibia bones were decalcified using 14% EDTA for 3 weeks for further stain-

ing quantitation and analyses. Decalcified bones were sectioned at 4μm thickness. Sections 

were enzymatically stained for tartrate-resistant acid phosphatase (TRAcP) for osteoclast num-

bers based on manufacturer’s protocol122. Stained slides were imaged using the Evos Auto mi-

croscope to capture 20X photos which included injury site and its immediate periphery. All 

TRAcP positive (red) multinucleated osteoclasts within 5μm radius from injury were counted, 

and mathematically converted to osteoclasts / bone marrow volume (#OCL/μm3) for each bone 

at each time point. 

 

Immunofluorescence Staining and Quantitation 

FFPE tibia bones were further sequentially sectioned and baked at 56°C in preparation for im-

munofluorescence staining of osteoblast (RUNX2 at 1:500; Abcam Cat. No. ab81357) and nu-
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clear staining (DAPI). Deparaffined and rehydrated slides were subject to heat-induced antigen 

retrieval method. Sections were then blocked and incubated in primary antibodies diluted in 

10% normal goat serum in TBS overnight at 4°C. Subsequently, slides were stained with sec-

ondary Alexa Fluor 568-conjugated antibody at 1:1000 at room temperature for 1 hour under 

light-proof conditions. Stained slides were stained with DAPI for nuclear contrast and mounted 

for imaging at 20X using Zeiss upright fluorescent microscope to include the injury site as well 

as the immediate peripheral tissue. All runx2 positive cells (red staining colocalizing with DAPI) 

within 5μm radius from injury were counted and mathematically converted to osteoblasts / bone 

marrow volume (#OBL/μm3) for each bone at each time point. 

 

Flow Cytometry and Analysis 

Harvested contralateral injured tibias (n=30; 5/time point) had tips removed and were subjected 

to centrifugation at 16,000g for 5 seconds for isolation of whole bone marrow for flow cytometry 

staining and analysis. Red blood cells were lysed using RBC Lysis Buffer from Sigma Aldrich 

(Cat. No. R7757-100ML) as per manufacturer’s guidelines. Live bone marrow cells were subject 

to FcR-receptor blocking (1:3; BioLegend; Cat. No. 101319) and viability staining (1:500; 

BioLegend; Cat. No. 423105). Samples were then stained by cell-surface conjugated antibodies 

from BioLegend diluted in autoMACS buffer (Miltenyi; Cat. No. 130-091-221) for phenotyping 

myeloid cells: CD11b-BV786 (1:200; Cat. No. 101243), LY-6C-Alexa Fluor 488 (1:500; Cat. 

No.128021) and LY-6G-Alexa Fluor 700 (1:200; Cat. No. 561236). Cells were then fixed with 

2% paraformaldehyde in dark prior to intracellular staining. Fixed cells were permeabilized using 

intracellular conjugated antibodies to assess polarization status: NOS2-APC (1:100; 

eBioscience; Cat. No. 17-5920-80) and ARG1-PE (1:100; R&D; Cat. No. IC5868P). Appropriate 

compensation and fluorescence-minus-one (FMO) controls were generated in parallel either 

with aliquots of bone marrow cells or Rainbow Fluorescent Particle beads (BD Biosciences; Cat. 

No. 556291). All antibody concentrations were titrated prior to injury study using primary bone 

marrow cells to ensure optimal separation and detection of true negative and positive popula-

tions. Stained controls and samples were analyzed using BD Biosciences LSR flow cytometer 

(Supplemental Figure 2). 

 

MATHEMATICAL AND COMPUTATIONAL METHODS 

 

Comprehensive model structure 
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In order to efficiently describe the process of model building regarding the different hypothesis 

combinations (Fig. 2), we begin with a generic set of coupled equations, using a formulation that 

is valid for all hypotheses combinations (Supplemental Fig. 3). For all populations, homeostasis 

was described by a replenishment term and a clearance term. For polarized monocytes/ macro-

phages, no replenishment was considered at homeostasis, as the baseline measured by flow 

cytometry was close to zero. Here is the detailed description, equation by equation: 

 

  Equation 1: Naive Monocytes 

���

��
� ��� � 	���� 
 ���� 
���, �� � ����,��, ������ 
 ������������� 

Naive monocytes are assumed to be replenished at a constant rate ���, and to die at a 

rate 	����. 	��, the lifespan parameter, was retrieved from literature (Table 3), and ��� was 

estimated so that monocyte level at homeostasis would match experimentally measured mono-

cyte baseline. The term ����, ���, �� corresponds to the number of monocytes infiltrating the 

bone marrow per unit of time due to injury factors and pro-inflammatory cells. It is equal to  

����� 
���� 
 ��� . As indicated by the mathematical formulation, inflammation-associated 

monocyte recruitment is driven by injury signals on one hand, and pro-inflammatory mono-

cytes/macrophages on the other hand. This reflects the fact that cellular debris and pro-

inflammatory cells produce factors that help recruiting additional monocytes1. The term 

����,��, ������ represents the number of naive monocytes polarizing into pro-inflammatory 

monocytes per unit of time, as a function of cellular debris and pro-inflammatory cells. The term 

������������� represents the number pro-inflammatory monocytes reverting back to a naive 

state per unit of time, as function of anti-inflammatory macrophages. 

 

 

  Equation 2: Naive Macrophages 

��

��
� �� � 	�� � ������,�� ,���,���� � ����,��, �����

������,��, ����� 
 ������������ 
 ���������

 

Naive macrophage are assumed to be replenished at a constant rate ��, and to die at a 

rate 	��. 	�, the lifespan parameter, was retrieved from literature (Table 3), and �� was esti-

mated so that macrophage level at homeostasis would match experimentally measured macro-

phage baseline. The term ������,��, ���,���� corresponds to the number of macrophages 

differentiating into osteoclasts per unit of time, as a function of osteoblasts (RANKL, OPG), pro-

inflammatory macrophages (IL-1, TNF), pro-inflammatory monocytes (IL-1, TNF) and anti-
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inflammatory macrophages (IL-10, TGF). The term ����,��, ����� represents the number of 

naive macrophages polarizing into a pro-inflammatory state per unit of time, as a function of in-

jury factors and pro-inflammatory cells. The term �����,��, ����� represents the number of 

naive macrophages polarizing into an anti-inflammatory state per unit of time, as a function of 

injury factors and pro-inflammatory cells. The term ������������ represents the number of pro-

inflammatory macrophages that revert back to a naive state per unit of time, as a function of an-

ti-inflammatory macrophages. The term ��������� represents the number of anti-inflammatory 

macrophages that revert back to a naive state per unit of time. Of note, no influx or differentia-

tion from monocytes during inflammation were assumed, as macrophage population does not 

show evidence of expansion in our obtained biological data. 

 

 

  Equation 3: Pro-inflammatory Macrophages 

���

��
� ����,�� ,����� � ������������ � �������� 
 ��������� � 	��� 

Pro-inflammatory macrophages are assumed to be absent of the bone marrow under 

homeostatic conditions, as experimental al baseline level did not exceed ?% The term 

����,��, ����� represents the number of pro-inflammatory macrophages generated (from na-

ive pool) per unit of time, as a function of injury factors and pro-inflammatory cells. The term 

������������ represents the number of pro-inflammatory macrophages that revert back to a 

naive state per unit of time, as a function of anti-inflammatory macrophages. The term 

��������� represents the number of anti-inflammatory macrophages that reprogram into a pro-

inflammatory phenotype. The term �������� represents the number of pro-inflammatory macro-

phages that reprogram into an anti-inflammatory phenotype, as a function of injury factors. 

 

 

Equation 4: Anti-inflammatory Macrophages 

���

��
� �����,��, ����� 
 �������� � ��������� � ��������� � 	��� 

Anti-inflammatory macrophages are assumed to be absent of the bone marrow under 

homeostatic conditions, as experimental al baseline level did not exceed ?% The term 

�����,�� ,�����  represents the number of anti-inflammatory macrophages generated (from 

naive pool) per unit of time, as a function of injury factors and pro-inflammatory cells. The term 

�������� represents the number of pro-inflammatory macrophages that reprogram into an anti-
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inflammatory phenotype, as a function of injury factors. The term ���������  represents the 

number of pro-inflammatory macrophages that revert back to a naive state per unit of time. The 

term ��������� represents the number of anti-inflammatory macrophages that reprogram into a 

pro-inflammatory phenotype.  

 

  Equation 5: Pro-inflammatory Monocytes 

����

��
� ����,��, ������ � ������������� � 	����� 

Pro-inflammatory monocytes are assumed to be absent of the bone marrow under ho-

meostatic conditions, as experimental al baseline level did not exceed ?% The term 

����,��, ������ represents the number of pro-inflammatory monocytes generated (from naive 

pool) per unit of time, as a function of injury factors and pro-inflammatory cells. The term 

������������� represents the number of pro-inflammatory monocytes that revert back to a na-

ive state per unit of time, as a function of anti-inflammatory macrophages. The term ��������� 

represents the number of anti-inflammatory macrophages that reprogram into a pro-

inflammatory phenotype. The term �������� represents the number of pro-inflammatory macro-

phages that reprogram into an anti-inflammatory phenotype, as a function of injury factors. 

 

Pro-inflammatory Macrophages/Monocytes and Anti-inflammatory Macrophages: Hy-

pothesis c1 

����,��, ���� � ���� 
 ������� 
����

���������� � ��������

�����,�� ,���� � 0

������ � ���

������� � ������
������� � 0

����,��, ���� � ���� 
 ������� 
����

���������� � ��������

 

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a 

pro-inflammatory phenotype1, in response to injury signals or to factors produced by already 

present pro-inflammatory cells1. In assumptions c1 and c2, monocytes and macrophages polar-

ize into pro-inflammatory monocytes and macrophages respectively through two terms. The first 

is proportional to the amount of injury signals present and the second is proportional to the 

amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize local res-

ident macrophages, and those in turn promote polarization of pro-inflammatory monocytes. In 

c3, pro-inflammatory macrophages repolarize into anti-inflammatory macrophages by the up-
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take of cellular debris/injury signals133. In this scenario, by plasticity, anti-inflammatory macro-

phages naturally return to a pro-inflammatory phenotype in absence of signals134. Polarization 

into anti-inflammatory macrophages was assumed to be proportional to the amount of injury 

signals for assumption c1, proportional to the amount of pro-inflammatory cells for assumption 

c2, and a transition term from pro-inflammatory macrophages for c3. 

Pro-inflammatory Macrophages/Monocytes and Anti-inflammatory Macrophages: Hy-

pothesis c2 

����,��, ���� � ���� 
 ������� 
����

���������� � ��������

�����,��, ���� � ����� 
����

������ � 0

������� � ������
������� � 0

����,��, ���� � ���� 
 ������� 
����

���������� � ��������

 

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a 

pro-inflammatory phenotype1, in response to injury signals or to factors produced by already 

present pro-inflammatory cells1. In assumptions c1 and c2, monocytes and macrophages polar-

ize into pro-inflammatory monocytes and macrophages respectively through two terms. The first 

is proportional to the amount of injury signals present and the second is proportional to the 

amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize local res-

ident macrophages, and those in turn promote polarization of pro-inflammatory monocytes. In 

c3, pro-inflammatory macrophages repolarize into anti-inflammatory macrophages by the up-

take of cellular debris/injury signals133. In this scenario, by plasticity, anti-inflammatory macro-

phages naturally return to a pro-inflammatory phenotype in absence of signals134. Polarization 

into anti-inflammatory macrophages was assumed to be proportional to the amount of injury 

signals for assumption c1, proportional to the amount of pro-inflammatory cells for assumption 

c2, and a transition term from pro-inflammatory macrophages for c3. 

Pro-inflammatory Macrophages/Monocytes and Anti-inflammatory Macrophages: Hy-

pothesis c3 
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����,�� ,���� � ����

���������� � 0

�����,�� ,���� � 0

������ � ���

������� � 0

������� � ������
����,��, ���� � �����
���������� � ������

 

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a 

pro-inflammatory phenotype1, in response to injury signals or to factors produced by already 

present pro-inflammatory cells1. In assumptions c1 and c2, monocytes and macrophages polar-

ize into pro-inflammatory monocytes and macrophages respectively through two terms. The first 

is proportional to the amount of injury signals present and the second is proportional to the 

amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize local res-

ident macrophages, and those in turn promote polarization of pro-inflammatory monocytes. In 

c3, pro-inflammatory macrophages repolarize into anti-inflammatory macrophages by the up-

take of cellular debris/injury signals133. In this scenario, by plasticity, anti-inflammatory macro-

phages naturally return to a pro-inflammatory phenotype in absence of signals134. Polarization 

into anti-inflammatory macrophages was assumed to be proportional to the amount of injury 

signals for assumption c1, proportional to the amount of pro-inflammatory cells for assumption 

c2, and a transition term from pro-inflammatory macrophages for c3. 

 

  Equation 6: Osteoblasts 

���

��
� ��	�� 
 ��	��,��� � 	�	��� 

Osteoblast are assumed to be replenished at a rate ��	��, proportional to osteoclasts. 

This reflects the ability of osteoclasts to produce osteogenic signals like transforming growth 

factor β (TGFβ) and bone morphogenetic proteins (BMPs)123. Similar assumptions are consid-

ered in published works of homeostatic bone remodeling33-35. Osteoblasts are assumed to die at 

a rate 	�	���. 	�	, the lifespan parameter, was retrieved from literature (Table 3), and ��	 

was estimated so that osteoblast level at homeostasis would match experimentally measured 

osteoblast baseline. The term ��	��,��� represents the number of osteoblasts generated per 

unit of time, as a function of injury factors and anti-inflammatory factors. 

 

Osteoblast dynamics: Hypothesis b1 

��	��,��� � ��	�� 
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The osteoblast clearance term was assumed to be proportional to the bone volume, in 

order to account for osteoblast differentiation into osteocytes, when resorbing bone matrix123. A 

similar assumption is made in the model developed by Ryser et al. that describes bone remod-

eling as a spatial evolutionary game124. During injury, an extra term for osteoblast expansion is 

present, driven by anti-inflammatory macrophages (hypothesis b1) or injury factors (hypothesis 

b2), both supported by literature1, 3, 6, 7, 125. 

Osteoblast dynamics: Hypothesis b2 

��	��,��� � ��	� 

The osteoblast clearance term was assumed to be proportional to the bone volume, in 

order to account for osteoblast differentiation into osteocytes, when resorbing bone matrix123. A 

similar assumption is made in the model developed by Ryser et al. that describes bone remod-

eling as a spatial evolutionary game124. During injury, an extra term for osteoblast expansion is 

present, driven by anti-inflammatory macrophages (hypothesis b1) or injury factors (hypothesis 

b2), both supported by literature1, 3, 6, 7, 125. 

 

 

  Equation 7: Osteoclasts 

���

��
� ������,��, ���,���� � 	�����, ����� 

Osteoclasts are assumed to be replenished at a rate ������,��, ���,����, which re-

flects differentiation of macrophages into osteoclasts, as a function of osteoblasts, pro-

inflammatory macrophages, pro-inflammatory monocytes, anti-inflammatory macrophages126-128. 

This reflects osteoclastic factors produced by osteoblasts (RANKL) and pro-inflammatory mon-

ocytes/macrophages (IL-1, TNF), as well as anti-osteoclastic factors produced by osteoblasts 

(OPG) and anti-inflammatory macrophages (transforming growth factor β (TGFβ), IL-10). The 

term 	����� , ����� represents the number of osteoclasts dying per unit of time, as a function 

of anti-inflammatory macrophages and osteoblasts. This reflects factors produced by anti-

inflammatory macrophages (IL-10, TGFβ) and osteoblasts (OPG) that reduce osteoclast 

lifespan. 

Osteoclast dynamics: Hypothesis a1 

������,�� ,���,��� �
��� 
 ������� 
����

1 
 ���������

	����� , ��� � 	���1 
 �����������

 

This osteoclast formation term was assumed to be proportional to osteoblasts for as-

sumption a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471980
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

mediator of osteoclast formation123. For the other assumptions, homeostatic osteoclast replen-

ishment was assumed to be constant. This term had an additional contribution from pro-

inflammatory monocytes/macrophages for assumptions a1 and a2, representing the ability of 

pro-inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor oste-

oclast formation123, 129. Osteoclast formation was divided by an inhibitory term, a linear function 

of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function of osteo-

blasts for assumption a2. The first assumption reflects factors produced by anti-inflammatory 

macrophages, like IL-10, that disrupt osteoclast formation88, whereas the second reflects the 

ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor123. Moreover, 

this inhibition affects not only the ability of monocytes-macrophages to fuse and form osteo-

clasts, but also their life span. Indeed RANKL is necessary for osteoclast survival since OPG 

produced by osteoblasts reduces their life span130. Similarly, anti-inflammatory macrophages 

produce TGFβ, which is known to drive osteoclast apoptosis131.  

Osteoclast dynamics: Hypothesis a2 

������,�� ,���,��� �
��� 
 ������� 
����

1 
 ���������

	����� , ��� � 	���1 
 �����������

 

This osteoclast formation term was assumed to be proportional to osteoblasts for as-

sumption a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential 

mediator of osteoclast formation123. For the other assumptions, homeostatic osteoclast replen-

ishment was assumed to be constant. This term had an additional contribution from pro-

inflammatory monocytes/macrophages for assumptions a1 and a2, representing the ability of 

pro-inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor oste-

oclast formation123, 129. Osteoclast formation was divided by an inhibitory term, a linear function 

of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function of osteo-

blasts for assumption a2. The first assumption reflects factors produced by anti-inflammatory 

macrophages, like IL-10, that disrupt osteoclast formation88, whereas the second reflects the 

ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor123. Moreover, 

this inhibition affects not only the ability of monocytes-macrophages to fuse and form osteo-

clasts, but also their life span. Indeed RANKL is necessary for osteoclast survival since OPG 

produced by osteoblasts reduces their life span130. Similarly, anti-inflammatory macrophages 

produce TGFβ, which is known to drive osteoclast apoptosis131. 

Osteoclast dynamics: Hypothesis a3 
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������,�� ,���,��� �
�����

1 
 ���������

	����� , ��� � 	���1 
 �����������

 

This osteoclast formation term was assumed to be proportional to osteoblasts for as-

sumption a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential 

mediator of osteoclast formation123. For the other assumptions, homeostatic osteoclast replen-

ishment was assumed to be constant. This term had an additional contribution from pro-

inflammatory monocytes/macrophages for assumptions a1 and a2, representing the ability of 

pro-inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor oste-

oclast formation123, 129. Osteoclast formation was divided by an inhibitory term, a linear function 

of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function of osteo-

blasts for assumption a2. The first assumption reflects factors produced by anti-inflammatory 

macrophages, like IL-10, that disrupt osteoclast formation88, whereas the second reflects the 

ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor123. Moreover, 

this inhibition affects not only the ability of monocytes-macrophages to fuse and form osteo-

clasts, but also their life span. Indeed RANKL is necessary for osteoclast survival since OPG 

produced by osteoblasts reduces their life span130. Similarly, anti-inflammatory macrophages 

produce TGFβ, which is known to drive osteoclast apoptosis131. 

 

Equation 8: Bone Volume 

��

��
� �	�1 
 ������ � 		�1 
 ���� 
�������� 

 Bone dynamics is described by two terms: a bone resorption term, which is the volume 

of bone resorbed per unit of time and is assumed to be proportional to the number of osteo-

clasts, and a bone formation term, which is the volume of bone formed per unit of time and is 

assumed to be proportional to the number of osteoblasts. Such assumptions have been broadly 

used across a large variety of modeling studies33-35. 		�1 
 ����� is the bone resorption term 

and is the sum of the two terms 		���  (homeostatic resorption) and ���� 
����		��� (pro-

inflammatory monocyte/macrophage mediated resorption).  As indicated by this mathematical 

formulation, bone resorption was assumed to also be proportional to the bone mass. This re-

flects the fact that more bone volume increases the likelihood for bone resorption. Furthermore, 

this formulation ensures bone mass stays strictly positive in the model. �	�1 
 ���� is the bone 

formation term and is the sum of the two terms �	��  (homeostatic bone formation) and 

����	�� (anti-inflammatory macrophage mediated bone formation). Under homeostasis, bone 

is formed at rate �	�� and resorbed at rate 		���. Resorption rate 		, as well as as parame-
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ters � and � , were calibrated on bone volume dynamics, and bone formation rate �	 was then 

imposed by the relation �	��
 � 		��
�
, which ensures that bone volume remains at homeo-

stasis when osteoblasts and osteoclasts  are at homeostatic levels. As indicated by mathemati-

cal formulations, bone formation and resorption terms were assumed to linearly increase with 

respect to anti-inflammatory and pro-inflammatory monocytes/ macrophages, respectively. This 

accounts for the fact that anti-inflammatory macrophages typically produce osteogenic factors 

like TGFβ or OSM, that are known to promote osteoblast expansion and bone mineralization3, 

and for the fact that pro-inflammatory monocytes/macrophages typically produce osteolytic fac-

tors like TNF and IL-1, that are known to promote osteoclast resorptive activity132. 

 

Equation 9: Injury Factors 

��

��
� �	���� 
����� 

 Injury factors dynamics consists in an exponential type of decay, with a decay rate 

	���� 
���� proportional to pro-inflammatory monocytes/macrophages number, which repre-

sents how pro-inflammatory monocytes/macrophages uptake cellular debris, which  in return 

reduces pro-inflammatory signals. 

 

Population homeostasis 

In order to estimate the homeostatic cell replenishment parameters, we set them equal to the 

clearance term (lifespan) which was either based on literature values or calibrated directly from 

experimental data (Supplemental Fig. 1, Supplemental Tables 1 and 4). 

 

ODE solver 

The ODE45 function of Matlab was used to solve the differential equation system. The experi-

mental baseline values (time 0) were used as initial conditions.  

 

Parameter estimation method 

To estimate parameters for goodness of fit, we defined the following objective function: 

 

����� �  !"
����

∑
�

� �$��� , �� � ���
�

%�
�  

����� �  !"
����

 !"
�����
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�  
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Where i represents the time point index and j the variable index, � represents the parameter 

set used to evaluate the model function f, �� represents the experimental data of variable j at 

time point i, %� represents the experimental standard deviation (over all the animals of a given 

time point), and N represents the number of time points. The functional �� corresponds to the 

weighted least squares criterion. The functional �� is the Tchebychev approximation, wich con-

siders the maximal residual instead of the sum of the residuals. In both cases, the choice of the 

max over the observed variables of the sum of the squares of the residuals was motivated to 

make sure that every variable was fitted with equal relative importance. Indeed, in the case of 

the minimization of the sum of the squares over all the variables, it is sometimes possible to find 

an optimum in minimizing certain variables at the detriment of others. This way, we ensure that 

all variables are equally well fitted.  

The reason for considering the objective function �� in addition to the classical criterion �� is to 

avoid neglecting any time point in the fit. The least squares functional allows sometimes to find 

an optimum optimizing certain time points at the detriment of others. In this current study, this is 

a potentially big issue, as the time sampling is not homogenous across the time points, meaning 

that biological dynamics of importance might be ignored, while still producing a good fit under 

the least squares metric. 

In order to minimize this function representing the error estimate between data and model, we 

used the Matlab function fminsearch with a penalization term to stay in a parameter range set 

with reasonable boundaries.  

In order to rank the models in term of goodness of fit, we used AIC, that is defined as follows: 

 

&����� � 2� 
 2���� 

 

where p is the number of parameters, and the functional J is either �� or ��. 

 

OSM knockout data 

In order to retrieve data from the OSM knockout independent dataset, we used webplotdigitizer 

to collect datapoint from the plot presented in Guihard et al50. 
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FIGURE LEGENDS 

 

Fig 1. Experimental quantification of osteoblast, osteoclast, bone volume, and monocyte-

macrophage over time during bone injury. a schematic summarizing the experimental system 

and the time course and different measurements performed.  b  from left to right: Decalcified 

bones were stained and quantified for OCL by tartrate-resistant acid phosphatase (TRAcP) 

staining (top left panel; red). Temporal quantification of OCL population was then assessed (bot-

tom left panel); Decalcified bones were stained and quantified for OBL by RUNX2 immunofluo-

rescence staining (second top panel; red). Temporal quantification of OBL population was then 

assessed (bottom left panel); micro-computed tomography revealed trabecular bone status. 

Representative images (third top panel) and corresponding quantitative analyses of bone vol-

ume on the top panel (BONE; BV/TV, second bottom panel). Flow cytometry was to gate and 

quantify monocytes-macrophages by the use of CD11b, Ly6C, Ly6G markers (Top right panel). 

Temporal quantification of naïve, pro-inflammatory and anti-inflammatory monocytes-

macrophages populations was then assessed (bottom right panel). 
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Fig 2. Comprehensive combinatorial modeling pipeline is built to identify relevant myeloid be-

haviors necessary to recapitulate in vivo bone injury repair data. Literature curation reveals sets 

of well-established competing biological mechanisms potentially governing modulation of osteo-

clast formation (a), regulation of osteoblast formation (b), and relationships between pro- and 

anti-inflammatory myeloid cells (c). Model adopts all combinations of hypotheses regarding the-

se mechanisms to recapitulate in vivo data. Comparing model fits resulting from each hypothe-

sis combination reveals best-fitting models. 

 

Fig 3. The best fitting hypothesis combination model integrates hypotheses a3, b2 and c2 (red 

boxes in a-c). a mechanism a3 assumes that osteoblasts and anti-inflammatory macrophages 

promote and inhibit osteoclast formation, respectively. b mechanism b2 assumes that injury fac-

tors promote osteoblast expansion. c mechanism c2 assumes that injury factors  promote pro-

inflammatory monocytes/macrophages polarization. Pro-inflammatory monocytes/macrophages 

promote anti-inflammatory macrophages polarization, which in return drive depolarization of 

monocytes/macrophages back to the naive state. d schematic representation of the model using 

a3-b2-c2 hypothesis combination. Arrows represent positive (green) or negative (red) types of 

cellular interactions. e Temporal plots and corresponding goodness of fit metrics (AIC and R2s) 

across all populations, obtained through �� minimization. 

 

Fig 4. Other hypotheses combinations fail to recapitulate in vivo data. The example of the worst 

fitting hypothesis a2-b2-c1 fails to recapitulate in vivo data. a mechanism a2 assumes that pro-

inflammatory monocytes/macrophages and osteoblasts promote and inhibit osteoclast for-

mation, respectively. b mechanism b2 assumes that injury factors promote osteoblast expan-

sion. c mechanism c1 assumes that injury factors promote  pro-inflammatory mono-

cytes/macrophages and anti-inflammatory macrophages polarization. Anti-inflammatory macro-

phages drive depolarization of monocytes/macrophages back to the naive state. d schematic 

representation of the model using a2-b2-c1 hypothesis combination. Arrows represent positive 

(green) or negative (red) types of cellular interactions. e temporal plots and corresponding 

goodness of fit metrics (AIC and R2s) across all populations, obtained through �� minimization. 

 

 

Fig 5. Bone repair dynamics in oncostatin M (OSM)-depleted bone predictions. a bone repair 

temporal data for OCL, OBL and bone, in presence or absence of OSM, is retrieved and plotted 

from a murine in vivo bone fracture healing study performed by Guihard P, et al. on the top pan-
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el (solid line = WT, dashed line = OSM-null; http://doi.org/10.1016/j.ajpath.2014.11.008). Reduc-

tion in OBL bone formation rate and mineralization activity, allow model to qualitatively repro-

duce OBL, OCL and bone dynamics in OSM-null dataset (lower panel; solid line = unmodulated, 

dashed line = OSM-/-). b. corresponding Myeloid populations predictions with reduced OBL for-

mation rate and mineralization activity (lower panel; solid line = unmodulated, dashed line = 

OSM-/-), for which no data was available in Guihard P, et al. Simulations were obtained with 

model a2-b2-c1, calibrated on the injury data (Fig. 4) through �� minimization. 
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SUPPLEMENTARY FIGURE LEGENDS 

 
Supplemental Fig. 1. ODE equations for the best fitting model: Hypothesis combination a3b2c2 
The ODE systems govern behaviors of each population and are parameterized by published 
values when available, such as the natural lifespan of monocytes (	�� in ��� ��⁄ ). Parameters 
with no reference publication were estimated to obtain best possible fits to temporal dynamics 
data (parameters in red) and are listed in Table 3. In all equations, black terms correspond to 
homeostatic dynamics, whereas red terms correspond to injury dynamics. 
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Supplemental Fig. 2. Alternative hypotheses combination a3 b1 c2 (green boxes in a-c) 
computational results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macro-
phages promote and inhibit osteoclast formation, respectively. b Mechanism b1 assumes that 
anti-inflammatory macrophages promote osteoblast expansion. c Mechanism c2 assumes that 
injury factors promote  pro-inflammatory monocytes/macrophages polarization. Pro-
inflammatory monocytes/macrophages promote anti-inflammatory macrophages polarization, 
which in return drive depolarization of pro-inflammatory monocytes/macrophages back to the 
naive state. d Schematic representation of the model using a3b1c2 hypothesis combination. 
Arrows represent positive (green) or negative (red) types of cellular interactions. e Temporal 
plots and corresponding goodness of fit metrics (AIC and R2s) across all populations, obtained 
through �� minimization.  
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Supplemental Fig. 3. Generic formulation of coupled ODE models, valid for all hypotheses 
combinations. Each term (e.g formation rate, clearance, transition,…) is a functional form of 
other variables reflecting cellular interactions described in Figure 2. Black terms correspond to 
homeostasis, red terms correspond to injury dynamics and are described in details in Mathe-
matical methods. 
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Supplemental Fig. 4. Alternative hypotheses combination a3 b2 c1 (green boxes in a-c) com-
putational results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macro-
phages promote and inhibit osteoclast formation, respectively. b Mechanism b2 assumes that 
injury factors promote osteoblast expansion. c Mechanism c1 assumes that injury factors pro-
mote  pro-inflammatory monocytes/macrophages and anti-inflammatory macrophages polariza-
tion. Anti-inflammatory macrophages drive depolarization of pro-inflammatory mono-
cytes/macrophages back to the naive state. d Schematic representation of the model using 
a3b2c1 hypothesis combination. Arrows represent positive (green) or negative (red) types of 
cellular interactions. e Temporal plots and corresponding goodness of fit metrics (AIC and R2s) 
across all populations, obtained through �� minimization.  
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Supplemental Fig. 5. Alternative hypotheses combination a3 b1 c1 (green boxes in a-c) com-
putational results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macro-
phages promote and inhibit osteoclast formation, respectively. b Mechanism b21assumes that 
injury factors promote osteoblast expansion. c Mechanism c1 assumes that anti-inflammatory 
macrophages promote  pro-inflammatory monocytes/macrophages and anti-inflammatory mac-
rophages polarization. Anti-inflammatory macrophages drive depolarization of pro-inflammatory 
monocytes/macrophages back to the naive state. d Schematic representation of the model us-
ing a3b2c1 hypothesis combination. Arrows represent positive (green) or negative (red) types of 
cellular interactions. e Temporal plots and corresponding goodness of fit metrics (AIC and R2s) 
across all populations, obtained through �� minimization. 
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Supplemental Fig. 6. Alternative hypotheses combination a2 b1 c1 (green boxes in a-c) pro-
duces the second worst fit of all hypotheses combinations. a Mechanism a2 assumes that pro-
inflammatory and macrophages and osteoblasts promote and inhibit osteoclast formation, re-
spectively. b Mechanism b1 assumes that anti-inflammatory macrophages promote osteoblast 
expansion. c Mechanism c1 assumes that injury factors promote  pro-inflammatory mono-
cytes/macrophages polarization and anti-inflammatory macrophages. The latter drive depolari-
zation of pro-inflammatory monocytes/macrophages back to the naive state. d Schematic repre-
sentation of the model using a2b1c1 hypothesis combination. Arrows represent positive (green) 
or negative (red) types of cellular interactions. e Temporal plots and corresponding goodness of 
fit metrics (AIC and R2s) across all populations, obtained through �� minimization. 
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Table 1. Established biological behaviors and functions of bone cell populations. Framework for 
a comprehensive and coupled 9-population ODE model is constructed based off of summarizing 
known published interactions between each population. Inclusion of select hypotheses for each 
ambiguous aspect of myeloid biology is based on the prevalence of their corresponding publica-
tions (at least seven supporting references for each). 
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Table 2. Akaike information criterion (AIC) for comprehensive ODE of all 18 combinations of 
hypotheses. Left columns denote the hypotheses from each of three mechanisms tested. The 
AIC  scores resulting from �� and �� minimization for each model are shown on the right and 
vary dramatically across models. Comparing AICs reveal one best combination (boxed in red) 
and the worst fitting model is highlighted in blue lines.  
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Table 3. Estimated parameters of the two best-fitting models. First column is the parameter no-
tation used in the equations. Second column is the biological meaning of the parameter. Third 
and fourth columns are the parameter values for both models. Fifth column is the parameter 
unit. Sixth column is the reference used for retrieving parameter value, when it was possi-
ble/available. Parameters for which no reported estimation could be found were estimated by 
fitting on experimental data. 
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Table 4. Table showing biological description of each mathematical variable with data-derived 
initial conditions and units. First column is the variable notation used in the equations for each 
parameter. Second column is the biological meaning of the variable. Third column is the initial 
condition for each variable, typically an initial cell population level. Fourth column is the variable 
unit. 
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Table 5. Residuals lower than one for Mathematical model of all 18 combinations of hypothe-
ses, resulting from �� and �� minimization. For each hypothesis combination, the table shows 
how many residuals are lesser than 1 over all 40 residuals, which equates how many times the 
model lies within the experimental error bar. 
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